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In this paper we consider simple groups G which can be represented as a product
of two of their proper non-Abelian simple subgroups A and B. Such an expression
G = AB is called a (simple) factorization of G. Here we suppose that G is any one of
the simple orthogonal groups with Witt defect 0 in dimension 8 over the finite field
GF (q) and determine all factorizations of G.

1. Introduction. Let G be a finite (simple) group. The present paper is concerned
with the determination of all factorizations G = AB of G into the product of two non-
Abelian simple subgroups A and B. Especially, we treat the case in which G is any
member of the series of simple orthogonal groups PΩ+

8 (q). In [3] we have already con-
sidered the factorizations of all series of finite simple groups of Lie type and Lie rank 4
except for the orthogonal groups PΩ+

8 (q). Thus we complete the determination of all
factorizations of all finite simple groups of Lie type of Lie rank 4. The main reason to
postpone the investigation of these orthogonal groups is that they possess many classes
of isomorphic maximal factorizations (permuted by triality automorphisms – graph au-
tomorphisms of order 3) and accordingly a lot of possible cases of factorizations (into the
product of two simple groups) have to be considered. The following result is proved:

Theorem. Let G = PΩ+
8 (q). Suppose that G = AB, where A and B are proper

non-Abelian simple subgroups of G. Then one of the following holds:
(1) q = 2 and A ∼= A8, B ∼= A9 or U4(2), or A ∼= A9, B ∼= U4(2), or A ∼= PSp6(2),

B ∼= A6, A7, A8, A9 or U4(2);
(2) q = 3 and A ∼= Ω7(3), B ∼= A9, PSp6(2) or Ω+

8 (2);
(3) A ∼= Ω7(q), B = Aτ (τ is a triality automorphism of G), PSp4(q) (q > 2) or

PΩ−

8 (
√

q) (q square);
(4) q = 2n > 2 or q ≡ −1 (mod 4) and A ∼= Ω7(q), B ∼= L4(q);
(5) q = 2n > 2 or q ≡ 1 (mod 4) and A ∼= Ω7(q), B ∼= U4(q).
The factorizations of G = PΩ+

8 (q) into the product of two maximal subgroups (so
called maximal factorizations) have been determined in [8]. We make use of this result
here.

We shall freely use the notation and basic information on the finite (simple) classical
groups given in [6]. Let V be the natural 8-dimensional orthogonal vector space over the
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finite field F = GF (q) on which G acts. Assume that ( , ) is a nonsingular symmetric
bilinear form on V which is associated with the (nondegenerate) quadratic form Q :
V → F of defect 0 (thus the maximal totally singular subspaces have dimension 4).
There is a basis {ei, fi|i = 1, 2, 3, 4} of V , called a standard basis, such that Q(ei) =
Q(fi) = (ei, ej) = (fi, fj) = 0, (ei, fj) = δij for i, j = 1, 2, 3, 4. G acts transitively on
totally singular one-dimensional subspaces of V and let P1 be the stabilizer in G of such
a subspace. On the other hand G has two orbits on the set of maximal totally singular
subspaces, and let P3, P4 be the stabilizers in G of such subspaces in the two different
orbits. N1 means the stabilizer in G of a nonsingular one-dimensional subspace of V and
Nε

2 (ε = ±) is the stabilizer of a nonsingular two-dimensional subspace of V which has
type Oε

2. From Propositions 4.1.6 and 4.1.20 in [6] we can obtain the structure of Pk

(k = 1, 3, 4), N1 and Nε
2 . It follows that:

P1
∼= [q6] : (Zq−1 × PΩ+

6 (q)) (if q is even),

P1
∼= [q6] : (Z(q−1)/2 × PΩ+

6 (q)) (if q ≡ −1 (mod 4)),

P1
∼= [q6] : 2.(Z(q−1)/4 × PΩ+

6 (q)).2 (if q ≡ 1 (mod 4));

P3
∼= P4

∼= [q6] : GL4(q) (if q is even) or [q6] :

(
1

2
GL4(q)/ 〈−1〉

)
(if q is odd);

N1
∼= Ω7(q); Nε

2
∼= (Zq−ε1 × PΩε

6(q)).2 (if q is even),

Nε
2
∼= 2.(Z(q−ε1)/4 × PΩε

6(q)).[4] (if q ≡ ε1 (mod 4)), and

Nε
2
∼= (Z(q−ε1)/2 × PΩε

6(q)).2 (if q ≡ −ε1 (mod 4)).

Recall the well known isomorphisms PΩε
6(q)

∼= Lε
4(q) (here Lε

4(q) denotes L4(q) if
ε = + and U4(q) if ε = −). From the above it follows immediately that every one of
the stabilizers P1, P3 and P4 contains a subgroup isomorphic to L4(q) if and only if q is
even or q ≡ −1 (mod 4); also, in N1 and Nε

2 there exists a subgroup isomorphic to Lε
4(q)

only if q is even or q ≡ −ε1 (mod 4). The only other sources of subgroups isomorphic to
L4(q) or U4(q) (for an arbitrary field GF (q)) in maximal subgroups of G, taking part in
maximal factorizations, are the (maximal) subgroups of Aschbacher’s classes C2 and C3

(see [1]). In fact, a subgroup isomorphic to L4(q) in C2 and a subgroup isomorphic to
U4(q) in C3 exist only if q is even. In particular, both L4(q) and U4(q) simultaneously
are subgroups of G only if q is even in any case.

2. Proof of the theorem. Let G = PΩ+
8 (q) and G = AB, where A and B are

proper non-Abelian simple subgroups of G. The factorizations of PΩ+
8 (2) are determined

in [2]; this gives (1) and (3) (with A ∼= B ∼= Ω7(2) ∼= PSp6(2)) in the theorem. Thus
we can assume that q ≥ 3. The list of maximal factorizations of G is given in [8]. This
leads, by order considerations, to the following possibilities:

1) A ∼= Ω7(q), B = Aτ (τ is some triality automorphism of G), PSp4(q) (q > 2) or
PΩ−

8 (
√

q) (q square);

2) A ∼= Ω7(q), B ∼= Lε
4(q), q even or q ≡ −ε1 (mod 4);

3) q = 3 and A ∼= Ω7(3), B ∼= A9, PSp6(2) or Ω+
8 (2);

4) A ∼= L4(q) (in Ω7(q) subgroup of G, in N+
2 or C2, or in P1, P3 or P4), B ∼= U4(q)

(in Ω7(q) subgroup of G), q even;

5) A ∼= L4(q) (in Ω7(q) subgroup of G, or in P1, P3 or P4), B ∼= U4(q) (in N−

2 or C3),
q even.
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All possibilities in case 1) are known factorizations from [8]; the factorization
PΩ+

8 (3) = Ω7(3)Ω+
8 (2), which is the last possibility in case 3), is also proved there.

All these factorizations are listed in the theorem. Let us note that in the factorization
G = AB with A ∼= Ω7(q) and B = Aτ we have A ∩ B ∼= G2(q) which is mentioned in [8]
(originally in [7], 3.1.1 (vi)).

We consider all possibilities that left case by case.

Case 2). Here A ∼= Ω7(q) and we choose B ∼= Lε
4(q) to be a subgroup of B1 = Aτ

such that B1 = (A ∩ Aτ )B. The last is possible (see [4] and [5]) if q is even or q ≡ −ε1
(mod 4). Since A ∩B = (A ∩B1) ∩B it follows (by order considerations) that G = AB.
These are the factorizations in (4) and (5) of the theorem.

Case 3). Applying same arguments as in the previous case we take B1 = Aτ and then
G = AB1 with A ∩ B1

∼= G2(3). In [5] we mentioned that an appropriate choice of a
subgroup B ∼= A9 or B ∼= PSp6(2) can be made such that it satisfies the factorization
B1 = (A ∩ B1)B. Now, as obviously A ∩ B = (A ∩ B1) ∩ B, order considerations imply
the factorization G = AB; these are the desired cases in (2) of the theorem.

Now we proceed to prove that the possibilities in the remaining two cases 4) and 5)
do not give rise to any factorizations.

Case 4). First let us suppose that A < N1 and B < N τ
1 (τ is some triality and

N1
∼= N τ

1
∼= Ω7(q) ∼= PSp6(q); recall that q is even). As we mentioned above N1 ∩N τ

1
∼=

G2(q). Any one of the groups A and B is a single conjugacy class of subgroups in N1

and N τ
1 , respectively. The same holds for N1 ∩ N τ

1 in both N1 and N τ
1 . Now, using

[4], we can write down the factorizations N1 = A(N1 ∩ N τ
1 ) and N τ

1 = B(N1 ∩ N τ
1 )

in which A1 = A ∩ (N1 ∩ N τ
1 ) ∼= SL3(q) and B1 = B ∩ (N1 ∩ N τ

1 ) ∼= SU3(q). Since
obviously A1 ∩ B1 = A ∩ B, by the orders, we come to the following factorization of
N1 ∩N τ

1
∼= G2(q): N1 ∩N τ

1 = A1B1. But the groups G2(q) have no such a factorization.
This eliminates the possibility.

Further, let A ∼= L4(q) be in the single class of subgroups in one of the two conjugacy
classes N+

2 in G. Applying triality, we may take B ∼= U4(q) to be a subgroup of N1.
The two conjugacy classes of N+

2 are interchangeable by a graph automorphism of order
two fixing N1 (see [7]). Thus we may take A to be the subgroup of index 2 in the
group A1

∼= O+
6 (q) fixing the first two vectors e1 and f1 in the standard basis and

acting naturally on the subspace generated by the others. There is a second basis (2)
{e1 +f1, f1, α(e1 +f1)+e2, e2 +f2, e3, f3, e4, f4} of V with α ∈ F such that x2 +x+α2

is irreducible over F. As N1(∼= PSp6(q)) has just one conjugacy class of subgroups U4(q)
we may take B to be the subgroup of index 2 in the group B1

∼= O−

6 (q) which fixes
the first two vectors of the last basis and acts naturally on the subspace of type O−

6

generated by the others. It can be read off by ([8], 3.2.4 (e)) that A∩B ∼= Sp4(q). Order
considerations imply G 6= AB in this possibility.

Next we suppose that A ∈ C2. There are two conjugacy classes of subgroups A ∼=
L4(q) in C2 which are permuted by a graph automorphism of order 2 fixing N1. Thus
(according to the type of subgroups in C2) we may identify A as the subgroup with the fol-
lowing matrix representation with respect to the basis (3) {ei, i = 1÷4; fi, i = 1÷4} (the

standard basis with different order of the vectors in it): A =

{(
S 0

0 (S−1)t

)
| detS = 1

}
.

As above (using triality) we may take B ∼= U4(q) to have the same description with respect
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to the basis (2). Now, taking into consideration the corresponding matrix realization of
B, we can evaluate (in matrix form) the common elements of A and B (with respect to
the basis (3)): A ∩B = {diag (E2×2, T, E2×2, (T−1)t)| detT = 1} ∼= SL2(q). Hence, by
the orders, G 6= AB.

Now we deal with the subcase in which A stabilizes one-dimensional totally singu-
lar subspace. Such a possible subgroup A (let us call it “standard”) has already been
described as a subgroup also in N+

2 of the second considered subcase above. B is the
same discussed in this subcase subgroup of N1. As it has been seen the intersection
A ∩ B is isomorphic to Sp4(q). Let us denote by Â any subgroup of P1 which is iso-

morphic to L4(q). Then |A ∩ Â| ≥ |A|2
|P1|

=
|A|2

q6.(q−1).|A| = (q4−1).(q3−1).(q+1). Thus

in A there exist two subgroups: A ∩ B (∼= Sp4(q)) and A ∩ Â (of order not less than

(q4 − 1).(q3 − 1).(q + 1)). Hence |Â ∩ B| ≥ |(A ∩ B) ∩ (Â ∩ A)| ≥ |A ∩ B|.|Â ∩ A|
|A| =

|Â ∩ A|.|Sp4(q)|
|L4(q)|

=
|Â ∩ A|

q2.(q3 − 1)
≥ (q4 − 1).(q + 1)

q2
> q2−1 and again it follows (by order

considerations) that G 6= AB in this subcase.

Lastly, if A stabilizes a maximal totally singular subspace we can choose this subspace
to be generated by the vectors {ei, i = 1 ÷ 4}; B is the same subgroup of N1 discussed
throughout the hole case so far (this choice can be made in view of the fact that P3 and
P4 are permuted by a graph automorphism of order 2 which fixes N1). For one possible
subgroup A we have already proved (see the subcase A ∈ C2, A obviously stabilizes
this subspace) that no factorization gives rise to. To prove this for an arbitrary group
A ∼= L4(q), taking into account the structure of P3

∼= P4, we consider all possible type
L4(q) Sylow 2-subgroups L in the stabilizer of the mentioned subspace. Routine but
exhausting calculations show that such a group L always contains involution of B. This
eliminates the possibility.

Case 5). In this case if A is a subgroup in an Ω7(q) subgroup of G, applying triality τ ,
we may take A to be a subgroup of N1 as τ permutes all isomorphic to Ω7(q) subgroups
of G; τ also permutes the stabilizers P1, P3 and P4 between themselves so we can restrict
the other subcases of A to the inclusion A ∈ P1 only. On the other hand G has uniquely
determined subgroups B(∼= U4(q)) in any one of the two conjugacy classes of either N−

2

or in C3. These subgroups are interchangeable by a graph automorphism of order two
which fixes N1 and P1; so only one possible subgroup B in one N−

2 and in C3 is enough
to be considered. According to [1] the groups in C3 correspond to appropriate extensions
of the basic field F.

First we deal with the subcase A < N1 and B ∈ N−

2 . In order to proceed this
possibility we need to introduce into consideration two more bases of V with respect to
which the subgroups A and B will be presented in matrix form. These are the basis (4)
{e1 + f1, f1, ei, fi; i = 2, 3, 4} (in which e1 + f1 is a nonsingular vector) and the basis
(5) {e1 + f1, e1 + e2 + µf2, e1 + f1 + f2, e2 + µf2, ei, fi; i = 2, 3, 4} with µ ∈ F such
that x2 + x + µ is irreducible over F. The subspace generated by the first two vectors
of (5) has type O−

2 and the other six vectors generate a subspace of type O−

6 ; V is an
orthogonal decomposition of these its subspaces. Let us consider the subgroup A1 of the
group G1 = SO+

8 (q) = O+
8 (q) = G.2 which fixes each of the vectors e1 + f1 and f1 of the
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basis (4) and acts naturally on the subspace generated by the other vectors of that basis:
A1 = A.2 ∼= O+

6 (q). A subgroup B1 = B.2 ∼= O−

6 (q) can be taken to be the subgroup
of G1 fixing vectors e1 + f1 and e1 + e2 + µf2 and stabilizing the subspace generated by
the other vectors in the basis (5). Now these copies of A1 and B1 have clearly described
matrix representations with respect to the bases (4) and (5), respectively. Taking into
account the necessary “orthogonal” conditions onto the entries of the matrices in these
representations we calculate the common elements (in the representation related to the
basis (4)) of A1 and B1. It follows that A1 ∩ B1 contains a subgroup O+

4 (q) acting
naturally on the subspace generated by the vectors e3, f3, e4, f4 and fixing e1 + f1, f1,
e2, f2. As O+

4 (q) ∼= (SL2(q) × SL2(q)).2, the intersection A ∩ B contains a subgroup
isomorphic to SL2(q)×SL2(q) which (by order considerations) eliminates this possibility.
Obviously, the treated copy of L4(q) is also in P1. So, in this particular case, we have
eliminated the possibility A ∈ P1, B ∈ N−

2 too.
Next we suppose that A is already considered subgroup of N1 (in matrix form with

respect to (4)) and let B be in C3. Here we shall need a (matrix) realization of B in
G1 = SO+

8 (q) = G.2. The group G1 has the following (matrix) realization with respect
to the basis (3)

G1 =
{
X ∈ SL8(q)|Xt.L.X = L, Q(ejX) = Q(ej), Q(fjX) = Q(fj)

}
,

where L =

(
O E4×4

E4×4 O

)
. Let K be a field extension of F = GF (q) of degree 2. There

is an element ω of K such that ω +ωq = 1 and ω2 = p0 + p1.ω where p0, p1 ∈F. Further,
let S = (s0

ij + s1
ij .ω)41 = S0 + S1.ω with S0 = (s0

ij)
4
1, S1 = (s1

ij)
4
1, sl

ij ∈ F (l = 0, 1; i, j =

1, 2, 3, 4) be any unimodular matrix such that S
t
TS = T , where T =

(
O E2×2

E2×2 O

)
.

Let us denote by B̃ the set of all matrices S which satisfy these properties. So B̃ ∼= U4(q)
has a standard unitary realization over the field K. Then the following matrices form a

subgroup B of G1 isomorphic to U4(q): W = P.

(
S0 p0S1

S1 S0 + p1S1

)
.P−1, where P =

(pij)
8
1 and pij =

{
0, if j 6= π(i)

1, if j = π(i)
for the permutation π = (1)(2, 3, 5)(4, 7, 6)(8). The

isomorphism is given by the map σ : S 7→ W . Now calculations show that A∩B ∼= SL2(q)
and again there is no factorization in this subcase of Case 5). Let us note that for the
considered copy of A we have also eliminated the case A ∈ P1 and B in C3.

To finish our considerations we have to discuss in full the possibility A ∈ P1 and B is
one of the subgroups in N−

2 or in C3 already described above. As P1 is a single conjugacy
class of subgroups in G we may take A to be in the stabilizer in G of the first vector
from the standard basis. Applying matrix realizations of these groups (with respect to
the corresponding bases, making necessary transitions between them), according to the
structure of P1, we consider all subgroups R in P1 that can be isomorphic to a Sylow
2-subgroup of possible A ∼= L4(q) in P1. Calculations show that any such subgroup R
always has common elements with the subgroup B. Thus 2||A ∩ B| and then, by the
orders, there are no factorizations in these cases.

We considered all the possible cases. The theorem is proved.
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ФАКТОРИЗАЦИИТЕ НА ОРТОГОНАЛНИТЕ ГРУПИ PΩ+
8 (q)

Eленка Христова Генчева, Цанко Райков Генчев

Разглеждат се прости групи G, които могат да се представят като произведение
на две свои собствени неабелови прости подгрупи A и B. Всяко такова предс-
тавяне G = AB се нарича (проста) факторизация на G. В настоящата работа
предполагаме, че G е проста ортогонална група с нулев дефект на Вит от раз-
мерност 8 над крайно поле GF (q) и определяме всички факторизации на G.
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