МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2013 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2013 Proceedings of the Forty Second Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 2-6, 2013

A NOTE ON THE CLASSES OF STRONGLY STARLIKE AND STRONGLY CLOSE-TO-CONVEX FUNCTIONS'

Donka Pashkouleva

The aim of this paper is to obtain results about Fekete-Szegö problem for the classes of strongly starlike and strongly close-to-convex functions.

1. Introduction and definitions. Let P be the class of functions h(z) given by $h(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$, which are analytic and have positive real part in $E = \{z : |z| < 1\}$. Let Ω be the class of functions analytic in E, such that

 $\omega(0) = 0$ and $|\omega(z)| \le |z|$ for $z \in E$.

Let ${\cal S}$ denote the class of functions of the form

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n$$

that are analytic and univalent in the unit disk E.

A function f(z) analytic in E is said to be starlike in E if f(0) = f'(0) - 1 = 0 and

$$\Re \frac{zf'(z)}{f(z)} > 0 \text{ for } z \in E$$

The class of such functions is denoted by S^* .

A function f(z), analytic in E with f(0) = f'(0) - 1 = 0 is said to be convex if and only if, for $z \in E$

$$\Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} > 0.$$

The class of such functions is denoted by C.

A function f(z), analytic in E, is said to be close-to-convex in E if there exists a function $g(z) \in S^*$ and a real number γ such that for $z \in E$ and $-\frac{\pi}{2} < \gamma < \frac{\pi}{2}$,

$$\Re e^{i\gamma} \frac{zf'(z)}{g(z)} > 0.$$

The class of such functions is denoted by K^{γ} . Note $K^0 = K$ the class of close-to-convex functions introduced by Kaplan[1].

Key words: strongly starlike functions, strongly close-to-convex functions. 234

^{*}2000 Mathematics Subject Classification: 30C.

The classes S, K^{γ}, S^* and C are related by proper inclusions

$$C \subset S^* \subset K^{\gamma} \subset S.$$

A function g(z), analytic in E and normalized so that g(0) = 0, g'(0) = 1, is said to be strongly starlike of order α , $0 < \alpha \leq 1$, if for $z \in E$

$$\left|\arg\frac{zg'(z)}{g(z)}\right| \le \alpha\frac{\pi}{2}.$$

We denote such functions by $S^*(\alpha)$. Note that $S^*(1) = S^*$ [7].

A function f(z), analytic in E and normalized so that f(0) = 0 = f'(0) - 1 is said to be strongly close-to-convex of order β if and only if there exists a function $g(z) \in S^*$ and a real number γ , $-\frac{\pi}{2} \leq \gamma \leq \frac{\pi}{2}$ satisfying

$$\left|\arg e^{i\gamma} \frac{zf'(z)}{g(z)}\right| \leq \beta \frac{\pi}{2} \text{ for } z \in E \text{ and } \beta \geq 0.$$

The class of such functions will be denoted by $K(\beta)$. Clearly, K(0) = C, K(1) = K and for $0 \le \beta \le 1$, f(z) is close-to-convex and hence univalent [1].

2. Known results.

Theorem 2.1 ([5], [6]). If $g(z) \in S^*$, with $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$, then $|b_n| \le n$, $n = 2, 3, \ldots$ Equality holds when $g(z) = \frac{z}{(1 - \varepsilon z)^2}$, $|\varepsilon| = 1$ and $|b_3 - \mu b_2^2| \le \max\{1, |3 - 4\mu|\}$. The inequality is sharp for the Koebe function $K(z) = \frac{1}{(1 - z)^2}$ if $\left|\mu - \frac{3}{4}\right| \ge \frac{1}{4}$ and for function $K_1(z) = K(z^2)^{\frac{1}{2}}$ if $\left|\mu - \frac{3}{4}\right| \le \frac{1}{4}$.

Theorem 2.2 ([4]). If $g(z) \in K$, with $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$ and if μ is a real number, then

$$|a_3 - \mu a_2^2| \le \begin{cases} 3 - 4\mu & \text{if } \mu \le \frac{1}{3} \\ \frac{1}{3} + \frac{4}{9\mu} & \text{if } \frac{1}{3} \le \mu \le \frac{2}{3} \\ 1 & \text{if } \frac{2}{3} \le \mu \le 1 \\ 4\mu - 3 & \text{if } \mu \ge 1. \end{cases}$$

For each μ there is a function in K such that equality holds.

Theorem 2.3 ([13]). Let $f(z) \in K(\beta)$ with $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and let $F(\beta)$ be defined for $z \in E$ by

$$F_{\beta}(z) = \frac{1}{2(\beta+1)} \left[\left(\frac{1+z}{1-z} \right)^{\beta+1} - 1 \right] = z + \sum_{n=2}^{\infty} A_n(\beta) z^n,$$

then $|a_n| \leq A_n(\beta)$. The result is sharp for all real β and every integer $n \geq 2$.

235

Theorem 2.4 ([10]). Let $h(z) \in P$, with $h(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$. Then $|c_n| \leq 2$, n = 1, 2, ...,

$$\left|c_2 - \frac{c_1^2}{2}\right| \le 2 - \frac{\left|c_1\right|^2}{2}.$$

Equality holds when $h(z) = \frac{1+z}{1-z}$.

In 1933, Fekete and Szegö [2] obtained the sharp bounds for $|a_3 - \mu a_2^2|$ in S, for each fixed μ in the interval $0 \le \mu \le 1$. They showed that for $f(z) \in S$ given by (1.1)

$$|a_3 - \mu a_2^2| \le \begin{cases} 3 - 4\mu & \text{if } \mu \le 0\\ 1 + 2e^{-\frac{2\mu}{1-\mu}} & \text{if } 0 \le \mu \le 1\\ 4 - 3\mu & \text{if } \mu \ge 1. \end{cases}$$

This inequality is sharp in the sense that, for each μ , there exists a function in S such that equality holds. Pfluger [3] considered the problem when μ is complex and $f(z) \in S$.

In the case of C, S^* and K^{γ} the subclasses of S consisting of convex, starlike and close-to-convex functions respectively, the above inequalities can be improved [4], [6]. In particular for $f(z) \in K^{\gamma}$ and given by (1.1) Keogh and Marks [4] showed that when μ is complex

$$|a_3 - \mu a_2^2| \le \max\{1, 3|\mu - 1|, |4\mu - 3|\}.$$

In 1987 Koepf [6] showed that for $f(z) \in K^{\gamma}$ and μ real

$$|a_3 - \mu a_2^2| \le \begin{cases} 3 - 4\mu & \text{if } 0 \le \mu \le \frac{1}{3} \\ \frac{1}{3} + \frac{4}{9\mu} & \text{if } \frac{1}{3} \le \mu \le \frac{2}{3} \\ 1 & \text{if } \frac{2}{3} \le \mu \le 1. \end{cases}$$

3. Strongly Starlike and Strongly Close-to-convex Functions In this section we extend Theorem 2.1 to the class $S^*(\alpha)$ of strongly starlike functions of order α , $0 < \alpha \leq 1$. This class has been investigated in [7], [8], [9].

Theorem 3.1. Let $g(z) \in S^*(\alpha)$ and be given by $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$, then for μ real $|b_3 - \mu b_2^2| \le \max\{\alpha, \alpha^2 | 3 - 4\mu|\}.$

The result is sharp for $g_0(z) = z \exp\left\{\int_0^z \left[\frac{1}{t}\left(\frac{1+t}{1-t}\right)^\alpha - 1\right] dt\right\} if \left|\mu - \frac{3}{4}\right| \ge \frac{1}{4\alpha} and$ for $g_1(z) = z \exp\left\{\int_0^z \left[\frac{1}{t}\left(\frac{1+t^2}{1-t^2}\right)^\alpha - 1\right] dt\right\} if \left|\mu - \frac{3}{4}\right| \le \frac{1}{4\alpha}.$

Proof. Since $g(z) \in S^*(\alpha)$ it follows that we can write (3.1) $zg'(z) = g(z)h(z)^{\alpha}$ 236 for $h(z) \in P$ and $h(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$. Comparing the coefficients in (3.1), we obtain $b_2 = \alpha c_1$ and $2b_3 = \frac{3}{2}\alpha^2 c_1^2 - \frac{\alpha}{2}c_1^2 + \alpha c_2$ so that

$$b_3 - \mu b_2^2 = \frac{\alpha}{2} \left(c_2 - \frac{1}{2} c_1^2 \right) + \frac{\alpha^2 c_1^2}{4} (3 - 4\mu) = \frac{\alpha}{2} \left[\left(c_2 - \frac{1}{2} c_1^2 \right) + \alpha c_1^2 \left(\frac{3}{2} - 2\mu \right) \right].$$

Thus

$$\left|b_{3}-\mu b_{2}^{2}\right| \leq \frac{\alpha}{2} \left[\left|c_{2}-\frac{1}{2}c_{1}^{2}\right|+\alpha \left|\frac{3}{2}-2\mu\right||c_{1}|^{2}\right] \leq \frac{\alpha}{2} \left[2-\frac{1}{2}|c_{1}|^{2}+\alpha \left|\frac{3}{2}-2\mu\right||c_{1}|^{2}\right]$$
ere we have used Theorem 2.4

where we have used Theorem 2.4.

If
$$\left|\mu - \frac{3}{4}\right| \le \frac{1}{4\alpha}$$
, then we have
 $|b_3 - \mu b_2| \le \frac{\alpha}{2} \left[2 - \frac{1}{2} |c_1|^2 + \frac{1}{2} |c_1|^2\right] = \alpha.$

On the other hand, if $\left|\mu - \frac{3}{4}\right| \geq \frac{1}{4\alpha}$, Theorem 2.4 and the fact that $|c_2| \leq 2$ we have $\left|b_{3}-\mu b_{2}^{2}\right| \leq \frac{\alpha}{2} \left[2 + \left(\alpha \left|\frac{3}{2}-2\mu\right| - \frac{1}{2}\right) |c_{1}|^{2}\right] \leq \frac{\alpha}{2} \left[2 + 4\alpha \left|\frac{3}{2}-2\mu\right| - 2\right] = \alpha^{2} |3 - 4\mu|,$ which completes the proof. \Box

In 1987 Koepf [11] considered the Fekete-Szegö problem for the class $K(\beta)$ and obtained sharp results when $\mu = \frac{2\beta}{3(\beta+1)}$. Koepf showed that

$$\left|a_{3}-a_{2}^{2}\right| \leq \begin{cases} \frac{1+2\beta}{3} \text{ for } 0 \leq \beta \leq 1\\ \frac{\beta^{2}+\beta}{3} \text{ for } \beta > 1. \end{cases}$$

He also established this result [12] using different method.

We now extend the result of Keogh and Marks in Theorem 2.2 to the class $K(\beta)$ of strongly close-to-convex functions of order β . All the results of Koepf [11], with the exception of the case $\mu = 1$ and $\beta \ge 1$ are contained in the following Theorem.

Theorem 3.2. Let $f(z) \in K(\beta)$ and be given by (1.1), then for $0 \le \beta \le 1$

$$\begin{aligned} |a_3 - \mu a_2^2| &\leq \begin{cases} 1 - \mu + \frac{\beta(2 - 3\mu)(\beta + 2)}{3} & \text{if } \mu \leq \frac{2\beta}{3(\beta + 1)} \\ 1 - \mu + \frac{2\beta}{3} + \frac{\beta(2 - 3\mu)^2}{3[2 - \beta(2 - 3\mu)]} & \text{if } \frac{2\beta}{3(\beta + 1)} \leq \mu \leq \frac{2}{3} \\ \frac{2\beta + 1}{3} & \text{if } \frac{2}{3} \leq \mu \leq \frac{2(\beta + 2)}{3(\beta + 1)} \\ \mu - 1 + \frac{\beta(3\mu - 2)(\beta + 2)}{3} & \text{if } \mu \geq \frac{2(\beta + 2)}{3(\beta + 1)}. \end{cases} \end{aligned}$$

For each μ there is a function in $K(\beta)$ such that equality holds.

237

For the case when $\mu \leq \frac{2\beta}{3(\beta+1)}$ for example, this is the function

$$f_0(z) = \frac{1}{2(\beta+1)} \left[\left(\frac{1+z}{1-z} \right)^{\beta} - 1 \right].$$

Proof. Since $f(z) \in K(\beta)$, it follows that we can write $zf'(z) = g(z)h(z)^{\beta}$

(3.2)

for $g(z) \in S^*$ and $h(z) \in P$. Equating coefficients in (3.2) we obtain $2a_2 = \beta c_1 + b_2$ and $3a_3 = \frac{\beta(\beta-1)}{2}c_1^2 + \beta c_2 + \beta c_1b_2 + b_3$ so that (3.3)

$$\begin{array}{rcl} a_3 - \mu a_2^2 &=& \frac{1}{3} \left[\frac{\beta(\beta - 1)}{2} c_1^2 + \beta c_2 + \beta c_1 b_2 + b_3 \right] - \frac{\mu}{4} \left(\beta c_1 + b_2\right)^2 = \\ &=& \frac{1}{3} \left(b_3 - \frac{3}{4} \mu b_2^2 \right) + \frac{\beta}{3} \left[c_2 + \left(\frac{\beta(2 - 3\mu)}{4} - \frac{1}{2} \right) c_1^2 \right] + \beta \left(\frac{1}{3} - \frac{\mu}{2} \right) c_1 b_2 \\ &=& \frac{2\beta}{4} \end{array}$$

We consider at first the case $\frac{2\beta}{3(\beta+1)} \le \mu \le \frac{2}{3}$. Equation (3.3) gives

$$\left|a_{3}-\mu a_{2}^{2}\right| \leq \left|b_{3}-\frac{3}{4}\mu b_{2}^{2}\right| + \frac{\beta}{3}\left|c_{2}-\frac{1}{2}c_{1}^{2}\right| + \beta^{2}\frac{(2-3\mu)}{12}|c_{1}|^{2} + \beta\left(\frac{1}{3}-\frac{\mu}{2}\right)|c_{1}||b_{2}|.$$

Now from Theorems 2.1 and 2.4 and the fact that $|b_2| \leq 2$ for $g(z) \in S^*$ we have $\left|a_{3}-\mu a_{2}^{2}\right| \leq 1-\mu + \frac{\beta}{3}\left(2-\frac{|c_{1}|^{2}}{2}\right) + \frac{\beta^{2}(2-3\mu)}{12}|c_{1}|^{2} + \frac{\beta(2-3\mu)}{3}|c_{1}| = \Phi(x)$

say with $x = |c_1|$. $\Phi(x)$ attains its maximum value at the point $x_0 = \frac{2(2-3\mu)}{2-\beta(2-3\mu)}$. Thus

$$\Phi(x_0) = 1 - \mu + \frac{2\beta}{3} - \frac{2\beta(2 - 3\mu)^2}{3\left[2 - \beta(2 - 3\mu)\right]^2} + \frac{\beta^2(2 - 3m)^2}{3\left[2 - \beta(2 - 3\mu)\right]^2} = 1 - \mu + \frac{2\beta}{3} + \frac{\beta(2 - 3\mu)^2}{3\left[2 - \beta(2 - 3\mu)\right]}$$

and so

 $\left|a_3 - \mu a_2^2\right| \le \Phi(x_0)$

which proves the Theorem if $\mu \leq \frac{2}{3}$ and $\beta \geq 0$. Choosing $c_1 = \frac{2(2-3\mu)}{2-\beta(2-3\mu)}$, $c_2 = 2$, $b_2 = 2$ and $b_3 = 2$ in (3.3) we see that the result is sharp. Since $|c_1| \leq 2$ (Theorem 2.4), it follows that $\mu \geq \frac{2\beta}{3(\beta+1)}$.

Next, consider the case $\mu \leq \frac{2\beta}{3(\beta+1)}$. Since K(0) = C, we may assume that $\beta > 0$. Again (3.3) gives

$$\begin{aligned} |a_3 - \mu a_2^2| &\leq \frac{3\mu(\beta+1)}{2\beta} \left| a_3 - \frac{2\beta}{3(\beta+1)} a_2^2 \right| + \left[1 - \frac{3\mu(\beta+1)}{2\beta} \right] |a_3| \leq \\ &\leq \frac{3\mu(\beta+1)}{2\beta} \left(1 + \frac{2\beta}{3} \right) + \left[1 - \frac{3\mu(\beta+1)}{2\beta} \right] \left[\frac{2\beta(\beta+2)}{3} + 1 \right] \\ &= 1 - \mu + \frac{\beta(2 - 3\mu)(\beta+2)}{3} \end{aligned}$$

238

for $\beta > 0$, where we have used the result already proved in the case $\mu = \frac{2\beta}{3(\beta+1)}$ and the fact in Theorem 2.3 that for $f(z) \in K(\beta)$, the inequality $|a_3| \le 1 + \frac{2\beta(\beta+2)}{3}$ holds. Equality is attained on choosing $c_1 = c_2 = b_2 = 2$ and $b_3 = 3$. The cases $\frac{2}{3} \le \mu \le \frac{2(\beta+2)}{3(\beta+1)}$ and $\mu \ge \frac{2(\beta+2)}{3(\beta+1)}$ are proven in a similar manner. As the calculations are rather long, they are not given here.

REFERENCES

- [1] W. KAPLAN. Close-to-convex schlicht functions. Mich. Math. J., 1 (1952), 169–185.
- [2] M. FEKETE, G. SZEGÖ. Eine Bemerkung über ungerade schlichte Funktionen. J. London Math. Soc., 8 (1933), 85–89.
- [3] A. PFLUGER. The Fekete-Szegö inequality for complex parameters. Complex Variables, 7 (1986), 149–160.
- [4] F. KEOGH, E. MERKES. A coefficient inequality for certain classes of analytic functions. Proc. Amer. Math. Soc., 20 (1969), 8–12.
- [5] W. HAYNMAN. Multivalent functions. Cambridge, 1958.
- [6] W. KOEPF. On the Fekete-Szegö problem for close-to-convex functions. Proc. Amer. Math. Soc., 101 (1987), 89–95.
- [7] D. BRANNAN, W. KIRWAN. On some classes of bounded univalent functions. J. London Math. Soc., 1 (1969), 431–443.
- [8] D. BRANNAN, J. CLUNIE, W. KIRWAN. Coefficient estimates for a class of starlike functions. Canad. J. Math., 22 (1970), 476–485.
- [9] J. STANKIEWICZ. Quelques problems extremaux dans les classes des fonctions α angulairement étoilees. Ann. Univ. Marie Curie-Sklodowska, Sect. A, **20** (1966), 39–75.
- [10] CH. POMMERENKE. Univalent functions. Vandenhoeck and Ruprecht Göttingen, 1977.
- [11] W. KEOPF. On the Fekete-Szegö problem for close-to-convex functions, Arch. Math., 49 (1987), 420–433.
- [12] W. KOEPF. Close-to-convex functions, univalence criteria and quasi-conformal extension. Ann. Univ. Mariae-Curie-Sklodowska, Sect. A, 9 (1986), 97–102.
- [13] J. NOONAN. On close-to-convex functions of order β . Pacific J. Math., 44 (1973), 263–280.

Donka Zheleva Pashkouleva Institute of Mathematics and Informatics Bulgarian Academy of Sciences Acad. G. Bonchev Str., Block 8 1113 Sofia, Bulgaria e-mail: donka_zh_vasileva@abv.bg

БЕЛЕЖКА ВЪРХУ КЛАСОВЕТЕ ОТ СИЛНО ЗВЕЗДНИ И СИЛНО ПОЧТИ ИЗПЪКНАЛИ ФУНКЦИИ

Донка Пашкулева

Целта на тази статия е да получи резултати за проблема на Фекете-Сегьо за класовете, състоящи се от силно звездни и силно почти изпъкнали функции.