A NOTE ON THE CLASSES OF STRONGLY STARLIKE AND STRONGLY CLOSE-TO-CONVEX FUNCTIONS*

Donka Pashkouleva

The aim of this paper is to obtain results about Fekete-Szegö problem for the classes of strongly starlike and strongly close-to-convex functions.

1. Introduction and definitions. Let P be the class of functions $h(z)$ given by $h(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$, which are analytic and have positive real part in $E=\{z:|z|<1\}$. Let Ω be the class of functions analytic in E, such that

$$
\omega(0)=0 \text { and }|\omega(z)| \leq|z| \text { for } z \in E
$$

Let S denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

that are analytic and univalent in the unit disk E.
A function $f(z)$ analytic in E is said to be starlike in E if $f(0)=f^{\prime}(0)-1=0$ and

$$
\Re \frac{z f^{\prime}(z)}{f(z)}>0 \text { for } z \in E .
$$

The class of such functions is denoted by S^{*}.
A function $f(z)$, analytic in E with $f(0)=f^{\prime}(0)-1=0$ is said to be convex if and only if, for $z \in E$

$$
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0
$$

The class of such functions is denoted by C.
A function $f(z)$, analytic in E, is said to be close-to-convex in E if there exists a function $g(z) \in S^{*}$ and a real number γ such that for $z \in E$ and $-\frac{\pi}{2}<\gamma<\frac{\pi}{2}$,

$$
\Re e^{i \gamma} \frac{z f^{\prime}(z)}{g(z)}>0
$$

The class of such functions is denoted by K^{γ}. Note $K^{0}=K$ the class of close-to-convex functions introduced by Kaplan[1].

[^0]The classes S, K^{γ}, S^{*} and C are related by proper inclusions

$$
C \subset S^{*} \subset K^{\gamma} \subset S
$$

A function $g(z)$, analytic in E and normalized so that $g(0)=0, g^{\prime}(0)=1$, is said to be strongly starlike of order $\alpha, 0<\alpha \leq 1$, if for $z \in E$

$$
\left|\arg \frac{z g^{\prime}(z)}{g(z)}\right| \leq \alpha \frac{\pi}{2}
$$

We denote such functions by $S^{*}(\alpha)$. Note that $S^{*}(1)=S^{*}[7]$.
A function $\mathrm{f}(\mathrm{z})$, analytic in E and normalized so that $f(0)=0=f^{\prime}(0)-1$ is said to be strongly close-to-convex of order β if and only if there exists a function $g(z) \in S^{*}$ and a real number $\gamma,-\frac{\pi}{2} \leq \gamma \leq \frac{\pi}{2}$ satisfying

$$
\left|\arg e^{i \gamma} \frac{z f^{\prime}(z)}{g(z)}\right| \leq \beta \frac{\pi}{2} \text { for } z \in E \text { and } \beta \geq 0
$$

The class of such functions will be denoted by $K(\beta)$. Clearly, $K(0)=C, K(1)=K$ and for $0 \leq \beta \leq 1, f(z)$ is close-to-convex and hence univalent [1].

2. Known results.

Theorem 2.1 ([5], [6]). If $g(z) \in S^{*}$, with $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, then $\left|b_{n}\right| \leq n$, $n=$ $2,3, \ldots$ Equality holds when $g(z)=\frac{z}{(1-\varepsilon z)^{2}},|\varepsilon|=1$ and $\left|b_{3}-\mu b_{2}^{2}\right| \leq \max \{1,|3-4 \mu|\}$. The inequality is sharp for the Koebe function $K(z)=\frac{1}{(1-z)^{2}}$ if $\left|\mu-\frac{3}{4}\right| \geq \frac{1}{4}$ and for function $K_{1}(z)=K\left(z^{2}\right)^{\frac{1}{2}}$ if $\left|\mu-\frac{3}{4}\right| \leq \frac{1}{4}$.

Theorem 2.2 ([4]). If $g(z) \in K$, with $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ and if μ is a real number, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}3-4 \mu & \text { if } \mu \leq \frac{1}{3} \\ \frac{1}{3}+\frac{4}{9 \mu} & \text { if } \frac{1}{3} \leq \mu \leq \frac{2}{3} \\ 1 & \text { if } \frac{2}{3} \leq \mu \leq 1 \\ 4 \mu-3 & \text { if } \mu \geq 1\end{cases}
$$

For each μ there is a function in K such that equality holds.
Theorem $2.3([13])$. Let $f(z) \in K(\beta)$ with $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and let $F(\beta)$ be defined for $z \in E$ by

$$
F_{\beta}(z)=\frac{1}{2(\beta+1)}\left[\left(\frac{1+z}{1-z}\right)^{\beta+1}-1\right]=z+\sum_{n=2}^{\infty} A_{n}(\beta) z^{n}
$$

then $\left|a_{n}\right| \leq A_{n}(\beta)$. The result is sharp for all real β and every integer $n \geq 2$.

Theorem 2.4 ([10]). Let $h(z) \in P$, with $h(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$. Then $\left|c_{n}\right| \leq 2$, $n=1,2, \ldots$,

$$
\left|c_{2}-\frac{c_{1}^{2}}{2}\right| \leq 2-\frac{\left|c_{1}\right|^{2}}{2}
$$

Equality holds when $h(z)=\frac{1+z}{1-z}$.
In 1933, Fekete and Szegö [2] obtained the sharp bounds for $\left|a_{3}-\mu a_{2}^{2}\right|$ in S, for each fixed μ in the interval $0 \leq \mu \leq 1$. They showed that for $f(z) \in S$ given by (1.1)

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}3-4 \mu & \text { if } \mu \leq 0 \\ 1+2 e^{-\frac{2 \mu}{1-\mu}} & \text { if } 0 \leq \mu \leq 1 \\ 4-3 \mu & \text { if } \mu \geq 1\end{cases}
$$

This inequality is sharp in the sense that, for each μ, there exists a function in S such that equality holds. Pfluger [3] considered the problem when μ is complex and $f(z) \in S$.

In the case of C, S^{*} and K^{γ} the subclasses of S consisting of convex, starlike and close-to-convex functions respectively, the above inequalities can be improved [4], [6]. In particular for $f(z) \in K^{\gamma}$ and given by (1.1) Keogh and Marks [4] showed that when μ is complex

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \max \{1,3|\mu-1|,|4 \mu-3|\} .
$$

In 1987 Koepf [6] showed that for $f(z) \in K^{\gamma}$ and μ real

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{lc}
3-4 \mu & \text { if } 0 \leq \mu \leq \frac{1}{3} \\
\frac{1}{3}+\frac{4}{9 \mu} & \text { if } \frac{1}{3} \leq \mu \leq \frac{2}{3} \\
1 & \text { if } \frac{2}{3} \leq \mu \leq 1
\end{array}\right.
$$

3. Strongly Starlike and Strongly Close-to-convex Functions In this section we extend Theorem 2.1 to the class $S^{*}(\alpha)$ of strongly starlike functions of order α, $0<\alpha \leq 1$. This class has been investigated in [7], [8], [9].

Theorem 3.1. Let $g(z) \in S^{*}(\alpha)$ and be given by $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, then for μ real

$$
\left|b_{3}-\mu b_{2}^{2}\right| \leq \max \left\{\alpha, \alpha^{2}|3-4 \mu|\right\}
$$

The result is sharp for $g_{0}(z)=z \exp \left\{\int_{0}^{z}\left[\frac{1}{t}\left(\frac{1+t}{1-t}\right)^{\alpha}-1\right] d t\right\}$ if $\left|\mu-\frac{3}{4}\right| \geq \frac{1}{4 \alpha}$ and for $g_{1}(z)=z \exp \left\{\int_{0}^{z}\left[\frac{1}{t}\left(\frac{1+t^{2}}{1-t^{2}}\right)^{\alpha}-1\right] d t\right\}$ if $\left|\mu-\frac{3}{4}\right| \leq \frac{1}{4 \alpha}$.

Proof. Since $g(z) \in S^{*}(\alpha)$ it follows that we can write

$$
\begin{equation*}
z g^{\prime}(z)=g(z) h(z)^{\alpha} \tag{3.1}
\end{equation*}
$$

for $h(z) \in P$ and $h(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$. Comparing the coefficients in (3.1), we obtain $b_{2}=\alpha c_{1}$ and $2 b_{3}=\frac{3}{2} \alpha^{2} c_{1}^{2}-\frac{\alpha}{2} c_{1}^{2}+\alpha c_{2}$ so that

$$
b_{3}-\mu b_{2}^{2}=\frac{\alpha}{2}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right)+\frac{\alpha^{2} c_{1}^{2}}{4}(3-4 \mu)=\frac{\alpha}{2}\left[\left(c_{2}-\frac{1}{2} c_{1}^{2}\right)+\alpha c_{1}^{2}\left(\frac{3}{2}-2 \mu\right)\right] .
$$

Thus

$$
\left|b_{3}-\mu b_{2}^{2}\right| \leq \frac{\alpha}{2}\left[\left|c_{2}-\frac{1}{2} c_{1}^{2}\right|+\alpha\left|\frac{3}{2}-2 \mu\right|\left|c_{1}\right|^{2}\right] \leq \frac{\alpha}{2}\left[2-\frac{1}{2}\left|c_{1}\right|^{2}+\alpha\left|\frac{3}{2}-2 \mu\right|\left|c_{1}\right|^{2}\right]
$$

where we have used Theorem 2.4.
If $\left|\mu-\frac{3}{4}\right| \leq \frac{1}{4 \alpha}$, then we have

$$
\left|b_{3}-\mu b_{2}\right| \leq \frac{\alpha}{2}\left[2-\frac{1}{2}\left|c_{1}\right|^{2}+\frac{1}{2}\left|c_{1}\right|^{2}\right]=\alpha
$$

On the other hand, if $\left|\mu-\frac{3}{4}\right| \geq \frac{1}{4 \alpha}$, Theorem 2.4 and the fact that $\left|c_{2}\right| \leq 2$ we have

$$
\left|b_{3}-\mu b_{2}^{2}\right| \leq \frac{\alpha}{2}\left[2+\left(\alpha\left|\frac{3}{2}-2 \mu\right|-\frac{1}{2}\right)\left|c_{1}\right|^{2}\right] \leq \frac{\alpha}{2}\left[2+4 \alpha\left|\frac{3}{2}-2 \mu\right|-2\right]=\alpha^{2}|3-4 \mu|
$$

which completes the proof.
In 1987 Koepf [11] considered the Fekete-Szegö problem for the class $K(\beta)$ and obtained sharp results when $\mu=\frac{2 \beta}{3(\beta+1)}$. Koepf showed that

$$
\left|a_{3}-a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{1+2 \beta}{3} \text { for } 0 \leq \beta \leq 1 \\
\frac{\beta^{2}+\beta}{3} \text { for } \beta>1
\end{array}\right.
$$

He also established this result [12] using different method.
We now extend the result of Keogh and Marks in Theorem 2.2 to the class $K(\beta)$ of strongly close-to-convex functions of order β. All the results of Koepf [11], with the exception of the case $\mu=1$ and $\beta \geq 1$ are contained in the following Theorem.

Theorem 3.2. Let $f(z) \in K(\beta)$ and be given by (1.1), then for $0 \leq \beta \leq 1$

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}1-\mu+\frac{\beta(2-3 \mu)(\beta+2)}{3} & \text { if } \mu \leq \frac{2 \beta}{3(\beta+1)} \\ 1-\mu+\frac{2 \beta}{3}+\frac{\beta(2-3 \mu)^{2}}{3[2-\beta(2-3 \mu)]} & \text { if } \frac{2 \beta}{3(\beta+1) \leq \mu \leq \frac{2}{3}} \\ \frac{2 \beta+1}{3} & \text { if } \frac{2}{3} \leq \mu \leq \frac{2(\beta+2)}{3(\beta+1)} \\ \mu-1+\frac{\beta(3 \mu-2)(\beta+2)}{3} & \text { if } \mu \geq \frac{2(\beta+2)}{3(\beta+1)} .\end{cases}
$$

For each μ there is a function in $K(\beta)$ such that equality holds.

For the case when $\mu \leq \frac{2 \beta}{3(\beta+1)}$ for example, this is the function

$$
f_{0}(z)=\frac{1}{2(\beta+1)}\left[\left(\frac{1+z}{1-z}\right)^{\beta}-1\right] .
$$

Proof. Since $f(z) \in K(\beta)$, it follows that we can write

$$
\begin{equation*}
z f^{\prime}(z)=g(z) h(z)^{\beta} \tag{3.2}
\end{equation*}
$$

for $g(z) \in S^{*}$ and $h(z) \in P$. Equating coefficients in (3.2) we obtain $2 a_{2}=\beta c_{1}+b_{2}$ and $3 a_{3}=\frac{\beta(\beta-1)}{2} c_{1}^{2}+\beta c_{2}+\beta c_{1} b_{2}+b_{3}$ so that

$$
\begin{align*}
a_{3}-\mu a_{2}^{2} & =\frac{1}{3}\left[\frac{\beta(\beta-1)}{2} c_{1}^{2}+\beta c_{2}+\beta c_{1} b_{2}+b_{3}\right]-\frac{\mu}{4}\left(\beta c_{1}+b_{2}\right)^{2}= \tag{3.3}\\
& =\frac{1}{3}\left(b_{3}-\frac{3}{4} \mu b_{2}^{2}\right)+\frac{\beta}{3}\left[c_{2}+\left(\frac{\beta(2-3 \mu)}{4}-\frac{1}{2}\right) c_{1}^{2}\right]+\beta\left(\frac{1}{3}-\frac{\mu}{2}\right) c_{1} b_{2}
\end{align*}
$$

We consider at first the case $\frac{2 \beta}{3(\beta+1)} \leq \mu \leq \frac{2}{3}$. Equation (3.3) gives

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left|b_{3}-\frac{3}{4} \mu b_{2}^{2}\right|+\frac{\beta}{3}\left|c_{2}-\frac{1}{2} c_{1}^{2}\right|+\beta^{2} \frac{(2-3 \mu)}{12}\left|c_{1}\right|^{2}+\beta\left(\frac{1}{3}-\frac{\mu}{2}\right)\left|c_{1}\right|\left|b_{2}\right| .
$$

Now from Theorems 2.1 and 2.4 and the fact that $\left|b_{2}\right| \leq 2$ for $g(z) \in S^{*}$ we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq 1-\mu+\frac{\beta}{3}\left(2-\frac{\left|c_{1}\right|^{2}}{2}\right)+\frac{\beta^{2}(2-3 \mu)}{12}\left|c_{1}\right|^{2}+\frac{\beta(2-3 \mu)}{3}\left|c_{1}\right|=\Phi(x)
$$

say with $x=\left|c_{1}\right| . \quad \Phi(x)$ attains its maximum value at the point $x_{0}=\frac{2(2-3 \mu)}{2-\beta(2-3 \mu)}$. Thus
$\Phi\left(x_{0}\right)=1-\mu+\frac{2 \beta}{3}-\frac{2 \beta(2-3 \mu)^{2}}{3[2-\beta(2-3 \mu)]^{2}}+\frac{\beta^{2}(2-3 m)^{2}}{3[2-\beta(2-3 \mu)]^{2}}=1-\mu+\frac{2 \beta}{3}+\frac{\beta(2-3 \mu)^{2}}{3[2-\beta(2-3 \mu)]}$ and so

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \Phi\left(x_{0}\right)
$$

which proves the Theorem if $\mu \leq \frac{2}{3}$ and $\beta \geq 0$. Choosing $c_{1}=\frac{2(2-3 \mu)}{2-\beta(2-3 \mu)}, c_{2}=2$, $b_{2}=2$ and $b_{3}=2$ in (3.3) we see that the result is sharp. Since $\left|c_{1}\right| \leq 2$ (Theorem 2.4), it follows that $\mu \geq \frac{2 \beta}{3(\beta+1)}$.

Next, consider the case $\mu \leq \frac{2 \beta}{3(\beta+1)}$. Since $K(0)=C$, we may assume that $\beta>0$. Again (3.3) gives

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| & \leq \frac{3 \mu(\beta+1)}{2 \beta}\left|a_{3}-\frac{2 \beta}{3(\beta+1)} a_{2}^{2}\right|+\left[1-\frac{3 \mu(\beta+1)}{2 \beta}\right]\left|a_{3}\right| \leq \\
& \leq \frac{3 \mu(\beta+1)}{2 \beta}\left(1+\frac{2 \beta}{3}\right)+\left[1-\frac{3 \mu(\beta+1)}{2 \beta}\right]\left[\frac{2 \beta(\beta+2)}{3}+1\right] \\
& =1-\mu+\frac{\beta(2-3 \mu)(\beta+2)}{3}
\end{aligned}
$$

for $\beta>0$, where we have used the result already proved in the case $\mu=\frac{2 \beta}{3(\beta+1)}$ and the fact in Theorem 2.3 that for $f(z) \in K(\beta)$, the inequality $\left|a_{3}\right| \leq 1+\frac{2 \beta(\beta+2)}{3}$ holds. Equality is attained on choosing $c_{1}=c_{2}=b_{2}=2$ and $b_{3}=3$. The cases $\frac{2}{3} \leq \mu \leq \frac{2(\beta+2)}{3(\beta+1)}$ and $\mu \geq \frac{2(\beta+2)}{3(\beta+1)}$ are proven in a similar manner. As the calculations are rather long, they are not given here.

REFERENCES

[1] W. Kaplan. Close-to-convex schlicht functions. Mich. Math. J., $\mathbf{1}$ (1952), 169-185.
[2] M. Fekete, G. Szegö. Eine Bemerkung über ungerade schlichte Funktionen. J. London Math. Soc., 8 (1933), 85-89.
[3] A. Pfluger. The Fekete-Szegö inequality for complex parameters. Complex Variables, 7 (1986), 149-160.
[4] F. Keogh, E. Merkes. A coefficient inequality for certain classes of analytic functions. Proc. Amer. Math. Soc., 20 (1969), 8-12.
[5] W. Haynman. Multivalent functions. Cambridge, 1958.
[6] W. Koepf. On the Fekete-Szegö problem for close-to-convex functions. Proc. Amer. Math. Soc., 101 (1987), 89-95.
[7] D. Brannan, W. Kirwan. On some classes of bounded univalent functions. J. London Math. Soc., 1 (1969), 431-443.
[8] D. Brannan, J. Clunie, W. Kirwan. Coefficient estimates for a class of starlike functions. Canad. J. Math., 22 (1970), 476-485.
[9] J. Stankiewicz. Quelques problems extremaux dans les classes des fonctions α angulairement étoilees. Ann. Univ. Marie Curie-Sklodowska, Sect. A, 20 (1966), 39-75.
[10] Ch. Pommerenke. Univalent functions. Vandenhoeck and Ruprecht Göttingen, 1977.
[11] W. Keopf. On the Fekete-Szegö problem for close-to-convex functions, Arch. Math., 49 (1987), 420-433.
[12] W. Koepf. Close-to-convex functions, univalence criteria and quasi-conformal extension. Ann. Univ. Mariae-Curie-Sklodowska, Sect. A, 9 (1986), 97-102.
[13] J. Noonan. On close-to-convex functions of order β. Pacific J. Math., 44 (1973), 263-280.
Donka Zheleva Pashkouleva
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Block 8
1113 Sofia, Bulgaria
e-mail: donka_zh_vasileva@abv.bg

БЕЛЕЖКА ВЪРХУ КЛАСОВЕТЕ ОТ СИЛНО ЗВЕЗДНИ И СИЛНО ПОЧТИ ИЗПЪКНАЛИ ФУНКЦИИ

Донка Пашкулева

Целта на тази статия е да получи резултати за проблема на Фекете-Сегьо за класовете, състоящи се от силно звездни и силно почти изпъкнали функции.

[^0]: *2000 Mathematics Subject Classification: 30C.
 Key words: strongly starlike functions, strongly close-to-convex functions.

