MATEMATИKA И MATEMATИЧЕСКО ОБРАЗОВАНИЕ, 2013 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2013 Proceedings of the Forty Second Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 2–6, 2013

ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS OF BOUNDARY-VALUE PROBLEMS FOR NONLINEAR SYSTEMS WITH DOUBLE SINGULARITY^{*}

Neli Sirakova

This paper discusses the asymptotic decomposition of a solution of nonlinear boundary-value problems (BVP) with double singularity and general boundary conditions. We assume that the differential system contains an additional function, which defines the perturbation as double singular.

1. Introduction. In this paper we deal with BVP of ordinary differential equations in the form

(1)
$$\varepsilon \frac{dx}{dt} = Ax + \varepsilon F(x, t, \varepsilon, f(t, \varepsilon)) + \varphi(t), \quad t \in [a, b],$$

$$l(x) = h,$$

where ε is a small positive parameter, $0 \le \varepsilon \ll 1$, $h \in \mathbb{R}^m$.

The following conditions should be observed:

(C1) A is a constant $(n \times n)$ -matrix. Let $\sigma(A)$ be the spectrum of the matrix A and $\lambda_i \in \sigma(A) \ \forall i = \overline{1, n}$. We assume that $\lambda_i \neq \lambda_j, i \neq j$ and $\operatorname{Re} \lambda_i < 0$. The function $\varphi(t)$ is an *n*-dimensional vector-function of the class $C^{(\infty)}([a, b])$;

(C2) The function $F(x, t, \varepsilon, f(t, \varepsilon))$ is an *n*-dimensional vector-function having an arbitrary order continuous partial derivatives with respect to all arguments in the domain $G = D_x \times [a, b] \times [0, \overline{\varepsilon}] \times D_f$, where $D_x \subset R^n$ is a neighborhood of the solution $x^{(0)}(t)$ of the degenerate system ($\varepsilon = 0$) $Ax^{(0)} + \varphi(t) = 0$; $D_f \subset R^p$ is a bounded and closed domain, $0 < \overline{\varepsilon} \ll 1$. The function $f = f(t, \varepsilon)$ is smooth of arbitrary order with respect to all arguments in the domain $G_1 = [a, b] \times (0, \overline{\varepsilon}]$ and its values belong to D_f .

(C3) l is a linear, bounded vector functional, $l \in (C[a, b] \to \mathbb{R}^n, \mathbb{R}^m), h \in \mathbb{R}^m$.

We assume that the function f contains singular elements (for example, $f = f(\exp(-t/\varepsilon), \sin(t/\varepsilon))$). On one hand, the small parameter ε is in front of the derivative and on another, ε^{-1} is involved in the function f. Therefore the boundary problem (1), (2) is with double singularity.

The Cauchy problem for nonlinear systems with double singularity was investigated in [6]. In the present work the behavior of the asymptotic expansion of the solution of the problem (1), (2) is studied. The construction of a formal asymptotic solution of

^{*}2010 Mathematics Subject Classification: 34B15, 35F60.

Key words: differential equations, boundary value problem, nonlinear systems, double singularity. 240

the problem (1), (2) is performed in [4] and is based on the boundary function method described in [8].

The papers [2, 3, 4, 7] consider in both cases m = n and $m \neq n$ the asymptotic expansion of the solution of the almost regular BVP

$$\frac{dx}{dt} = A(t)x + \varepsilon F(x, t, \varepsilon, f(t, \varepsilon)) + \varphi(t), \quad l(x) = h, \quad t \in [a, b], \quad 0 < \varepsilon \ll 1,$$

where $f(t,\varepsilon)$ is a singular function.

If $x = (x_1, \dots, x_n)$, then the standard norm of the vector x is defined by $||x|| = \max_{i=1,n} |x_i|$, while the standard norm of a $(m \times n)$ -matrix $B = (b_{ij})$ is defined by ||B|| = n

 $\max_{i} \sum_{j=1} |b_{ij}|.$ Furthermore, we define a norm of the linear operator l by $||l(\psi)|| \leq \bar{b}||\psi||, \bar{b} > 0.$

2. Auxiliary results. Formally, the asymptotic decomposition of the solution of (1), (2) was obtained in paper [5] by introducing a new parameter. Instead of the problem (1), (2) we consider the boundary problem with two parameters

(3)
$$\varepsilon \frac{dz}{dt} = Az + \varepsilon F(z, t, \varepsilon, f(t, \mu)) + \varphi(t), \quad t \in [a, b],$$
$$l(z) = h.$$

The problem (3) is singularly perturbed with respect to the small parameter ε , and it is possible to use the method of boundary functions [8, 5], i.e. the solution to the border problem is searched in the form

(4)
$$z(t,\varepsilon,\mu) = \sum_{k=0}^{\infty} \left[z^{(k)}(t,\mu) + \Pi_k(\tau,\mu) \right] \varepsilon^k$$

where $\tau = \frac{t-a}{\varepsilon} = (t-a)\varepsilon^{-1}$, $\Pi_k(\tau,\mu)$, $k \ge 0$, $\tau \in [0, +\infty)$ are boundary functions in a right neighborhood of point t = a. After the determination of $z^{(k)}(t,\mu)$ and $\Pi_k(\tau,\mu)$ the solution of (1), (2) has the form

(5)
$$x(t,\varepsilon) = \sum_{k=0}^{\infty} \left[z^{(k)}(t,\varepsilon) + \Pi_k(\tau,\varepsilon) \right] \varepsilon^k.$$

According to condition C2 for the function F we assume moreover that it has the representation

(6)
$$F(z,t,\varepsilon,f(t,\mu)) = \sum_{k=0}^{\infty} A_k(t,\mu) z^{k+1} \varepsilon^k,$$

where $A_k(t,\mu)$ are $(n \times n)$ -matrices with elements having arbitrary order continuous derivatives with respect to $t \in [a,b], \mu \in (0,\bar{\varepsilon}]$.

When setting in [5] the coefficients of the decomposition (5) we substantially utilize the fundamental matrix $\varphi(\tau)$ of the system $\frac{dx}{d\tau} = Ax$, $\tau \in [0, \infty)$ and let $U(\tau, s) = \varphi(\tau)\varphi^{-1}(s)$ be the corresponding Cauchy matrix. We introduce the $(m \times n)$ matrix $D(\varepsilon) = l(U(\cdot, s)) = l\left(\varphi\left(\frac{(\cdot) - a}{\varepsilon}\right)\varphi^{-1}(s)\right)$. It has different representations depending 241 on the type of the functional l. In this work, as in [5], we assume that the matrix $D(\varepsilon)$ has the form

$$D(\varepsilon) = l(U(\cdot, s)) = D_0 + O\left(\exp\left(-\frac{\lambda}{\varepsilon}\right)\right), \ \lambda > 0$$

where D_0 is a $(m \times n)$ - matrix with constant elements and $O\left(\exp\left(-\frac{\lambda}{\varepsilon}\right)\right)$ is $(m \times n)$ matrix, whose elements are exponentially small in terms of features ε and may be ignored because they are smaller than any powers of ε .

The results obtained in [5] are related to the rank of the $(m \times n)$ matrix D_0 : rank $D_0 = n = m$, rank $D_0 = m < n$ and rank $D_0 = n_1 < n = m$. In this work we consider only the case rank $D_0 = n = m$. The results of [5] in this case are presented in Theorem 1.

Moreover, we will use the introduced in [5] indications (7)

$$\varphi_{k}(t,\mu,z^{(0)},\cdots,z^{(k-1)}) = \begin{cases} 0,k=0,\\ A_{0}(a,\mu)z^{(0)}, \ k=1,\\ A_{0}(a,\mu)z^{(k-1)} + g_{k}(t,\mu,z^{(0)},\cdots z^{(k-2)}), \ k=2,3,\ldots, \end{cases}$$

$$(8) \quad \psi_{k}(\tau,\mu,\Pi_{0},\cdots,\Pi_{k-1}) = \begin{cases} 0,k=0,\\ A_{0}(a,\mu)\Pi_{0}, \ k=1,\\ A_{0}(a,\mu)\Pi_{k-1} + f_{k}(\tau,\mu,\Pi_{0},\ldots,\Pi_{k-2}), \ k=2,3,\ldots \end{cases}$$

The functions g_k and f_k have a polynomial character with respect to $z^{(0)}, \ldots, z^{(k-2)}$ and Π_0, \ldots, Π_{k-2} , respectively, with norm-bounded coefficients.

Theorem 1 ([5]). We assume that conditions (C1) - (C3) hold, and rank $D_0 = n = m$. Then there is a unique solution in the domain G_1 the BVP (1), (2) which is continuously differentiable with respect to $t \in [a, b]$ and continuous for $\mu \in (0, \overline{\varepsilon}]$. The series (5) is formally asymptotic series for this solution, where the functions $z^{(k)}(t, \mu), k \ge 0$ have the form

(9)
$$z^{(k)}(t,\mu) = \begin{cases} -A^{-1}\varphi(t), k = 0, \\ A^{-1}\left(\frac{\partial}{\partial t}z^{(k-1)}(t,\mu) - \varphi_k(t,\mu,z^{(0)},\dots,z^{(k-1)})\right), k \ge 1. \end{cases}$$

for $\mu = \varepsilon$ and the functions $\Pi_{\kappa}(\tau, \mu)$, $k \ge 0$ have the form

$$\Pi_0(\tau) = U(\tau, a) D_0^{-1} \bar{h}_0, \tau \in [0, \infty), \quad \overline{h}_0 = h - l(z^{(0)}) = h + l(A^{-1}\varphi(\cdot)),$$

$$\begin{aligned} \Pi_1(\tau,\mu) &= U(\tau,a) D_0^{-1} \bar{h}_1(\mu) + \int_0^\tau U(\tau,s) A_0(a,\mu) \Pi_0(s) ds, \overline{h}_1(\mu) \\ &= -l(z^{(1)}(\cdot)) - l\left(\int_0^{(\cdot)} U(\cdot,s) A_0(a,\mu) \Pi_0(s) ds\right) \end{aligned}$$

$$\Pi_{\kappa}(\tau,\mu) = U(\tau,a) D_0^{-1} \bar{h}_{\kappa}(\mu) + \int_0^{\tau} U(\tau,s) \left[A_0(a,\mu) \Pi_{k-1}(s,\mu) + f_k(s,\mu,\Pi_0,\Pi_1,\dots,\Pi_{k-2}) \right] ds, \quad k \ge 2$$

242

for $\mu = \varepsilon$ and

$$\overline{h}_{k}(\mu) = -lz^{(k)}(\cdot) - l\left(\int_{a}^{(\cdot)} U(\cdot, s)[A_{0}(a, \mu)\Pi_{k-1}(s, \mu) + f_{k}(s, \mu, \Pi_{0}(s), \dots, \Pi_{k-2}(s, \mu))]ds\right)$$

The functions $z^{(k)}(t,\mu), k \ge 0$, are bounded, i.e. the following inequalities hold $||z^{(k)}(t,\mu)|| \le N_k, \forall t \in [a,b]$ and $\forall \mu \in (0,\bar{\varepsilon}]$, where N_k are positive constants. Then the boundary functions $\Pi_k(\tau,\mu), k\ge 0$ decrease exponentially at $\tau \to \infty$ and $0 < \mu \le \bar{\varepsilon}$. **3. Main results.** In the boundary problem (3) we make a change $u(t,\varepsilon,\mu) =$

 $z(t,\varepsilon,\mu) - Z_n(t,\varepsilon,\mu)$ where $Z_n(t,\varepsilon,\mu) = \sum_{k=0}^n \left[z^{(k)}(t,\mu) + \Pi_k(\tau,\mu) \right] \varepsilon^k$ is the *n*-th partial sum of the series (4). As a result we obtain that $u(t,\varepsilon,\mu)$ satisfies boundary problems

(10)
$$\varepsilon \frac{du}{dt} = Au + H_n(u, t, \varepsilon, \mu),$$
$$l(u) = 0$$

where

(11)
$$H_n(u,t,\varepsilon,\mu) = \varepsilon F(u+Z_n,t,\varepsilon,f(t,\mu)) - \sum_{k=0}^n \varphi_k \varepsilon^k - \sum_{k=0}^n \psi_k \varepsilon^k.$$

The functions φ_k and ψ_k are referred in equations (7) and (8), respectively. Lemma 2. The following inequality holds:

 $||H_n(0,t,\varepsilon,\mu)|| \le C\varepsilon^{n+1}, C > 0, t \in [a,b], \varepsilon \in [0,\varepsilon_1], \mu \in (0,\varepsilon_1], 0 < \varepsilon_1 < \overline{\varepsilon}.$ **Proof.** We will determine the type of $\varepsilon F(Z_n,t,\varepsilon,f(t,\mu)).$

On the basis of (6) we present the function F with the powers of ε . Each coefficient in front of the powers of ε consists of two sums. One of them depends on t and the other on τ . We use that $\tau = \frac{t-a}{\varepsilon}$, $\frac{d\Pi_k}{dt} = \varepsilon^{-1} \frac{d\Pi_k}{d\tau}$ and we expand $A(a + \tau \varepsilon, \mu)$ in a Taylor series in a neighbourhood of the point (a, μ) . We obtain consecutively

$$\varepsilon F(Z_n, t, \varepsilon, f(t, \mu)) = \varepsilon F\left(\sum_{k=0}^n (z^{(k)} + \Pi_k)\varepsilon^k, t, \varepsilon, f(t, \mu)\right)$$
$$= \varepsilon \sum_{k=0}^\infty \bar{F}^k(t, \tau, \mu, z^{(0)}, \dots, z^{(k-1)}, \Pi_0, \dots, \Pi_{k-1})\varepsilon^k = \sum_{k=0}^\infty \bar{F}^k\varepsilon^{k+1} = \sum_{k=1}^\infty \bar{F}^{k-1}\varepsilon^k,$$

where

$$\begin{split} \bar{F}^{0} &= A_{0}(t,\mu)z^{(0)} + A_{0}(a,\mu)\Pi_{0} = \varphi_{1} + \psi_{1}, \\ \bar{F}^{1} &= A_{0}(t,\mu)z^{(1)} + g_{2}(t,\mu,z^{(0)}) + A_{0}(a,\mu)\Pi_{1} + f_{2}(\tau,\mu,\Pi_{0}) = \varphi_{2} + \psi_{2}, \\ \dots \\ \bar{F}^{k} &= A_{0}(t,\mu)z^{(k)} + g_{k+1}(t,\mu,z^{(0)},z^{(1)},\dots,z^{(k-1)}) + A_{0}(a,\mu)\Pi_{k} \\ &\quad + f_{k+1}(\tau,\mu,\Pi_{0},\Pi_{2},\dots,\Pi_{k-1}) = \varphi_{k+1} + \psi_{k+1}. \end{split}$$

Therefore $\varepsilon F(Z_n, t, \varepsilon, f)$ has the form

(12)
$$\varepsilon F(Z_n, t, \varepsilon, f) = \sum_{k=1}^{\infty} \varphi_k \varepsilon^k + \sum_{k=1}^{\infty} \psi_k \varepsilon^k = \sum_{k=1}^n \varphi_k \varepsilon^k + \sum_{k=1}^n \psi_k \varepsilon^k + \mathcal{O}(\varepsilon^{k+1}).$$

Note that in Theorem 1 the boundedness of $z^{(k)}$ and the exponential decrease of Π_k 243 have been proved hence (12) is fulfilled. Then $\varepsilon F(Z_n, t, \varepsilon, f) - \sum_{k=1}^n \varphi_k \varepsilon^k - \sum_{k=1}^n \psi_k \varepsilon^k = O(\varepsilon^{n+1})$, i.e.

$$\|H_n(0,t,\varepsilon,\mu)\| \le \left\| \mathbf{O}(\varepsilon^{n+1}) \right\| \le C\varepsilon^{n+1}.$$

Lemma 3. Let in the neighbourhood of the degenerate solution $||z^{(0)}|| < \delta$, the following inequality be fulfilled $||z|| \le \rho < \delta$ for $t \in [a, b], \varepsilon \in [0, \varepsilon_1], \mu \in (0, \varepsilon_1]$. Then there is a positive constant \overline{C} , such that if $||u'|| \le \overline{\delta}$ and $||u''|| \le \overline{\delta}$, where $0 < \overline{\delta} < \delta$ and $\overline{\delta} + \rho < \delta$, the function $H_n(u, t, \varepsilon, \mu)$ satisfies the inequality

$$\|\Delta H_n\| = \|H_n(u', t, \varepsilon, \mu) - H_n(u'', t, \varepsilon, \mu)\| \le \bar{C}\varepsilon \|u' - u''\|.$$

Proof. We use the presentation of H_n by (11). Then

$$\begin{split} \Delta H_n &= H_n(u', t, \varepsilon, \mu) - H_n(u'', t, \varepsilon, \mu) = \varepsilon F(u' + Z_n, t, \varepsilon, f(t, \mu)) - \sum_{k=0}^{\infty} \varphi_k \varepsilon^k - \sum_{k=0}^{\infty} \psi_k \varepsilon^k \\ &- \left[\varepsilon F(u'' + Z_n, t, \varepsilon, f(t, \mu)) - \sum_{k=0}^{\infty} \varphi_k \varepsilon^k - \sum_{k=0}^{\infty} \psi_k \varepsilon^k \right] \\ &= \varepsilon F(u' + Z_n, t, \varepsilon, f(t, \mu)) - \varepsilon F(u'' + Z_n, t, \varepsilon, f(t, \mu)) \\ &= \varepsilon \int_0^1 F_x(Z_n + \theta(u' - u'') + u'', t, \varepsilon, f(t, \mu)) d\theta(u' - u''). \end{split}$$

The following equality holds

$$\|\Delta H_n\| = \|H_n(u', t, \varepsilon, \mu) - H_n(u'', t, \varepsilon, \mu)\|$$
$$= \left\|\varepsilon \int_0^1 F_x(Z_n + \theta(u' - u'') + u'', t, \varepsilon, f)d\theta(u' - u'')\right\|$$

Then we can get the estimate

$$\|\Delta H_n\| \le \varepsilon \int_0^1 \|F_x(Z_n + \theta(u' - u'') + u'', t, \varepsilon, f)\| d \|\theta(u' - u'')\|$$

The integrand function F_x , in accordance with condition C2, is a continuous function in G, where $x = Z_n + \theta(u' - u'') + u''$. Moreover the following is fulfilled $||x|| \le ||Z_n + \theta(u' - u'') + u''|| \le ||Z_n|| + ||\theta u'|| + ||(1 - \theta)u''|| \le \rho + \theta\bar{\delta} + (1 - \theta)\bar{\delta} = \rho + \bar{\delta} \le \delta$.

Then there is a positive constant \bar{C} , such that the following inequality holds

 $\|F_x(Z_n + \theta(u' - u'') + u'', t, \varepsilon, f\| \le \overline{C}.$

For the evaluation of $\|\Delta H_n\|$ we get

$$\|\Delta H_n\| = \varepsilon \int_0^1 \|F_x(Z_n + \theta(u' - u'') + u'', t, \varepsilon, f)\| d\theta \|(u' - u'')\| \le \varepsilon \int_0^1 \bar{C} d\theta \|(u' - u'')\|.$$

Let $W(t, s, \varepsilon)$ is a fundamental system of the solutions of the system $\varepsilon \frac{du}{dt} = Au$, $W(s, s, \varepsilon) = E_n$. The following lemmas are fulfilled:

Lemma 4 ([1, 8]). The fundamental matrix $W(t, s, \varepsilon)$ satisfies the inequality $||W(t, s, \varepsilon)|| \leq \beta \exp\left(-\alpha \frac{t-s}{\varepsilon}\right)$, where α and β are positive constants and $0 \leq s \leq t \leq b$. 244 **Lemma 5** ([1, 8]). Any decision of the continuous system $\varepsilon \dot{u} = Au + H_n(u, t, \varepsilon, \mu)$ is equivalent to the integral equation $u = W(t, a, \mu)\xi(a, \varepsilon, \mu) + \int_a^t W(t, s, \varepsilon)\frac{1}{\varepsilon}H_n(u, s, \varepsilon, \mu)ds$. **Lemma 6** ([1, 8]). If $\varepsilon \to 0$, the integral $\int_a^t \left\|\frac{1}{\varepsilon}W(t, s, \varepsilon)\right\| ds$ is uniformly bounded in

Lemma 6 ([1, 8]). If $\varepsilon \to 0$, the integral $\int_{a}^{t} \left\| \frac{1}{\varepsilon} W(t, s, \varepsilon) \right\| ds$ is uniformly bounded in the range [a, b], i.e. there exists a positive constant M, such that if $\varepsilon \to 0$ and $t \in [a, b]$ the inequality holds $\int_{a}^{t} \left\| \frac{1}{\varepsilon} W(t, s, \varepsilon) \right\| ds \leq M$.

Theorem 7. Let the conditions of Theorem 1 be satisfied and det $R(\varepsilon) \neq 0 \ \forall \varepsilon \in [0, \overline{\varepsilon}]$, where $R(\varepsilon) = l(W(\cdot, a, \varepsilon))$ is an $(m \times n)$ -matrix. Then there are constants $\varepsilon^* > 0, C^* > 0$ such that the problem (1), (2) has a unique solution $x(t, \varepsilon)$ and it satisfies the inequality (13) $\|x(t, \varepsilon) - X_n(t, \varepsilon)\| \leq C^* \varepsilon^{n+1}$

at $t \in [a, b]$ and $0 < \varepsilon \le \varepsilon^*$.

Proof. To prove that (1), (2) has the only solution satisfying (13) means to prove that the boundary problem (3) has a unique solution satisfying $||z(t, \varepsilon, \mu) - Z_n(t, \varepsilon, \mu)|| \leq C^* \varepsilon^{n+1}$. Therefore (3) we make the following replacement $u(t, \varepsilon, \mu) = z(t, \varepsilon, \mu) - Z_n(t, \varepsilon, \mu)$ and obtain the boundary problem (10).

To prove the theorem it is sufficient to show that (10) has a unique solution such that $||u(t,\varepsilon,\mu)|| \leq C^*\varepsilon^{n+1}$. For the system (10) we apply Lemma 5 and consider the equivalent integral equation

$$u(t,\varepsilon,\mu) = W(t,a,\mu)\xi(a,\varepsilon,\mu) + \int_a^t W(t,s,\varepsilon)\frac{1}{\varepsilon}H_n(u,s,\varepsilon,\mu)ds.$$

We substitute this equation in the boundary condition of (10) and under the condition of the theorem det $R(\varepsilon) \neq 0$ we get $\xi(a, \varepsilon, \mu) = R^{-1}(\varepsilon)b(u, \varepsilon, \mu)$, where

$$b(u,\varepsilon,\mu) = -l \int_{a}^{(\cdot)} \frac{1}{\varepsilon} W(\cdot,s,\varepsilon) H_{n}(u,s,\varepsilon,\mu) ds.$$

Thus, for the integral equation we find the presentation

(14)
$$u(t,\varepsilon,\mu) = W(t,a,\mu)R^{-1}(\varepsilon)b(u,\varepsilon,\mu) + \int_a^t \frac{1}{\varepsilon}W(t,s,\varepsilon)H_n(u,s,\varepsilon,\mu)ds.$$

For the integral equations (14) we apply the method of successive approximations: $u_0(t, \varepsilon, \mu) = 0$

(15)
$$u_{k}(t,\varepsilon,\mu) = W(t,a,\varepsilon)R^{-1}(\varepsilon)b(u_{k-1},\varepsilon,\mu) + \int_{a}^{t} \frac{1}{\varepsilon}W(t,s,\varepsilon)H_{n}(u_{k-1}(s,\varepsilon,\mu),s,\varepsilon,\mu)ds, \quad k \ge 1.$$

Given the Lemmas 2, 4, 6, type of $b(u, \varepsilon, \mu)$ and evaluation $||l(\psi)|| \leq \bar{b}||\psi||, \bar{b} > 0$, it is easy to identify the inequalities $||R^{-1}(\varepsilon)|| \leq \bar{M}\ell^{\alpha\frac{t-a}{\varepsilon}}, \bar{M} > 0, \alpha > 0, ||b(u_0, \varepsilon, \mu)|| = ||b(0, \varepsilon, \mu)|| \leq b_1\varepsilon^{n+1}, b_1 > 0.$

245

Then from (15) we find

$$\begin{aligned} \|u_1 - u_0\| &= \|W(t, a, \varepsilon)R^{-1}(\varepsilon)b(u_0, \varepsilon, \mu) + \int_a^t \frac{1}{\varepsilon}W(t, \varepsilon, s)H_n(u_0(s, \varepsilon, \mu), s, \varepsilon, \mu)ds\| \\ &\leq \|W(t, a, \varepsilon)\|\|R^{-1}(\varepsilon)\|\|b(0, \varepsilon, \mu)\| + \int_a^t \left\|\frac{1}{\varepsilon}W(t, \varepsilon, s)H_n(0, s, \varepsilon, \mu)\right\| ds \\ &\leq \bar{C}\varepsilon^{n+1} \leq \frac{\nu}{2}, \quad \nu = 2\bar{C}\varepsilon^{n+1}, \quad \bar{C} > 0. \end{aligned}$$

With the help of Lemma 3 we obtain that $||u_2 - u_1|| \le \overline{C}\varepsilon ||u_1 - u_0|| \le \frac{1}{2} \cdot \frac{\nu}{2}$, for some $0 < \varepsilon_2 \ll 1$ and $\varepsilon \le \varepsilon_2 = \frac{1}{2\overline{C}}$. By induction we find that

$$\|u_k - u_{k-1}\| \le \frac{1}{2^{k-1}} \cdot \frac{\nu}{2} \quad \forall k \ge 1, \quad \forall t \in [a, b], \quad \varepsilon \in (0, \varepsilon_2], \quad \mu \in (0, \varepsilon_2], \quad \|u_k\| \le \delta, \quad \|u_{k-1}\| \le \delta.$$

Then $||u_k(t,\varepsilon,\mu)|| \leq \sum_{i=1}^k ||u_i - u_{i-1}|| \leq \nu$, i.e. $||u_k(t,\varepsilon,\mu)|| \leq C^*\varepsilon^{n+1}$ with $C^* = 2\bar{C}$, in $t \in [a,b]$, $\varepsilon \in (0,\varepsilon^*]$, $\mu \in (0,\varepsilon^*]$, $0 < \varepsilon^* < \varepsilon_2$. Therefore, successive approximations $u_k(t,\varepsilon,\mu)$ are uniformly convergent to the solution $u(t,\varepsilon,\mu)$ of the problem (10), i.e. a solution (10) exists and the inequality $||u(t,\varepsilon,\mu)|| \leq C^*\varepsilon^{n+1}$, $t \in [a,b]$, $\varepsilon \in (0,\varepsilon^*]$, $\mu \in (0,\varepsilon^*]$ holds, which is similar to (13). The uniqueness of the solution follows from the fact that the right side of the differential system (10) is Lipschitz. \Box

REFERENCES

- L. FLATTO, N. LEVINSON. Periodic Solutions of Singularity Perturbed Systems. Mathematics (Periodic Collection of Translation), 2 (1958) No 2, 61–68 (in Russian).
- [2] L. I. KARANDZHULOV, N. D. SIRAKOVA. Boundary-Value Problems with Integral Conditions, CP1184. Applications of Mathematics in Engineering and Economics, Sozopol 2011, Edited by G. Venkov and V. Pasheva. American Institute of Physics, 978-0-7354-0750-3, 2011, 181–188.
- [3] L. I. KARANDZHULOV, N. D. SIRAKOVA. Asymptotic expansion of solution for almost regular and weekly perturbed system of ordinary differential equations. *Mathematics and education in mathematics*, 41 (2012), 185–190.
- [4] L. I. KARANDZHULOV, N. D. SIRAKOVA. Asymptotic expansion of the solutions for almost regular nonlinear system, PMM: Transactions of scientific works, UlDTU, 2011, 233–238 (in Russian).
- [5] L. I. KARANDZHULOV, N. D. SIRAKOVA. Boundary-value problems for nonlinear systems with double singularity. *Applications of Mathematics in Engineering and Economics*, Sozopol 2012, Edited by G. Venkov and V. Pasheva, American Institute of Physics, 978-0-7354-1111-1, 2012, 247–256.
- [6] R. P. KUZMINA. Asymptotic methods for ordinary differential equations, Kluwer Academic Publishers, Dordrecht-Boston, 2000.
- [7] N. D. SIRAKOVA, L. I. KARANDZHULOV. Boundary-Value Problems for Almost Regular and Weakly Perturbed Nonlinear Systems, Mathematical analysis, Differential equations and their applications. *Proceedings Bulgarian-Turkish-Ukrainian scientific conference*, Sunny Beach, September 15-20, 2010, Edited by A. Andreev and L. Karandzhulov, Academic Publishing House "Prof. Marin Drinov" ISBN 978-954-322-454-8, Sofia, 2011, 195–206.

²⁴⁶

[8] A. B. VASILEVA, V. BOTUZOV. Asymptotic Expansions of the Solutions of Singularly Perturbed Equations, Nauka, Moscow, 1973 (in Russian).

Neli Dimitrova Sirakova Technical University - Sofia e-mail: evklid@abv.bg

АСИМПТОТИЧНО ПОВЕДЕНИЕ НА РЕШЕНИЯТА НА ГРАНИЧНИ ЗАДАЧИ С ДВОЙНА СИНГУЛЯРНОСТ

Нели Сиракова

В работата се разглежда асимптотичното поведение на решението на нелинейни гранични задачи с двойна сингулярност и общи гранични условия. Предполагаме, че диференциалната система съдържа допълнителна функция, която определя задачата като двойно сингулярна. При определени условия се доказва асимптотичност на решението на поставената гранична задача.