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ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS OF

BOUNDARY-VALUE PROBLEMS FOR NONLINEAR

SYSTEMS WITH DOUBLE SINGULARITY*

Neli Sirakova

This paper discusses the asymptotic decomposition of a solution of nonlinear
boundary-value problems (BVP) with double singularity and general boundary condi-
tions. We assume that the differential system contains an additional function, which
defines the perturbation as double singular.

1. Introduction. In this paper we deal with BVP of ordinary differential equations
in the form

(1) ε
dx

dt
= Ax+ εF (x, t, ε, f(t, ε)) + ϕ(t), t ∈ [a, b],

(2) l(x) = h,

where ε is a small positive parameter, 0 ≤ ε≪ 1 , h ∈ Rm.
The following conditions should be observed:
(C1) A is a constant (n× n)-matrix. Let σ(A) be the spectrum of the matrix A and

λi ∈ σ(A) ∀i = 1, n. We assume that λi 6= λj , i 6= j and Reλi < 0. The function ϕ(t) is

an n-dimensional vector-function of the class C(∞)([a, b]);
(C2) The function F (x, t, ε, f(t, ε)) is an n-dimensional vector-function having an

arbitrary order continuous partial derivatives with respect to all arguments in the domain
G = Dx × [a, b] × [0, ε̄] ×Df , where Dx ⊂ Rn is a neighborhood of the solution x(0)(t)

of the degenerate system (ε = 0) Ax(0) + ϕ(t) = 0; Df ⊂ Rp is a bounded and closed
domain, 0 < ε̄ ≪ 1. The function f = f(t, ε) is smooth of arbitrary order with respect
to all arguments in the domain G1 = [a, b] × (0, ε̄] and its values belong to Df .

(C3) l is a linear, bounded vector functional, l ∈ (C [a, b] → Rn, Rm), h ∈ Rm.
We assume that the function f contains singular elements (for example, f =

f(exp(−t/ε), sin(t/ε)). On one hand, the small parameter ε is in front of the deriva-
tive and on another, ε−1 is involved in the function f . Therefore the boundary problem
(1), (2) is with double singularity.

The Cauchy problem for nonlinear systems with double singularity was investigated
in [6]. In the present work the behavior of the asymptotic expansion of the solution
of the problem (1), (2) is studied. The construction of a formal asymptotic solution of
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the problem (1), (2) is performed in [4] and is based on the boundary function method
described in [8].

The papers [2, 3, 4, 7] consider in both cases m = n and m 6= n the asymptotic
expansion of the solution of the almost regular BVP

dx

dt
= A(t)x + εF (x, t, ε, f(t, ε)) + ϕ(t), l(x) = h, t ∈ [a, b], 0 < ε≪ 1,

where f(t, ε) is a singular function.

If x = (x1, · · · , xn), then the standard norm of the vector x is defined by ‖x‖ =
max
i=1,n

|xi|, while the standard norm of a (m × n)-matrix B = (bij) is defined by ‖B‖ =

max
i

n
∑

j=1

|bij |. Furthermore, we define a norm of the linear operator l by ‖l(ψ)‖ ≤

b̄‖ψ‖, b̄ > 0.

2. Auxiliary results. Formally, the asymptotic decomposition of the solution of (1),
(2) was obtained in paper [5] by introducing a new parameter. Instead of the problem
(1), (2) we consider the boundary problem with two parameters

(3) ε
dz

dt
= Az + ε.F (z, t, ε, f(t, µ)) + ϕ(t), t ∈ [a, b],

l(z) = h.

The problem (3) is singularly perturbed with respect to the small parameter ε, and it
is possible to use the method of boundary functions [8, 5], i.e. the solution to the border
problem is searched in the form

(4) z(t, ε, µ) =

∞
∑

k=0

[

z(k)(t, µ) + Πk(τ, µ)
]

εk

where τ =
t− a

ε
= (t− a)ε−1, Πk(τ, µ), k ≥ 0 , τ ∈ [0,+∞) are boundary functions in a

right neighborhood of point t = a. After the determination of z(k)(t, µ) and Πk(τ, µ) the
solution of (1), (2) has the form

(5) x(t, ε) =

∞
∑

k=0

[

z(k)(t, ε) + Πk(τ, ε)
]

εk.

According to condition C2 for the function F we assume moreover that it has the
representation

(6) F (z, t, ε, f(t, µ)) =

∞
∑

k=0

Ak(t, µ)zk+1εk,

where Ak(t, µ) are (n × n)-matrices with elements having arbitrary order continuous
derivatives with respect to t ∈ [a, b], µ ∈ (0, ε̄].

When setting in [5] the coefficients of the decomposition (5) we substantially utilize

the fundamental matrix ϕ(τ) of the system
dx

dτ
= Ax, τ ∈ [0,∞) and let U(τ, s) =

ϕ(τ)ϕ−1(s) be the corresponding Cauchy matrix. We introduce the (m × n) matrix

D(ε) = l (U(·, s)) = l

(

ϕ

(

(·) − a

ε

)

ϕ−1(s)

)

. It has different representations depending
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on the type of the functional l. In this work, as in [5], we assume that the matrix D(ε)
has the form

D(ε) = l(U(·, s)) = D0 +O

(

exp

(

−
λ

ε

))

, λ > 0

where D0 is a (m× n)- matrix with constant elements and O

(

exp

(

−
λ

ε

))

is (m × n)

matrix, whose elements are exponentially small in terms of features ε and may be ignored
because they are smaller than any powers of ε.

The results obtained in [5] are related to the rank of the (m×n) matrixD0 : rankD0 =
n = m, rankD0 = m < n and rankD0 = n1 < n = m. In this work we consider only the
case rankD0 = n = m. The results of [5] in this case are presented in Theorem 1.

Moreover, we will use the introduced in [5] indications
(7)

ϕk(t, µ, z(0), · · · , z(k−1)) =











0, k = 0,

A0(a, µ)z(0), k = 1,

A0(a, µ)z(k−1) + gk(t, µ, z(0), · · · z(k−2)), k = 2, 3, . . . ,

(8) ψk(τ, µ,Π0, · · · ,Πk−1) =











0, k = 0,

A0(a, µ)Π0, k = 1,

A0(a, µ)Πk−1 + fk(τ, µ,Π0, . . . ,Πk−2), k = 2, 3, . . .

The functions gk and fk have a polynomial character with respect to z(0), . . . , z(k−2)

and Π0, . . . ,Πk−2, respectively, with norm-bounded coefficients.
Theorem 1 ([5]). We assume that conditions (C1)− (C3) hold, and rankD0 = n =

m. Then there is a unique solution in the domain G1 the BVP (1), (2) which is continu-

ously differentiable with respect to t ∈ [a, b] and continuous for µ ∈ (0, ε̄]. The series (5)
is formally asymptotic series for this solution, where the functions z(k)(t, µ), k ≥ 0 have

the form

(9) z(k)(t, µ) =











−A−1ϕ(t), k = 0,

A−1

(

∂

∂t
z(k−1)(t, µ) − ϕk(t, µ, z(0), . . . , z(k−1))

)

, k ≥ 1.

for µ = ε and the functions Πκ(τ, µ), k ≥ 0 have the form

Π0(τ) = U(τ, a)D−1
0 h̄0, τ ∈ [0,∞), h0 = h− l(z(0)) = h+ l(A−1ϕ(·)),

Π1(τ, µ) = U(τ, a)D−1
0 h̄1(µ) +

∫ τ

0

U(τ, s)A0(a, µ)Π0(s)ds, h1(µ)

= −l(z(1)(·)) − l

(

∫ (·)

0

U(·, s)A0(a, µ)Π0(s)ds

)

Πκ(τ, µ) = U(τ, a)D−1
0 h̄κ(µ)

+

∫ τ

0

U(τ, s) [A0(a, µ)Πk−1(s, µ) + fk(s, µ,Π0,Π1, . . . ,Πk−2)] ds, k ≥ 2
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for µ = ε and

hk(µ) = −lz(k)(·)−l

(

∫ (·)

a

U(·, s)[A0(a, µ)Πk−1(s, µ) + fk(s, µ,Π0(s), . . . ,Πk−2(s, µ))]ds

)

.

The functions z(k)(t, µ), k ≥ 0, are bounded, i.e. the following inequalities hold
∥

∥

∥
z(k)(t, µ)

∥

∥

∥
≤ Nk, ∀t ∈ [a, b] and ∀µ ∈ (0, ε̄], where Nk are positive constants. Then

the boundary functions Πk(τ, µ), k ≥ 0 decrease exponentially at τ → ∞ and 0 < µ ≤ ε̄.
3. Main results. In the boundary problem (3) we make a change u(t, ε, µ) =

z(t, ε, µ)−Zn(t, ε, µ) where Zn(t, ε, µ) =

n
∑

k=0

[

z(k)(t, µ) + Πk(τ, µ)
]

εk is the n-th partial

sum of the series (4). As a result we obtain that u(t, ε, µ) satisfies boundary problems

(10) ε
du

dt
= Au+Hn(u, t, ε, µ),

l(u) = 0,

where

(11) Hn(u, t, ε, µ) = εF (u+ Zn, t, ε, f(t, µ)) −
∑n

k=0
ϕkε

k−
∑n

k=0
ψkε

k.

The functions ϕk and ψk are referred in equations (7) and (8), respectively.
Lemma 2. The following inequality holds:

‖Hn(0, t, ε, µ)‖ ≤ Cεn+1, C > 0, t ∈ [a, b], ε ∈ [0, ε1] , µ ∈ (0, ε1], 0 < ε1 < ε̄.

Proof. We will determine the type of εF (Zn, t, ε, f(t, µ)).
On the basis of (6) we present the function F with the powers of ε. Each coefficient

in front of the powers of ε consists of two sums. One of them depends on t and the other

on τ . We use that τ =
t− a

ε
,
dΠk

dt
= ε−1 dΠk

dτ
and we expand A(a + τε, µ) in a Taylor

series in a neighbourhood of the point (a, µ). We obtain consecutively

εF (Zn, t, ε, f(t, µ)) = εF

(

n
∑

k=0

(z(k) + Πk)εk, t, ε, f(t, µ)

)

= ε

∞
∑

k=0

F̄ k(t, τ, µ, z(0), . . . , z(k−1),Π0, . . . ,Πk−1)ε
k =

∞
∑

k=0

F̄ kεk+1 =

∞
∑

k=1

F̄ k−1εk,

where

F̄ 0 = A0(t, µ)z(0) +A0(a, µ)Π0 = ϕ1 + ψ1,

F̄ 1 = A0(t, µ)z(1) + g2(t, µ, z
(0)) +A0(a, µ)Π1 + f2(τ, µ,Π0) = ϕ2 + ψ2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F̄ k = A0(t, µ)z(k) + gk+1(t, µ, z
(0), z(1), . . . , z(k−1)) +A0(a, µ)Πk

+fk+1(τ, µ,Π0,Π2, . . . ,Πk−1) = ϕk+1 + ψk+1.

Therefore εF (Zn, t, ε, f) has the form

(12) εF (Zn, t, ε, f) =
∞
∑

k=1

ϕkε
k +

∞
∑

k=1

ψkε
k =

n
∑

k=1

ϕkε
k +

n
∑

k=1

ψkε
k + O(εk+1).

Note that in Theorem 1 the boundedness of z(k) and the exponential decrease of Πk
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have been proved hence (12) is fulfilled. Then εF (Zn, t, ε, f) −
n
∑

k=1

ϕkε
k −

n
∑

k=1

ψkε
k =

O(εn+1), i.e.

‖Hn(0, t, ε, µ)‖ ≤
∥

∥O(εn+1)
∥

∥ ≤ Cεn+1. �

Lemma 3. Let in the neighbourhood of the degenerate solution ‖z(0)‖ < δ, the follow-

ing inequality be fulfilled ‖z‖ ≤ ρ < δ for t ∈ [a, b], ε ∈ [0, ε1] , µ ∈ (0, ε1]. Then there is a

positive constant C̄, such that if ‖u′‖ ≤ δ̄ and ‖u′′‖ ≤ δ̄, where 0 < δ̄ < δ and δ̄ + ρ < δ,
the function Hn(u, t, ε, µ) satisfies the inequality

‖∆Hn‖ = ‖Hn(u′, t, ε, µ) −Hn(u′′, t, ε, µ)‖ ≤ C̄ε‖u′ − u′′‖.

Proof. We use the presentation of Hn by (11). Then

∆Hn = Hn(u′, t, ε, µ) −Hn(u′′, t, ε, µ) = εF (u′ + Zn, t, ε, f(t, µ)) −
∞
∑

k=0

ϕkε
k −

∞
∑

k=0

ψkε
k

−
[

εF (u′′ + Zn, t, ε, f(t, µ)) −
∑∞

k=0
ϕkε

k−
∑∞

k=0
ψkε

k
]

= εF (u′ + Zn, t, ε, f(t, µ)) − εF (u′′ + Zn, t, ε, f(t, µ))

= ε

∫ 1

0

Fx(Zn + θ(u′ − u′′) + u′′, t, ε, f(t, µ))dθ(u′ − u′′).

The following equality holds

‖∆Hn‖ = ‖Hn(u′, t, ε, µ) −Hn(u′′, t, ε, µ)‖

=

∥

∥

∥

∥

ε

∫ 1

0

Fx(Zn + θ(u′ − u′′) + u′′, t, ε, f)dθ(u′ − u′′)

∥

∥

∥

∥

.

Then we can get the estimate

‖∆Hn‖ ≤ ε

∫ 1

0

‖Fx(Zn + θ(u′ − u′′) + u′′, t, ε, f)‖ d ‖θ(u′ − u′′)‖.

The integrand function Fx, in accordance with condition C2, is a continuous func-
tion in G, where x = Zn + θ(u′ − u′′) + u′′. Moreover the following is fulfilled ‖x‖ ≤
‖Zn + θ(u′ − u′′) + u′′‖ ≤ ‖Zn‖ + ‖θu′‖ + ‖(1 − θ)u′′‖ ≤ ρ+ θδ̄ + (1 − θ)δ̄ = ρ+ δ̄ ≤ δ.

Then there is a positive constant C̄, such that the following inequality holds

‖Fx(Zn + θ(u′ − u′′) + u′′, t, ε, f‖ ≤ C̄.

For the evaluation of ‖∆Hn‖we get

‖∆Hn‖ = ε

∫ 1

0

‖Fx(Zn + θ(u′ − u′′) + u′′, t, ε, f)‖dθ ‖(u′ − u′′)‖ ≤ ε

∫ 1

0

C̄dθ ‖(u′ − u′′)‖ .

�

Let W (t, s, ε) is a fundamental system of the solutions of the system ε
du

dt
= Au,

W (s, s, ε) = En. The following lemmas are fulfilled:
Lemma 4 ([1, 8]). The fundamental matrix W (t, s, ε) satisfies the inequality

‖W (t, s, ε)‖ ≤ β exp

(

−α
t− s

ε

)

, where α and β are positive constants and 0 ≤ s ≤ t ≤ b.
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Lemma 5 ([1, 8]). Any decision of the continuous system εu̇ = Au+Hn(u, t, ε, µ) is

equivalent to the integral equation u = W (t, a, µ)ξ(a, ε, µ)+

∫ t

a

W (t, s, ε)
1

ε
Hn(u, s, ε, µ)ds.

Lemma 6 ([1, 8]). If ε→ 0, the integral

∫ t

a

∥

∥

∥

∥

1

ε
W (t, s, ε)

∥

∥

∥

∥

ds is uniformly bounded in

the range [a, b], i.e. there exists a positive constant M , such that if ε → 0 and t ∈ [a, b]

the inequality holds

∫ t

a

∥

∥

∥

∥

1

ε
W (t, s, ε)

∥

∥

∥

∥

ds ≤M .

Theorem 7. Let the conditions of Theorem 1 be satisfied and detR(ε) 6= 0 ∀ε ∈ [0, ε̄],
where R(ε) = l(W (·, a, ε)) is an (m×n)-matrix . Then there are constants ε∗ > 0, C∗ > 0
such that the problem (1), (2) has a unique solution x(t, ε) and it satisfies the inequality

(13) ‖x(t, ε) −Xn(t, ε)‖ ≤ C∗εn+1

at t ∈ [a, b] and 0 < ε ≤ ε∗.

Proof. To prove that (1), (2) has the only solution satisfying (13) means to prove
that the boundary problem (3) has a unique solution satisfying ‖z(t, ε, µ)−Zn(t, ε, µ)‖ ≤
C∗εn+1. Therefore (3) we make the following replacement u(t, ε, µ) = z(t, ε, µ)−Zn(t, ε, µ)
and obtain the boundary problem (10).

To prove the theorem it is sufficient to show that (10) has a unique solution such
that ‖u(t, ε, µ)‖ ≤ C∗εn+1. For the system (10) we apply Lemma 5 and consider the
equivalent integral equation

u(t, ε, µ) = W (t, a, µ)ξ(a, ε, µ) +

∫ t

a

W (t, s, ε)
1

ε
Hn(u, s, ε, µ)ds.

We substitute this equation in the boundary condition of (10) and under the condition
of the theorem detR(ε) 6= 0 we get ξ(a, ε, µ) = R−1(ε)b(u, ε, µ), where

b(u, ε, µ) = −l

∫ (·)

a

1

ε
W (·, s, ε)Hn(u, s, ε, µ)ds.

Thus, for the integral equation we find the presentation

(14) u(t, ε, µ) = W (t, a, µ)R−1(ε)b(u, ε, µ) +

∫ t

a

1

ε
W (t, s, ε)Hn(u, s, ε, µ)ds.

For the integral equations (14) we apply the method of successive approximations:

(15)

u0(t, ε, µ) = 0

uk(t, ε, µ) = W (t, a, ε)R−1(ε)b(uk−1, ε, µ)

+

∫ t

a

1

ε
W (t, s, ε)Hn(uk−1(s, ε, µ), s, ε, µ)ds, k ≥ 1.

Given the Lemmas 2, 4, 6, type of b(u, ε, µ) and evaluation ‖l(ψ)‖ ≤ b̄‖ψ‖, b̄ > 0, it

is easy to identify the inequalities ‖R−1(ε)‖ ≤ M̄ℓα
t−a

ε , M̄ > 0, α > 0, ‖b(u0, ε, µ)‖ =
‖b(0, ε, µ)‖ ≤ b1ε

n+1, b1 > 0.
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Then from (15) we find

‖u1 − u0‖ = ‖W (t, a, ε)R−1(ε)b(u0, ε, µ) +

∫ t

a

1

ε
W (t, ε, s)Hn(u0(s, ε, µ), s, ε, µ)ds‖

≤ ‖W (t, a, ε)‖‖R−1(ε)‖‖b(0, ε, µ)‖+

∫ t

a

∥

∥

∥

∥

1

ε
W (t, ε, s)Hn(0, s, ε, µ)

∥

∥

∥

∥

ds

≤ C̄εn+1 ≤
ν

2
, υ = 2C̄εn+1, C̄ > 0.

With the help of Lemma 3 we obtain that ‖u2 − u1‖ ≤ C̄ε‖u1 − u0‖ ≤
1

2
.
ν

2
, for some

0 < ε2 ≪ 1 and ε ≤ ε2 =
1

2C̄
. By induction we find that

‖uk −uk−1‖ ≤
1

2k−1
·
ν

2
∀k ≥ 1, ∀t ∈ [a, b], ε ∈ (0, ε2], µ ∈ (0, ε2], ‖uk‖ ≤ δ, ‖uk−1‖ ≤ δ.

Then ‖uk(t, ε, µ)‖ ≤
∑k

i=1
‖ui − ui−1‖ ≤ν, i.e. ‖uk(t, ε, µ)‖ ≤ C∗εn+1 with C∗ = 2C̄,

in t ∈ [a, b], ε ∈ (0, ε∗], µ ∈ (0, ε∗] , 0 < ε∗ < ε2. Therefore, successive approximations
uk(t, ε, µ) are uniformly convergent to the solution u(t, ε, µ) of the problem (10), i.e.
a solution (10) exists and the inequality ‖u(t, ε, µ)‖ ≤ C∗εn+1, t ∈ [a, b], ε ∈ (0, ε∗],
µ ∈ (0, ε∗] holds, which is similar to (13). The uniqueness of the solution follows from
the fact that the right side of the differential system (10) is Lipschitz. �
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АСИМПТОТИЧНО ПОВЕДЕНИЕ НА РЕШЕНИЯТА НА ГРАНИЧНИ
ЗАДАЧИ С ДВОЙНА СИНГУЛЯРНОСТ

Нели Сиракова

В работата се разглежда асимптотичното поведение на решението на нелинейни

гранични задачи с двойна сингулярност и общи гранични условия. Предпола-

гаме, че диференциалната система съдържа допълнителна функция, която оп-

ределя задачата като двойно сингулярна. При определени условия се доказва

асимптотичност на решението на поставената гранична задача.
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