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ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS OF
BOUNDARY-VALUE PROBLEMS FOR NONLINEAR
SYSTEMS WITH DOUBLE SINGULARITY"

Neli Sirakova

This paper discusses the asymptotic decomposition of a solution of nonlinear
boundary-value problems (BVP) with double singularity and general boundary condi-
tions. We assume that the differential system contains an additional function, which
defines the perturbation as double singular.

1. Introduction. In this paper we deal with BVP of ordinary differential equations
in the form

(1) g‘é—f — Az +eF (e, f(t,2) +olb), ¢ € [a,b],

(2) I(z) = h,
where ¢ is a small positive parameter, 0 < e << 1, h e R™.

The following conditions should be observed:

(C1) A is a constant (n x n)-matrix. Let 0(A) be the spectrum of the matrix A and
Ai € 0(A) Vi =1,n. We assume that A\; # A, i # j and Re\; < 0. The function ¢(t) is
an n-dimensional vector-function of the class € ([a, b]);

(C2) The function F(x,t, e, f(t,€)) is an n-dimensional vector-function having an
arbitrary order continuous partial derivatives with respect to all arguments in the domain
G = D, x [a,b] x [0,&] x D¢, where D, C R™ is a neighborhood of the solution z(?(t)
of the degenerate system (¢ = 0) Az®) + ¢(t) = 0; Dy C RP is a bounded and closed
domain, 0 < € < 1. The function f = f(t,¢) is smooth of arbitrary order with respect
to all arguments in the domain G; = [a, b] x (0, &] and its values belong to Dy.

(C3) 1 is a linear, bounded vector functional, [ € (C'[a,b] — R™, R™), h € R™.

We assume that the function f contains singular elements (for example, f =
f(exp(—t/e),sin(t/e)). On one hand, the small parameter € is in front of the deriva-
tive and on another, ¢! is involved in the function f. Therefore the boundary problem
(1), (2) is with double singularity.

The Cauchy problem for nonlinear systems with double singularity was investigated
in [6]. In the present work the behavior of the asymptotic expansion of the solution
of the problem (1), (2) is studied. The construction of a formal asymptotic solution of
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the problem (1), (2) is performed in [4] and is based on the boundary function method
described in [8].
The papers [2, 3, 4, 7] consider in both cases m = n and m # n the asymptotic
expansion of the solution of the almost regular BVP
d
d_f = A{t)x +eF(z,t,e, f(t,e)) + o(t), l(x)=h, te[ab], 0<e< I,
where f(t,¢) is a singular function.
If x = (x1,---,2p), then the standard norm of the vector z is defined by | z||

max |z;|, while the standard norm of a (m x n)-matrix B = (b;;) is defined by || B =
1=1,n

IN

n
maxz |bij|. Furthermore, we define a norm of the linear operator [ by |[|I(v)]|
7
j=1

bl[l,b > 0.

2. Auxiliary results. Formally, the asymptotic decomposition of the solution of (1),
(2) was obtained in paper [5] by introducing a new parameter. Instead of the problem
(1), (2) we consider the boundary problem with two parameters

dz
(3) e = Az e (s te [t p) + (1), tE o],
1(z) = h.
The problem (3) is singularly perturbed with respect to the small parameter ¢, and it
is possible to use the method of boundary functions [8, 5], i.e. the solution to the border
problem is searched in the form

(4) 2(t,e,p) =

hE

[z(k) (t, 1) + g (7, u)} ek

=
Il

0
—a

t
where 7 = = (t—a)e !, Ox(r,p), k>0, 7 € [0, +00) are boundary functions in a

right neighborhood of point ¢ = a. After the determination of z*) (¢, 1) and Il (7, 1) the
solution of (1), (2) has the form

(oo}
(5) a(te) =Y [N) (t,¢) + I (r, 5)} ek
k=0
According to condition C2 for the function F' we assume moreover that it has the
representation

(6) eyt f(t ) = 3 Axlt, m) ek,
k=0

where Ag(t, ) are (n x n)-matrices with elements having arbitrary order continuous
derivatives with respect to ¢ € [a,b], u € (0,&].

When setting in [5] the coefficients of the decomposition (5) we substantially utilize
the fundamental matrix ¢(7) of the system d—x = Az, 7 € [0,00) and let U(r,s) =

T
©(T)¢ 1 (s) be the corresponding Cauchy matrix. We introduce the (m x n) matrix
D(e)=1(U(,s)) =1 (gp <()——a) cp_l(s)). It has different representations depending
5
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on the type of the functional I. In this work, as in [5], we assume that the matrix D(e)
has the form

D(e) = I(U(-5)) = Do + O <eXp <_§)) A0

A
where Dy is a (m X n)- matrix with constant elements and O (exp ( —= | | is (m x n)
€

matrix, whose elements are exponentially small in terms of features € and may be ignored
because they are smaller than any powers of ¢.

The results obtained in [5] are related to the rank of the (m xn) matrix Dy : rank Dy =
n = m, rank Do = m < n and rank Dy = n; < n = m. In this work we consider only the
case rank Dy = n = m. The results of [5] in this case are presented in Theorem 1.

Moreover, we will use the introduced in [5] indications

(7)
0,k =0,

9019(757#;2(0)7 T az(kil)) - Ao(a,,u)z(o), k= L
AO(aalu’)Z(k_l) +9k(t7MaZ(O)7 o 'Z(k_2))a k= 2537 s

0,k =0,
(8) ¢k(T7M,H07 T ;Hk—l) = Ao(a,‘LL)Ho, k= ]-a
Ao(a, ILL)H]C,1 + fk(T, ILL,H(), ce ,kag), k= 2,3,...

The functions gx and f; have a polynomial character with respect to z(o), ceey 2(k=2)
and Iy, ..., IIx_o, respectively, with norm-bounded coefficients.

Theorem 1 ([5]). We assume that conditions (C1) — (C3) hold, and rank Dy =n =
m. Then there is a unique solution in the domain G the BVP (1), (2) which is continu-
ously differentiable with respect to t € [a,b] and continuous for p € (0,&]. The series (5)
is formally asymptotic series for this solution, where the functions z(k)(t, ),k >0 have
the form

—A7p(t), k =0,

A_l (%Z(k_l)(ta /J/) - @k(ta My Z(0)7 R Z(k_l))) 7k > 1.

for p =€ and the functions (T, 1), k > 0 have the form
HO(T) - U(Tv a)D(Tl}_lo,T € [Oa OO), EO =h-— Z(Z(O)) =h+ Z(Ailsa())a

9 2t =

I (7, ) = U7, )05 )+ | Ur.5) Ao 0T (s)ds. T ()
)
= —1(z1() —1 ( /O U, s)Ao<a,u>Ho<s>ds>

(7, 1) = U(7,a) Dy (1)
+/ U(Ta S) [AO(G/,/J/)Hk_l(S,/J/)+fk(8,/.l/,H0,H1,...,Hk_2)] dS, k Z 2
0
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for u=-c¢ and
_ )
h’k(:u’) = 7lz(k)()7l </ U(a S)[AO(aau)kal(Sa :LL) + fk(87M7HO(S)ﬂ cee Hk72(5a ﬂ))]d5> :

The functions z(k)(t,,u),k: > 0, are bounded, i.e. the following inequalities hold
Hz(k) (t,u)H < Ny, ¥Vt € [a,b] and Yu € (0,&], where Ny are positive constants. Then

the boundary functions I (7, i), k > 0 decrease exponentially at 7 — oo and 0 < p < €.
3. Main results. In the boundary problem (3) we make a change u(t,e,u) =

z(t,e, ) — Zn(t, e, u) where Z,(t,e,1n) = Z [z(k)(t, w) + g (T, u)} " is the n-th partial
k=0
sum of the series (4). As a result we obtain that u(t,e, 1) satisfies boundary problems

d
(10) Ed_? = Au+ H,(u,t e, p),

where
_ n k n k
(11) Hn(“at757ﬂ) _EF(U+Zn7ta€af(t7M)) _Zk:O PYrE _Zk=0wk€

The functions ¢y and iy, are referred in equations (7) and (8), respectively.
Lemma 2. The following inequality holds:

| H,(0,t,e,p)|| < Ce™,C > 0,t € [a,b],e € [0,e1], € (0,61], 0<e; <&
Proof. We will determine the type of eF(Z,,t,¢, f(t, u)).

On the basis of (6) we present the function F' with the powers of €. Each coefficient

in front of the powers of € consists of two sums. One of them depends on t and the other
t—a dl _,dlly
on 7. We use that 7 = —a, k d— and we expand A(a + 7€, u) in a Taylor

Cf)

series in a neighbourhood of the point ( ). We obtain consecutively

eF(Zn,t,e, f(t, 1)) <Z )+ 10,)ek te, f(1, u))
k=0

oo o0

Z (t, T, 1,2 ),...,z(k_l),ﬂo,...,Hk,l)sk:Z ghtl = ZFklk

where
FO = Ag(t, 1) 2 + Ao(a, ) = @1 + 91,
FY = Ag(t, 1)z + ga(t, 1, 29) + Ao(a, )Ty + fo(7, 1, o) = o + g,
= Ao(t,u)z(k) + gr41(t, w1, 20 Mk 1)) + Ao (a, )T
o1 (7, o, Thoy o 1) = Qrgr + Vg
Therefore eF(Z,,t,¢, f) has the form

n

(12) eF(Zn,te, f) = Z ek + Zwkek = Z ore® + Zwkek + O(ek ).

k=1 k=1 k=1 k=1
Note that in Theorem 1 the boundedness of z(*) and the exponential decrease of II},
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have been proved hence (12) is fulfilled. Then eF(Z,,t, e, f) — Z ope® — Z Yrek =
k=1 k=1

O(e™t), ice.
[Ha(0, 2, < 0@ < €= .
Lemma 3. Let in the neighbourhood of the degenerate solution ||z(0)|| < 4, the follow-
ing inequality be fulfilled ||z|| < p <6 for t € [a,b],e € [0,e1],p € (0,&1]. Then there is a
positive constant C, such that if ||[u'|| < & and |[u”|] < &, where 0 < § < § and § + p < 6,
the function Hy(u,t,e, 1) satisfies the inequality

JAH, | = [ Ha 8,2, 1) — Ha(u", 1,2, 1) | < Csllu’ — .
Proof. We use the presentation of H,, by (11). Then

AH, = Hy(u' t,e, 1) = Hy(u" te, p) = eF(u' + Zn,t,e, f(t, 1)) = > et =Y e
k=0 k=0
" o k o k
- |:€F(’LL + Zna t757 f(ta /J/)) - Zk=0 PrE — Zk:o ?ﬂkf i|
= €F(ul + Z’ﬂ) t? 67 f(t) :u’)) - gF(u’” + Z”l? t} E) f(t7 M))

1
= g/ Fo(Zp 4+ 0 —u") +u" t,e, f(t, 1n)do(u —u").
0

The following equality holds
|AH, || = [[Hn(u t e, p) = Hu(u" t,e, )|

1
s/ Fo(Zp+ 0 —u")+u" t,e, f)do(u' —u")
0

Then we can get the estimate
1
[AH,| < 6/ 1Fe(Zn + 0(u" — ") +u” t e, )] d |0 —u")].
0

The integrand function F,, in accordance with condition C2, is a continuous func-
tion in G, where z = Z,, + 6(u' — u") + u”. Moreover the following is fulfilled [|z|| <
1Zn + 0(u" = ") + || < |1 Zn]| + [10w']] + [[(1 = O)u"|| < p+ 00 + (1= 0)0 = p+ 6 < 0.

Then there is a positive constant C, such that the following inequality holds

||F93(Zn + o(ul - u”) + u”at7€7 f” § C’

For the evaluation of ||AH,|we get
1 1
|AH,| =< / | Fa(Zn + 00 — ")+, 6, PO | (o — u")]| < € / Cab |(u' —u")].
0 0
O

d
Let W(t,s,¢e) is a fundamental system of the solutions of the system = Au,

dt
W (s, s,e) = E,. The following lemmas are fulfilled:
Lemma 4 ([1, 8]). The fundamental matric W(t,s,e) satisfies the inequality

t—s
[W(t,s,e)|| < Bexp —a— ), where a and B are positive constants and 0 < s <t < b.

244



Lemma 5 ([1, 8]). Any decision of the continuous system et = Au+ Hy(u,t, e, 1) is
t
1
equivalent to the integral equation u = W (¢, a, p)é(a, e, u)—l—/ W (t,s,e)—Hyp(u,s,¢e, p)ds.
a 5
¢
Lemma 6 ([1, 8]). Ife — 0, the integml/

1
EW(t7 s,€)||ds is uniformly bounded in

the range [a,b], i.e. there exists a positive constant M, such that if ¢ — 0 and t € [a,b]

t
1
the inequality holds / EW(t,s,E) ds < M.
a

Theorem 7. Let the conditions of Theorem 1 be satisfied and det R(g) # 0 Ve € [0, ],
where R(e) = (W (-, a,€)) is an (mxn)-matric . Then there are constantse™ >0, C* >0
such that the problem (1), (2) has a unique solution x(t,e) and it satisfies the inequality

(13) llz(t,e) — Xp(t,e)|| < C*e" !
att € la,b] and 0 < e <e*.

Proof. To prove that (1), (2) has the only solution satisfying (13) means to prove
that the boundary problem (3) has a unique solution satisfying ||z(t, e, u) — Zn(t, €, p)|| <
C*e" !, Therefore (3) we make the following replacement u(t, €, 1) = 2z(t, &, ) —Zn(t, , 1)
and obtain the boundary problem (10).

To prove the theorem it is sufficient to show that (10) has a unique solution such
that ||u(t,e, u)|| < C*"*!. For the system (10) we apply Lemma 5 and consider the
equivalent integral equation

t
1
u(t,e,p) = Wi(t,a,n)é(a, e, ) —|—/ W (t, s, E)an(u, 8, €, p)ds.

We substitute this equation in the boundary condition of (10) and under the condition
of the theorem det R(¢) # 0 we get &(a,e, u) = R (e)b(u, £, i), where
() q
b(u, e, n) = —1 EW(’ s,e)Hp(u, s,€, p)ds.
a
Thus, for the integral equation we find the presentation

t
1
(1) ult.e) = Wita )R @b + [ ZW (e 5,2 Haus 2, ),

For the integral equations (14) we apply the method of successive approximations:
uo(t, e, 1) =0
( ) ’U/k(t,E,M) = W(t7aaE)R_I(E)b(uk—1757u)
15

t
1
+/ EW(t,s,e)Hn(uk_l(s,e,u),s,e,,u)ds, k>1.
a

Given the Lemmas 2, 4, 6, type of b(u, e, u) and evaluation ||I(1)|| < b||¢||, b > 0, it
is easy to identify the inequalities [|[R™*(e)| < M=, M >0, a > 0, 1b(uo, e, 1)|| =
1600, &, )| < b1e™ ", by > 0.
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Then from (15) we find

t
_ 1
llur — ol = [|W(t,a,e)R™*(e)b(uo, &, 1) + EW(t,E,s)Hn(uo(s,E,u), s, €, )ds||
t
_ 1
< W0 A 0.2+ [ |25 7, 0.0,
a
<Cerl< o, w=20e" C>0,
~ 1
With the help of Lemma 3 we obtain that ||us —uy|| < Celluy — ugl| < 5%, for some

1
O<eyslande<ey = Yok By induction we find that

14
Huk*ukle < 5 Yk > 1, vt € [a,b],s € (0752]7 JLES (0a52]7 ”ukH < 57 ”ukle <.

2k—1

k _
Then [Juk(t, e, p)|| < Zi_l llwi — w1 || <v, ie. |Jug(t,e,p)|| < C*e" with C* = 20,
inté€lab],ee€ (0,e], p €(0,e],0 <e” < ey. Therefore, successive approximations
ug(t, e, ) are uniformly convergent to the solution u(t,e, ) of the problem (10), i.e.
a solution (10) exists and the inequality ||u(t,e,u)|| < C*e" ™ t € [a,b], € € (0,€"],
w1 € (0,e*] holds, which is similar to (13). The uniqueness of the solution follows from
the fact that the right side of the differential system (10) is Lipschitz. O
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ACUMIITOTUYHO IIOBEAEHUE HA PEHIEHUSTA HA TPAHUYHUI
3AJIAYY C IBOVIHA CUHTYJISIPHOCT

Henun CupakoBa

B paborara ce pasriexga aCHMITOTHYHOTO IIOBE/IEHNE HA PEIIEHUETO Ha HEJIMHEHHN
FPAHUYHA 331498 C JIBOWHA CUHTYJISAPHOCT M OOIMM I'DAHUYHHU yciaoBus. IIpemmosta-
rame, Je IuEpPEHINaTHATA CUCTEMA ChIbPKa JOMbIHUTETHA (DYHKIMS, KOSITO OIl-
pellesis 3ajadaTa KaTo NBOMHO cUHryssApHa. [Ipm onpenesneHum yciaoBusi ce moKasBa
aCHMIITOTUYHOCT Ha PEIIeHNeTO Ha IIoCTaBeHaTa I'PaHUYHAa 3ajada.
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