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(2, 3)-GENERATION OF THE GROUPS PSL7(q)*

Konstantin Tabakov

In this paper we prove that the group PSL7(q) is a factor group of the modular group
PSL2(Z) for any q, i.e., we prove that PSL7(q) is (2, 3)-generated group for any q.
In fact, we provide explicit generators x and y of orders 2 and 3, respectively, for the
group SL7(q).

1. Introduction. A group G is called (2, 3)-generated if G = 〈x, y〉 for some elements
x and y, where x is an involution and y is an element of order 3. It is a well known fact that
the modular group PSL2(Z) is isomorphic to the free product of cyclic groups of order
2 and 3. Thus a group G is (2, 3)-generated if and only if it is a homomorphic image of
the modular group PSL2(Z). A wide and remarkable class of the (2, 3)-generated groups
forms the so-called Hurwitz groups. A finite group G is called Hurwitz or (2, 3, 7)-
generated, if it is generated by the elements of order 2 and 3, respectively and their
product has order 7. In 1893 Hurwitz proved that the automorphism group of a compact
Riemann surface with genus g > 1 always has order at most 84(g − 1) and that this
upper bound is attained precisely when the group is (2, 3, 7)-generated. It is known that
the projective special linear groups of large rank are Hurwitz groups (n ≥ 287 [7]), while
for the lower ranks, fewer such groups are Hurwitz (SLn(q) is not Hurwitz for n ≤ 19,
various q [2]). For example the group PSL7(p

m) is Hurwitz, if p 6= 7, m is the order of
p (mod 49), m is odd, and the field is algebraically closed [15].

A number of series of finite simple groups are (2, 3)-generated. In fact the theorem
of Liebeck-Shalev and Lübeck-Malle gives us a powerful result which states that all
finite simple groups, except the symplectic groups PSp4(2

m), PSp4(3
m), the Suzuki

groups Sz(2m) ( m odd), and finitely many other groups, are (2, 3)-generated ( see [11]).
Concerning the projective special linear groups PSLn(q), (2, 3)-generation is known in
the cases n = 2, q 6= 9 [8], n = 3, q 6= 4 [5], [1], n = 4, q 6= 2 [13], [14], [9], n = 5, any
q [16], n = 6, any q [12], n ≥ 5, odd q 6= 9 [3],[4], and n ≥ 13, any q [10]. The present
paper is another contribution to the problem. We prove the following

Theorem. The group PSL7(q) is (2, 3)-generated for any q.
Here, we shall exploit the same technique to prove the theorem, which has been used

in [16] and [12], taking into account the known list of maximal subgroups of PSL7(q).
We have to note, that the approach applied by the authors in [3], when dealing with
similar problems is quite different from our method, as it is based on the classification of
finite irreducible linear groups generated by transvections.
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2. Proof of the Theorem. Let G = SL7(q) and G = G/Z(G) = PSL7(q), where
q = pm and p is a prime. Set d = (7, q − 1) and Q = (q7 − 1)/(q − 1). Here d = (Q, 7)
and (Q, 6) = 1.

First we choose elements x and y of G of orders 2 and 3, respectively. The goal is
z = xy to be an element of G of order Q.

Let

x =



















0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 −1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0



















, y =



















−1 −1 0 0 0 0 λ1

1 0 0 0 0 0 λ2

0 0 −1 −1 0 0 λ3

0 0 1 0 0 0 λ4

0 0 0 0 −1 −1 λ5

0 0 0 0 1 0 λ6

0 0 0 0 0 0 1



















(x ∈ G, |x| = 2, y ∈ G, |y| = 3 for any λ1, λ2, λ3, λ4, λ5, λ6 ∈ GF (q)).

Now

z = xy =



















0 0 0 0 0 0 1
0 0 0 0 1 0 λ6

0 0 0 0 −1 −1 λ5

0 0 −1 0 0 0 −λ4

0 0 −1 −1 0 0 λ3

1 0 0 0 0 0 λ2

−1 −1 0 0 0 0 λ1



















.

The characteristic polynomial of z is fz(t) = t7 − λ1t
6 + λ6t

5 + (λ1 + λ3 + 1)t4 + (−λ1 +
λ4 − λ5 − λ6 − 1)t3 + (λ2 + λ5 + λ6 + 1)t2 − (λ2 − 1)t − 1.

Let ω ∈ GF (q7)∗ be of order Q and

f(t) = (t − ω)(t − ωq)(t − ωq2

)(t − ωq3

)(t − ωq4

)(t − ωq5

)(t − ωq6

) =

= t7 − αt6 + βt5 − γt4 + δt3 − εt2 + ζt − 1.

Then f(t) ∈ GF (q)[t] and the polynomial f(t) is irreducible over GF (q). Now choose
λ1, λ2, λ3, λ4, λ5, λ6 so that

λ1 = α, λ6 = β, λ1 + λ3 + 1 = −γ, −λ1 + λ4 − λ5 − λ6 − 1 = δ, λ2 + λ5 + λ6 + 1 = −ε,

1 − λ2 = ζ,

i.e.

λ1 = α, λ2 = 1 − ζ, λ3 = −α − γ − 1, λ4 = α + δ − ε + ζ − 1, λ5 = −β − ε + ζ − 2,

λ6 = β.

This implies fz(t) = f(t) and the characteristic roots ω, ωq, ωq2

, ωq3

, ωq4

, ωq5

, ωq6

of z
are pairwise distinct.
Then, in GL7(q

7), z is conjugate to diag(ω, ωq, ωq2

, ωq3

, ωq4

, ωq5

, ωq6

) and hence z
is an element of G of order Q.

Now, in G, the elements x and y have orders 2 and 3, respectively, and (as easily
seen by the above-mentioned diagonal matrix) z = x.y has order Q/d. So H = 〈x, y〉 is
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a subgroup of order divisible by 6Q/d. Our goal is to prove H = G. To do this we need
to know the subgroup structure of G.

The maximal subgroups of PSL7(q) are classified in [6]. This implies that if M is a
maximal subgroup of G then one of the following holds.

1) |M | = q21(q − 1)(q2 − 1)(q3 − 1)(q4 − 1)(q5 − 1)(q6 − 1)/d.

2) |M | = q21(q − 1)(q2 − 1)2(q3 − 1)(q4 − 1)(q5 − 1)/d.

3) |M | = q21(q − 1)(q2 − 1)2(q3 − 1)2(q4 − 1)/d.

4) |M | = 5040(q − 1)6/d if q ≥ 5.

5) M ∼= ZQ/d.Z7;

|M | = 7Q/d.

6) M ∼= PSL7(q0).Z(d,r) if q = qr
0 , r is a prime;

|M | = q21
0 (q2

0 − 1)(q3
0 − 1)(q4

0 − 1)(q5
0 − 1)(q6

0 − 1)(q7
0 − 1)(d, r)/(7, q0 − 1).

7) M ∼= E72 .SL2(7) if p ≡ 1, 2, 4 (mod 7), q ≡ 1 (mod 7), q = p or q = p3;
|M | = 24.3.73.

8) M ∼= SO7(q) if q is odd;
|M | = q9(q2 − 1)(q4 − 1)(q6 − 1).

9) M ∼= PSU7(q0) if q = q2
0 ;

|M | = q21
0 (q2

0 − 1)(q3
0 + 1)(q4

0 − 1)(q5
0 + 1)(q6

0 − 1)(q7
0 + 1)/(7, q0 + 1).

10) M ∼= PSU3(3) if 5 ≤ q = p ≡ 1 (mod 4);
|M | = 25.33.7.

We shall prove that the only maximal subgroup of G whose order is a multiple of Q/d
is that in case 5), of order 7Q/d.

Suppose false, i.e. Q/d divides |M |. It is not difficult to see that

(Q, 6q(q +1)(q2 +1)(q2 + q +1)(q2− q +1)(q4 + q3 + q2 + q +1)(q4− q3 + q2− q +1)) = 1.

In cases 1), 2), 3) and 4) it follows that Q divides (q−1)6, (q−1)6, (q−1)6, 35(q−1)6,
respectively. So Q must divide 35(q− 1)6 = 35Q− 7.35q(q2− q +1)2, i.e. Q divides 7.35,
which is impossible for any q ≥ 2.

In case 8) Q must divide d(q − 1)3 ≤ 7(q − 1)3 < Q, an impossibility. Similarly, in
case 9) the number Q0 = q6

0 + q5
0 + q4

0 + q3
0 + q2

0 + q0 + 1 must divide d(q0 − 1)3, again an
impossibility.

In cases 7) and 10) Q must divide 73d and 7d, respectively, hence Q divides 74, which
is impossible for any q ≥ 2.

In case 6) the simplest way to prove that Q/d does not divide |M | is to use a primitive
prime divisor of p7m − 1. For this purpose we use the following classical theorem

Theorem (Zsigmondy theorem). If a > b > 0 are coprime integers, then for any
natural number n > 1 there is a prime number p (called a primitive prime divisor) that
divides an − bn and does not divide ak − bk for any positive integer k < n, with the
following exceptions
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1. a = 2, b = 1 and n = 6.
2. a + b is a power of 2 and n = 2.
Indeed, for our aim, Zsigmondy’s theorem provides a prime s which divides p7m − 1

but does not divide pi − 1 for 0 < i < 7m. We have s > 7 (as s − 1 is a multiple of
7m) and hence s divides Q/d. On the other hand, a glance at |M | shows that |M | is not
divisible by s. So Q/d does not divide |M |.

Thus we have proved that the only maximal subgroup of G whose order is a multiple
of Q/d is that in case 5), of order 7Q/d. This implies that no proper subgroup of G has
order divisible by 6Q/d. Hence H = G and G = 〈x, y〉 is a (2, 3)-generated group.

This completes the proof of the theorem. �
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(2, 3)-ПОРАЖДАНЕ НА ГРУПИТЕ PSL7(q)

Константин Д. Табаков

В настоящата статия доказваме, че групата PSL7(q) е факторгрупа на моду-

лярната група PSL2(Z), т.е. доказваме, че групата PSL7(q) е (2, 3)-породена за

всяко q. По- точно, за групата SL7(q), намираме експлицитни пораждащи x и y

с редове съответно 2 и 3.
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