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In this paper we aim to describe a generalization of the nilpotent endomorphisms of
a finite chain and to consider the role of Catalan numbers for the semirings of such
endomorphisms.

1. Introduction. The nilpotent elements in finite transformation semigroups are
well studied, see [2], [3] and [6]. In [11] we show that some semigroups are actually
semirings. In [9] we find some results in the endomorphism semiring of a finite chain
for the nilpotent endomorphisms with fixed point 0. By similar reasonings in [7] Szigeti
transfers some linear algebra theorems to lattices. The purpose of this paper is to prove
analogous results for endomorphisms with a certain fixed point.

2. Preliminaries. An algebra R = (R, +, ·) with two binary operations + and · on
R, is called a semiring if: 1. (R, +) is a commutative semigroup, 2. (R, ·) is a semigroup,
3. both distributive laws hold x · (y + z) = x · y + x · z and (x + y) · z = x · z + y · z for
any x, y, z ∈ R.

Facts concerning semirings can be found in [4].
For a finite chain Cn = ({0, 1, . . . , n − 1} , ∨) the endomorphisms form a semiring

with respect to the addition and multiplication defined by:

h = f + g when h(x) = f(x) ∨ g(x), h = f · g when h(x) = f (g(x)) for all x ∈ Cn.

This semiring is called an endomorphism semirimg and is denoted by ÊCn
, see [10].

If α ∈ ÊCn
such that f(k) = ik for any k ∈ Cn we denote α as an ordered n-tuple

≀ i0, i1, i2, . . . , in−1 ≀. For any k ∈ Cn the set E
(k)
Cn

= {α|α ∈ ÊCn
, α(k) = k} is a subsemiring

of ÊCn
. In particular, for k = 0, semiring E

(0)
Cn

has zero element. An element α ∈ E
(0)
Cn

is
called nilpotent if αm = 0 for some positive integer m.

The Catalan sequence is the sequence C0, C1, . . . , Cn, . . ., where Cn =
1

n + 1

(
2n

n

)
,

n = 0, 1, . . ., see [1].

Proposition 2.1 ([9]). The set Nn of nilpotent elements of semiring E
(0)
Cn

consists of

endomorphisms α such that α(k) < k for every k ∈ Cn, k 6= 0. This set is a subsemiring

of E
(0)
Cn

of order Cn−1 =
1

n

(
2n − 1

n − 1

)
.
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If α(k) ≤ k for every k ∈ Cn, the endomorphism α ∈ E
(0)
Cn

is called, see [9], over nilpo-

tent endomorphism. The subset of E
(0)
Cn

consisting of all the nilpotent endomorphisms, is
denoted by ON n.

Proposition 2.2 ([9]). The set ONn is a subsemiring of semiring E
(0)
Cn

of order

Cn =
1

n + 1

(
2n

n

)
.

3. Nilpotent endomorphisms. For k ∈ Cn constant endomorphism ≀ k k . . . k ≀,

see [5], has a remarkable role in semiring E
(k)
Cn

. It is easy to verify, see [8], that this
endomorphism is the multiplicatively absorbing element of the semiring. This implies
the idea of studying endomorphisms similar to usual nilpotent elements.

For every constant endomorphism κk = ≀ k k . . . k ≀ the elements of

N [k]
n

= {α | α ∈ ÊCn
, αnk = κk for some natural number nk}

are called k-nilpotent endomorphisms.

We need the following lemma to clarify the structure of N
[k]

n .

Lemma 3.1. For any natural n, n ≥ 2, and k ∈ {1, . . . , n − 2}, the k-nilpotent

endomorphisms are maps of the type

≀ i0, . . . , ik−1, k, ik+1, . . . , in−1 ≀,

where ir > r for r = 0, . . . , k − 1 and is < s for s = k + 1, . . . , n − 1.

Proof. Let α ∈ N
[k]

n , where n and k are fixed.

Suppose that α(k) ≤ k−1. Then α(k−1) ≤ α(k) ≤ k−1. Using α(k−1) ≤ k−1 we
observe by induction that αm(k−1) ≤ k−1 for every natural m, which is a contradiction

of the assumption that α ∈ N
[k]

n . Thus α(k) ≥ α(k−1) ≥ k. If we suppose that α(k) > k
by induction it follows that αm(k) > k for every natural m, which is a contradiction of

α ∈ N
(k)
n . Hence, α(k) = k.

Suppose that for some r ≤ k − 1 it follows α(r) ≤ r. Then, by induction, we receive
that αm(r) ≤ r ≤ k − 1 for every natural m, which is a contradiction to the assumption

that α ∈ N
[k]

n . Hence, α(r) > r for every r ≤ k − 1.

Suppose that for some s ≥ k + 1 we have α(s) ≥ s. Now, by induction, we find that

αm(s) ≥ s ≥ k + 1 for every natural m, which is a contradiction to α ∈ N
[k]

n . Hence,
α(s) < s for every s ≥ k + 1 and this completes the proof. �

The next definition appears in [9]. An element x of semiring R with an additively
absorbing element a is called a maxpotent if xn = a for some positive integer n. For

semiring ÊCn
the subset of maxpotent elements is N

[n−1]
n . This set is nonempty because

the absorbing element ≀n − 1, n− 1, . . . , n − 1 ≀ of ÊCn
belongs to N

[n−1]
n .

Lemma 3.2. The set N
[n−1]

n of maxpotent elements of semiring ÊCn
consists of

endomorphisms α such that α(i) > i for every i ∈ Cn, i < n − 1.

Proof. We use similar reasonings to the ones in the second part of the last proof.

Let α ∈ N
[n−1]

n . Suppose that for some i < n − 1 it follows that α(i) ≤ i. Then, by
induction, we obtain that αm(i) ≤ i < n−1 for every natural m, which is a contradiction

to the assumption that α ∈ N
[n−1]

n . Hence, α(i) > i for every i < n − 1. �
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Theorem 3.3. For any natural n, n ≥ 2, and k ∈ {0, 1, . . . , n − 2, n − 1} the set of

k– nilpotent endomorphisms N
[k]

n is a subsemiring of ÊCn
. When k > 0 there is not zero

element in semiring N
( [k])
n . The order of semiring N

[k]
n is

∣∣∣N [k]
n

∣∣∣ = Ck.Cn−k−1, where

Ck is the k-th Catalan number.

Proof. Let k = 0 and α ∈ N
[0]

n . If we suppose that α(0) > 0, by induction, we find

αm(0) > 0 for every natural m, which is a contradiction to the assumption that α ∈ N
(0)
n .

Hence the 0-nilpotent endomorphisms belong to semiring E
(0)
Cn

. But in this semiring the
endomorphism ≀ 0 0 . . . 0 ≀ is the zero element, so, there are nilpotent endomorphisms.

Now, from Proposition 2.1, it follows that N
[0]

n = Nn is a subsemiring of ÊCn
.

Let α, β ∈ N
[k]

n , where n and k are fixed and k ∈ {1, . . . , n − 2}.
For r = 0, . . . , k − 1 from Lemma 3.1 it follows that α(r) > r and β(r) > r. Then

(α + β)(r) = α(r) ∨ β(r) > r ∨ r = r and (α · β)(r) = β(α(r)) ≥ β(r) > r.
From Lemma 3.1 it follows that α(k) = k and β(k) = k. Then (α + β)(k) = α(k) ∨

β(k) = k ∨ k = k and (α · β)(k) = β(α(k)) = β(k) = k.
For s = k + 1, . . . , n− 1 from Lemma 3.1 it follows that α(s) < s and β(s) < s. Then

(α + β)(s) = α(s) ∨ β(s) < s ∨ s = s and (α · β)(s) = β(α(s)) ≤ β(s) < s.

Hence, N
[k]

n is a subsemiring of ÊCn
, where k ∈ {1, . . . , n − 2}.

Let k = n − 1 and α, β ∈ N
[n−1]

n . Then for i = 0, . . . , n − 2 from Lemma 3.2 it
follows that α(i) > i and β(i) > i. Then (α + β)(i) = α(i) ∨ β(i) > i ∨ i = i and

(α · β)(i) = β(α(i)) ≥ β(i) > i. So N
[n−1]

n is a subsemiring of ÊCn
.

Thus we prove that for any k ∈ {0, 1, . . . , n − 2, n − 1} the set of k-nilpotent endo-

morphisms N
[k]

n is a subsemiring of ÊCn
.

From this proof and Lemma 3.1 it follows that endomorphism ≀ 1, . . . , 1, k, k, . . . k ≀ is

the neutral element of the semigroup
(
N

[k]
n , +

)
for k ∈ {1, . . . , n − 2}. It is easy to

calculate that ≀ 1, . . . , 1, k, k, . . . k ≀ · ≀ k, . . . , k ≀ = ≀ k, . . . , k ≀ which means that there is not

a zero element in the semiring N
[k]

n , where k ∈ {1, . . . , n − 2}.
From this proof and Lemma 3.2 it follows that ≀ 1, . . . , 1, n − 1, n − 1 ≀ is the neutral

element of the semigroup
(
N

[n−1]
n , +

)
. From ≀ 1, . . . , 1, n−1, n−1 ≀ · ≀ n−1, . . . , n−1 ≀ =

≀n − 1, . . . , n − 1 ≀ it follows that in semiring N
[n−1]

n there is not a zero element.
Let us consider arbitrary endomorphism α = ≀ i0, . . . , ik−1, k, ik+1, . . . , in−1 ≀ of semi-

ring N
[k]

n and let (k, ik+1, . . . , in−1) be the ordered n− k-tuple corresponding to the last
part of α. Since is < s for any s = k + 1, . . . , n− 1 it follows that k + 1 > ik+1 ≥ ik = k,
i.e. ik+1 = k. The number of these n−k-tuples (k, ik+1, . . . , in−1) is equal to the number
of n − k-tuples (0, ik+1 − k, . . . , in−1 − k), which satisfies the conditions of Proposition
2.1. Hence, their number is Cn−k−1, which is the (n − k − 1)-th Catalan number.

Let (i0, . . . , ik−1, k) be the ordered k + 1-tuple corresponding to the first part of α.
Since ir > r for any r = 0, . . . , k − 1 it follows that k = ik ≥ ik−1 > k − 1, i.e. ik−1 = k.
Instead of k + 1-tuple (i0, . . . , ik−1, k) we consider k + 1-tuple (j0, . . . , jk), where j0 = 0,
jm+1 = k − ik−m−1, m = 0, . . . k − 1. Then jm < m and jm ≤ jm+1. The number of all
k + 1-tuples of this kind is Ck.

Since every k + 1-tuple (i0, . . . , ik−1, k) can be combined with every n − k-tuple

(k, ik+1, . . . , in−1), then the order of semiring N
[k]

n is equal to
∣∣∣N [k]

n

∣∣∣ = Ck.Cn−k−1.
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Corollary 3.4 The semirings N
[k]

n are disjoint.

Proof. Let α ∈ N
[k]

n and α ∈ N
[ℓ]

n . Then α(k) = k and α(ℓ) = ℓ. If ℓ < k,
then α(ℓ) > ℓ, and if ℓ > k, then α(ℓ) < ℓ. So ℓ = k, i.e. for k 6= ℓ it follows that

N
[k]

n ∩N
[ℓ]

n = ∅. �

Let us consider for any natural n, n ≥ 2, and k ∈ {1, . . . , n − 2} the endomorphisms
of the type

≀ i0, . . . , ik−1, k, ik+1, . . . , in−1 ≀,

where ir ≥ r for r = 0, . . . , k − 1 and is ≤ s for s = k + 1, . . . , n − 1. These maps
are called near k-nilpotent endomorphisms. The subset of ÊCn

consisting of all near

k-nilpotent endomorphisms is denoted by NN [k]
n

.

For k = 0 we consider endomorphisms ≀ 0, i1, . . . , in−1 ≀ such that is ≤ s for s =
1, . . . , n−1 and they are the near 0-nilpotent endomorphisms. These endomorphisms are
just all the over nilpotent endomorphisms, so, the set of near 0-nilpotent endomorphisms
is the semiring ON n = NN [0]

n , see Proposition 2.2.

The following reasonings are similar to ones from the proof of the last theorem.

Let α, β ∈ NN [k]
n , where n and k are fixed and k ∈ {1, . . . , n − 2}

For r = 0, . . . , k − 1 it follows that (α + β)(r) = α(r) ∨ β(r) ≥ r ∨ r = r and
(α · β)(r) = β(α(r)) ≥ β(r) ≥ r.

For s = k we have (α + β)(k) = α(k) ∨ β(k) = k ∨ k = k and (α · β)(k) = β(α(k)) =
β(k) = k.

For s = k + 1, . . . , n − 1 it follows that (α + β)(s) = α(s) ∨ β(s) ≤ s ∨ s = s and
(α · β)(s) = β(α(s)) ≤ β(s) ≤ s.

Hence, NN [k]
n

is a subsemiring of ÊCn
, where k ∈ {1, . . . , n − 2}.

For k = n− 1 we consider endomorphisms ≀ i0, i1, . . . , in−2, n− 1 ≀ such that ir ≥ r for
r = 0, . . . , n−2 and they are the near n−1-nilpotent endomorphisms. Note that the near
n− 1-nilpotent endomorphisms are similar to the under maxpotent endomorphisms (see
[6], where these endomorphisms have the restriction i0 = 0). Let the set of all near n−1-

potent endomorphisms be denoted by NN [n−1]
n

. For α, β ∈ NN [n−1]
n

and i = 0, . . . , n−2
it follows that α(i) ≥ i and β(i) ≥ i. Then (α + β)(i) = α(i) ∨ β(i) ≥ i ∨ i = i and

(α · β)(i) = β(α(i)) ≥ β(i) ≥ i. So NN [n−1]
n is a subsemiring of ÊCn

.

Thus we prove

Proposition 3.5. For any natural n, n ≥ 2, and k ∈ {0, 1, . . . , n − 2, n − 1} the set

of near k-nilpotent endomorphisms NN [k]
n is a subsemiring of ÊCn

.

Theorem 3.6. For any natural n, n ≥ 2, and k ∈ {0, 1, . . . , n−2, n−1} the semiring

N
[k]

n is an ideal of NN ( [k])
n

.

Proof. The case k = 0 is just Theorem 3.9 of [9].

Let k ∈ {1, . . . , n − 2} and let us choose arbitrary α ∈ N
[k]

n and β ∈ NN [k]
n

. Then
for any r = 0, . . . , k − 1 it follows that α(r) > r and β(r) ≥ r. Now we calculate

(α · β)(r) = β(α(r)) ≥ α(r) > r, (β · α)(r) = α(β(r)) ≥ α(r) > r.

For r = k we find

(α · β)(k) = β(α(k)) = α(k) = k, (β · α)(k) = α(β(k)) = α(k) = k.
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For any s = k + 1, . . . , n − 1 it follows that α(s) < s and β(s) ≤ s, so, we have

(α · β)(s) = β(α(s)) ≤ α(s) < s, (β · α)(s) = α(β(s)) ≤ α(s) < s.

Hence for k ∈ {1, . . . , n − 2} the semiring N
[k]

n is an ideal of NN [k]
n

.
Let k = n− 1. Then for any i = 0, . . . , n− 2 it follows that α(i) > i and β(i) ≥ i and

we find

(α · β)(i) = β(α(i)) ≥ α(i) > i, (β · α)(i) = α(β(i)) ≥ α(i) > i

and this completes the proof. �

Proposition 3.7. The order of semiring NN [k]
n

is

∣∣∣NN [k]
n

∣∣∣ = Ck+1Cn−k.

Proof. It follows immediately from the proof of Theorem 3.3 and Proposition 2.2.�

We denote by N
[k]

n (k1, . . . , ks) the subset of NN [k]
n consisting of endomorphisms with

just s + 1 different fixed points k and k1, . . . , ks.

Proposition 3.8. ’ For any k1, . . . , ks ∈ Cn, where ki 6= k, the set N
[k]

n (k1, . . . , ks)

is a subsemiring of NN [k]
n .

Proof. Let α, β ∈ N
[k]

n (k1, . . . , ks). Then (α + β)(ki) = ki and (α · β)(ki) = ki

where i = 1, . . . , s. Let ℓ < k and ℓ 6= ki, i = 1, . . . , s. So, α(ℓ) < ℓ, β(ℓ) < ℓ and then
(α + β)(ℓ) < ℓ and (α · β)(ℓ) < ℓ. Analogously, if ℓ > k, we receive (α + β)(ℓ) > ℓ and

(α · β)(ℓ) > ℓ. Hence, N
[k]

n (k1, . . . , ks) is a semiring. �

Proposition 3.9. Let, in semiring N
[k]

n (k1, . . . , ks), all the fixed points by renum-

bering be ℓ1 < ℓ2 < · · · ℓs+1. Then the order of semiring N
[k]

n (k1, . . . , ks) is equal to

Cℓ1

s∏

i=1

Cℓi+1−ℓi−1Cn−ℓs+1−1.

Proof. Let ℓi < ℓi+1 ≤ k and let there be no other fixed point between ℓi and

ℓi+1. Let α ∈ N
[k]

n (k1, . . . , ks). Using the reasonings from the proof of Theorem 3.3 it
follows that, for the part between ℓi and ℓi+1 of the n-tuple, representing α, there are
Cℓi+1−ℓi−1 possibilities. By the same way we find number Cℓi+1−ℓi−1 in the case when
k ≤ ℓi < ℓi+1. For the first part of the n-tuple, representing α, we consider ℓ1 + 1-tuples
(i0, . . . , iℓ1−1, ℓ1), where ℓ1 ≥ im > m for m = 0, . . . , ℓ1 − 1. Hence, using the proof of
Theorem 3.3, the number of these ℓ1 +1-tuples is Cℓ1 . Similarly, we find that the number
of possibilities for the last part of the n-tuple, representing α, are Cn−ℓs+1−1. So, the

product of all these numbers, equal to Cℓ1

s∏

i=1

Cℓi+1−ℓi−1Cn−ℓs+1−1, is the order of the

semiring.

We denote by
(
N

[k]
n , k1, . . . , ks

)
the subset of NN [k]

n
consisting of endomorphisms

with at most s + 1 different fixed points k and k1, . . . , ks. �

Theorem 3.10. For any k1, . . . , ks ∈ Cn, where ki 6= k, the set
(
N

[k]
n , k1, . . . , ks

)

is an ideal of semiring NN [k]
n

.

Proof. Obviously
(
N

[k]
n , k1, . . . , ks

)
contains any of semirings N

[k]
n (k′

1, . . . , k
′
m),

where {k′
1, . . . , k

′
m} ⊆ {k1, . . . , ks} and also contains the ideal N

[k]
n . Consequently, we
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choose the endomorphisms from different semirings. Let α ∈ N
[k]

n (A), where A =

{k′
1, . . . , k

′
m}, β ∈ N

[k]
n (B), where B = {k′′

1 , . . . , k′′
r } and A, B ⊆ {k1, . . . , ks}. Con-

sider k̄ ∈ A and k̄ /∈ B. Let k̄ > k. Then α(k̄) = k̄ and β(k̄) < k̄ implies (α + β)(k̄) = k̄

and (α ·β)(k̄) < k̄. Hence, it follows that α+β, α ·β ∈
(
N

[k]
n , A ∪ B

)
. Let k̄ < k. Then

α(k̄) = k̄ and β(k̄) > k̄ implies (α + β)(k̄) > k̄ and (α · β)(k̄) > k̄. Hence, it follows that

α + β, α · β ∈ N
[k]

n .

Let α ∈ N
[k]

n (A), where A = {k′
1, . . . , k

′
m} and β ∈ N

[k]
n . Assume that k̄ ∈ A and

k̄ > k. Then α(k̄) = k̄ and β(k̄) < k̄ implies (α +β)(k̄) = k̄ and (α ·β)(k̄) < k̄. Hence, it

follows that α+β, α ·β ∈
(
N

[k]
n , A

)
. Assume that k̄ ∈ A and k̄ < k. Then α(k̄) = k̄ and

β(k̄) > k̄ implies (α+β)(k̄) > k̄ and (α ·β)(k̄) > k̄. So, it follows that α+β, α ·β ∈ N
[k]

n .

Thus we show that
(
N

[k]
n , k1, . . . , ks

)
is a semiring.

Let α ∈
(
N

[k]
n , k1, . . . , ks

)
and γ /∈

(
N

[k]
n , k1, . . . , ks

)
. Hence, there is k̄ ∈ Cn such

that k̄ 6= k, k̄ 6= ki, where i = 1, . . . , s, and γ(k̄) = k̄. Let k̄ < k (k̄ > k). Then it follows
that α(k̄) > k̄ (α(k̄) < k̄) which implies (α · γ)(k̄) > k̄ and (γ · α)(k̄) > k̄ ((α · γ)(k̄) < k̄

and (γ · α)(k̄) < k̄). Thus, we prove that
(
N

[k]
n , k1, . . . , ks

)
is an ideal of NN [k]

n
. �

As a consequence, we obtain the following result:

Corollary 3.11. For any k1, . . . , ks ∈ Cn, where ki 6= k, in semiring NN [k]
n there is

a chain of ideals N [k]
n ⊆

(
N [k]

n , k1

)
⊆ · · · ⊆

(
N [k]

n , k1, . . . , ks

)
⊆ · · · ⊆ NN [k]

n .
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НИЛПОТЕНТНИ ЕЛЕМЕНТИ НА ПОЛУПРЪСТЕНА ОТ
ЕНДОМОРФИЗМИ НА КРАЙНА ВЕРИГА И ЧИСЛА НА КАТАЛАН

Иван Д. Трендафилов, Димитринка И. Владева

Целта на статията е да се опишат обобщения на нилпотентните ендоморфизми на

крайна верига и да се изследва ролята на числата на Каталан за полупръстените

от такива ендоморфизми.
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