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NILPOTENT ELEMENTS OF THE ENDOMORPHISM
SEMIRING OF A FINITE CHAIN AND CATALAN
NUMBERS"®

Ivan Trendafilov, Dimitrinka Vladeva

In this paper we aim to describe a generalization of the nilpotent endomorphisms of
a finite chain and to consider the role of Catalan numbers for the semirings of such
endomorphisms.

1. Introduction. The nilpotent elements in finite transformation semigroups are
well studied, see [2], [3] and [6]. In [11] we show that some semigroups are actually
semirings. In [9] we find some results in the endomorphism semiring of a finite chain
for the nilpotent endomorphisms with fixed point 0. By similar reasonings in [7] Szigeti
transfers some linear algebra theorems to lattices. The purpose of this paper is to prove
analogous results for endomorphisms with a certain fixed point.

2. Preliminaries. An algebra R = (R, +,-) with two binary operations + and - on
R, is called a semiring if: 1. (R, +) is a commutative semigroup, 2. (R,-) is a semigroup,
3. both distributive laws hold - (y + 2) =z -y+z-zand (x +y)-z=x -2+ y- 2 for
any x,y, z € R.

Facts concerning semirings can be found in [4].

For a finite chain C,, = ({0,1,...,n —1},V) the endomorphisms form a semiring
with respect to the addition and multiplication defined by:

h = f+gwhen h(x) = f(x)Vg(x), h=f-gwhenh(x)= f(g(x)) for all z € C,.
This semiring is called an endomorphism semirimg and is denoted by gcn, see [10].
If o € &, such that f(k) = i for any k € C, we denote o as an ordered n-tuple

(k)

Vio, 1,12, ..., in—10 Forany k € C, theset &~ = {aja € fc a(k) = k} is a subsemiring

n?

of gg In particular, for £ = 0, semiring 56(2) has zero element. An element o € 56(2) is
called nilpotent if o™ = 0 for some positive integer m.

1 2
The Catalan sequence is the sequence Cy, C4,...,Cy,..., where C,, = ?< n)’
n n
n=0,1,... see [1].

Proposition 2.1 ([9]). The set N, of nilpotent elements of semiring 5((32’) consists of
endomorphisms « such that a(k) < k for every k € C,,, k # 0. This set is a subsemiring

1/2n—1
of EC((,)L) of order Cp,_1 = - ( " ) .

n—1
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If a(k) < k for every k € C,, the endomorphism « € 5((32’) is called, see [9], over nilpo-

tent endomorphism. The subset of Eé(i) consisting of all the nilpotent endomorphisms, is
denoted by ON,,.

Proposition 2.2 ([9]). The set ON,, is a subsemiring of semiring Eé(i) of order

c - 1 <2n>
n+1l\n

3. Nilpotent endomorphisms. For k& € C,, constant endomorphism 1kk ... k2,
see [5], has a remarkable role in semiring Egz). It is easy to verify, see [8], that this
endomorphism is the multiplicatively absorbing element of the semiring. This implies
the idea of studying endomorphisms similar to usual nilpotent elements.

For every constant endomorphism «; =k k ... k{ the elements of

NHF ={alac gcn, a™ = gy, for some natural number ny}
are called k-nilpotent endomorphisms.
We need the following lemma to clarify the structure of Nn[k].

Lemma 3.1. For any natural n, n > 2, and k € {1,...,n — 2}, the k-nilpotent
endomorphisms are maps of the type

ZiO;--'7ik—17kaik+1a""in—lz,
where i, > 1 forr=0,....k—1andis <s fors=k+1,...,n—1.

Proof. Let a € Nn[k], where n and k are fixed.

Suppose that a(k) < k—1. Then a(k—1) < a(k) < k—1. Using a(k—1) < k—1 we
observe by induction that a™(k—1) < k—1 for every natural m, which is a contradiction
of the assumption that a € ;¥ Thus a(k) > a(k—1) > k. If we suppose that a(k) > k
by induction it follows that o (k) > k for every natural m, which is a contradiction of
a € NP, Hence, a(k) = k.

Suppose that for some r < k — 1 it follows a(r) < r. Then, by induction, we receive
that o™(r) < r < k — 1 for every natural m, which is a contradiction to the assumption
that a € N;/". Hence, a(r) > r for every r < k — 1.

Suppose that for some s > k + 1 we have a(s) > s. Now, by induction, we find that
a™(s) > s > k + 1 for every natural m, which is a contradiction to a € ./\/'n[k]. Hence,
a(s) < s for every s > k + 1 and this completes the proof. (I

The next definition appears in [9]. An element z of semiring R with an additively
absorbing element a is called a mazpotent if ™ = a for some positive integer n. For

n—1]

semiring gcn the subset of maxpotent elements is ./\/'n[ . This set is nonempty because

the absorbing element !n —1,n—1,...,n— 10 of é\cn belongs to ./\/'n[n_l].

Lemma 3.2. The set J\/'n"_l] of mazpotent elements of semiring Ec" consists of
endomorphisms « such that a(i) > i for every i € Cy,, i <n — 1.

Proof. We use similar reasonings to the ones in the second part of the last proof.
Let a € ./\/'n[nfll. Suppose that for some i < n — 1 it follows that «(i) < i. Then, by
induction, we obtain that o™ (i) <14 < n—1 for every natural m, which is a contradiction
to the assumption that a € ./\/'n[nfll. Hence, a(i) > i for every i < n — 1. O
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Theorem 3.3. For any natural n, n > 2, and k € {0,1,...,n—2,n — 1} the set of
k— nilpotent endomorphisms Nn[k] is a subsemiring of gcn- When k > 0 there is not zero
element in semiring NS The order of semiring N g ‘Nn[k]‘ = Cy.Cp_p_1, where
Ch is the k-th Catalan number.

Proof. Let k =0 and o € Nn[o]. If we suppose that a(0) > 0, by induction, we find
a™(0) > 0 for every natural m, which is a contradiction to the assumption that a € N}(lo).
Hence the 0-nilpotent endomorphisms belong to semiring Eéi). But in this semiring the
endomorphism {00 ... 0? is the zero element, so, there are nilpotent endomorphisms.
Now, from Proposition 2.1, it follows that ./\/'n[O] = N,, is a subsemiring of gcn-

Let a, 8 € ./\/'n[k], where n and k are fixed and k € {1,...,n — 2}.

For r = 0,...,k — 1 from Lemma 3.1 it follows that a(r) > r and S(r) > r. Then
(a+P)(r)=a(r)VE(r)>rVr=rand (a-F)(r) = 6(a(r) > B(r) > r.

From Lemma 3.1 it follows that a(k) = k and (k) = k. Then (a + 8)(k) = a(k) V
B(k) =k Vk=kand (o B)(k) = Ba(k)) = B(k) = k.

For s=k+1,...,n—1 from Lemma 3.1 it follows that a(s) < s and 3(s) < s. Then
(a+B)(s) =a(s)VE(s) <sVs=sand (a-0)(s) = B(a(s)) < B(s) < s.

Hence, ./\/'n[k] is a subsemiring of gcn, where k € {1,...,n —2}.

Let k =n—1and a,8 € N, Y. Then for i = 0,...,n — 2 from Lemma 3.2 it
follows that «(i) > ¢ and (i) > ¢. Then (o + 5)(i) = a(i) V (i) > i Vi = i and
(a-B)(i) = B(afi)) > B(i) >i. So N Wis a subsemiring of &, .

Thus we prove that for any k& € {0,1,...,n —2,n — 1} the set of k-nilpotent endo-
morphisms Nn[k] is a subsemiring of (E/'\c

From this proof and Lemma 3.1 it follows that endomorphism1,...,1,k, k,... k2 is
the neutral element of the semigroup (./\/'n[k},—i—) for k € {1,...,n—2}. Tt is easy to
calculate that1,...,1,k, k,...k - k,...,kl=2k,..., k! which means that there is not
a zero element in the semiring ./\/'n[k], where k € {1,...,n —2}.

From this proof and Lemma 3.2 it follows that 11,...,1,n — 1,n — 1 is the neutral
element of the semigroup (Nn["_u, +). From:1,...,1,n—1,n—1in—1,...,n—11=
tn—1,...,n— 1 it follows that in semiring Nn[nfll there is not a zero element.

Let us consider arbitrary endomorphism o = lig, ..., 051, k, k41, -, in—1 0 Oof semi-
ring Nn[k] and let (k,ik41,...,9n—1) be the ordered n — k-tuple corresponding to the last
part of a.. Since is < s for any s =k+1,...,n—1 it follows that k +1 > i1 > ix, =k,
i.e. ix41 = k. The number of these n — k-tuples (k, k41, ..,in—1) is equal to the number
of n — k-tuples (0,ix+1 — k,...,in—1 — k), which satisfies the conditions of Proposition
2.1. Hence, their number is C),—_1, which is the (n — k — 1)-th Catalan number.

Let (ig,...,%k—1,k) be the ordered k + 1-tuple corresponding to the first part of a.
Since i, > r for any r =0,...,k — 1 it follows that k =iy > ix_1 >k —1,1.e. ix_1 = k.
Instead of k + 1-tuple (ig, ..., ix—1, k) we consider k + 1-tuple (jo,...,jx), where jo = 0,
Jm41 =k —ig—m-1, m=0,...k —1. Then j,, <m and j,, < jm+1. The number of all
k + 1-tuples of this kind is Cj.

Since every k + 1-tuple (ig,...,ix—1,k) can be combined with every n — k-tuple

k, 1k PR 77/’)17 5 lhen ‘he ()I‘der ()f Semlrlng Nnk 1S equal tO Nnk — Ck;.Cnfk;f .
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Corollary 3.4 The semirings Nn[k] are disjoint.

Proof. Let o € N/ and o € M}, Then a(k) = k and a(¢) = ¢. If ¢ < k,
then «(¢) > ¢, and if ¢ > k, then a(¢) < £. So ¢ = k, ie. for k # ( it follows that

NN = 2. O
Let us consider for any natural n, n > 2, and k € {1,...,n — 2} the endomorphisms
of the type
ZiOa cee Z.kfla ka Z.kJrla cee Z.nfl 18

where ¢ > r for r = 0,...,k —1 and i < s for s = k+1,...,n — 1. These maps
are called near k-nilpotent endomorphisms. The subset of &, consisting of all near
k-nilpotent endomorphisms is denoted by NA/F.

For £k = 0 we consider endomorphisms 20,%1,...,%,-1 such that i, < s for s =
1,...,n—1 and they are the near 0-nilpotent endomorphisms. These endomorphisms are
just all the over nilpotent endomorphisms, so, the set of near O-nilpotent endomorphisms
is the semiring ON,, = NN [ see Proposition 2.2.

The following reasonings are similar to ones from the proof of the last theorem.

Let a, 3 € ./\/'./\/',[lk], where n and k are fixed and k € {1,...,n — 2}

For r = 0,...,k — 1 it follows that (o + 5)(r) = a(r) V 8(r) > rVr = r and
(a-B)(r) = Bla(r)) = B(r) = 7.

For s = k we have (« + §)(k) = a(k) V (k) =k Vk =k and (a- 8)(k) = B(a(k)) =
B(k) = k.

For s = k+1,...,n — 1 it follows that (« + 8)(s) = a(s) V 3(s) < sV s = s and
(a-B)(s) = Blals)) < B(s) <.

Hence, NN M is a subsemiring of &, , where k € {1,...,n — 2}.

For k = n — 1 we consider endomorphisms g, i1, ..., %,_2,n — 12 such that i, > r for
r=0,...,n—2 and they are the near n— 1-nilpotent endomorphisms. Note that the near
n — l-nilpotent endomorphisms are similar to the under maxpotent endomorphisms (see
[6], where these endomorphisms have the restriction ig = 0). Let the set of all near n — 1-
potent endomorphisms be denoted by NNV "1, Fora, 8 e NN [P andi=0,...,n—2
it follows that «(i) > ¢ and 3(i) > i. Then (a+ B)(i) = a(i) V 3(i) > i Vi =i and
(a-B)(i) = Bla(i)) > B(i) > i. So NN~ is a subsemiring of Ec, .

Thus we prove

Proposition 3.5. For any naturaln, n > 2, and k € {0,1,...,n—2,n — 1} the set
of near k-nilpotent endomorphisms NNr[lk] is a subsemiring of Eg

Theorem 3.6. For any naturaln, n > 2, and k € {0,1,...,n—2,n—1} the semiring
Nn[k] is an ideal ofNNSI[k]).

Proof. The case k = 0 is just Theorem 3.9 of [9].

Let k € {1,...,n — 2} and let us choose arbitrary « € N and g € NN H. Then
for any r =0,...,k — 1 it follows that a(r) > r and G(r) > r. Now we calculate

(a-B)(r) = Bla(r)) = alr) > 7, (B-a)(r) = a(B(r)) = a(r) > .

For r = k we find

(a-B)(k) = Bla(k)) = a(k) =k, (B-a)(k) = a(B(k)) = alk) = k.
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For any s =k+1,...,n — 1 it follows that a(s) < s and §(s) < s, so, we have
(a-B)(s) = Bla(s)) < afs) <s, (B-a)(s) =a(B(s)) < a(s) <s.
Hence for k € {1,...,n — 2} the semiring N;,/*) is an ideal of NA/[*.

Let k =mn —1. Then for any ¢ = 0,...,n — 2 it follows that (i) > 7 and (i) > ¢ and
we find

(a- B)(i) = Bla(i)) = ali) > i, (B-a)(i) = a(B(i) > ali) > i
and this completes the proof. (I
Proposition 3.7. The order of semiring J\/'./\/',[lk] 18 ‘NNJLH = Cy11Cn_k-

Proof. It follows immediately from the proof of Theorem 3.3 and Proposition 2.2.0J

We denote by J\/'n[k] (k1,...,ks) the subset of NN ,[lk] consisting of endomorphisms with
just s+ 1 different fixed points k and kq, ..., ks.

Proposition 3.8. ° For any ki,...,ks € Cp,, where k; # k, the set Nn[k](kl, ooy ks)
is a subsemiring of NN

Proof. Let o, € N (ky,... ks). Then (o + B)(k;) = k; and (o - B)(k;) = ki
where i =1,...,s. Let £ <kand £ # k;, i =1,...,s. So, a(f) < ¢, f(¢) < ¢ and then
(a+ 8)(¢) < £ and (- B)(¢) < L. Analogously, if ¢ > k, we receive (a + 8)(¢) > £ and

(a- B)(€) > ¢. Hence, N (k1,...,ks) is a semiring. O

Proposition 3.9. Let, in semiring ./\/'n[k] (k1,...,ks), all the fized points by renum-
bering be {1 < by < ---Lsy1. Then the order of semiring ./\/'n[k] (k1,...,ks) is equal to

C, H Coivi—6,-1Cn—t, 1.

i=1

Proof. Let ¢; < £;11 < k and let there be no other fixed point between ¢; and
lit1. Let a € ./\/'n[k] (k1,...,ks). Using the reasonings from the proof of Theorem 3.3 it
follows that, for the part between ¢; and ¢;;; of the n-tuple, representing «, there are
Ce,,1—¢,—1 possibilities. By the same way we find number Cp,, , 4,1 in the case when
k < {; < l;y1. For the first part of the n-tuple, representing «, we consider ¢; 4+ 1-tuples
(405 -+ +y%0,-1,%1), where €1 > iy, > m for m = 0,...,¢; — 1. Hence, using the proof of
Theorem 3.3, the number of these ¢; + 1-tuples is Cy,. Similarly, we find that the number

of possibilities for the last part of the n-tuple, representing «, are Cy,,_y,,—1. So, the

S
product of all these numbers, equal to Cp, H Coioi—0,-1Cn—p, ., -1, is the order of the

i=1
semiring.

We denote by (J\/'n[k], ki,..., ks) the subset of NNV ,[Lk} consisting of endomorphisms
with at most s + 1 different fixed points k and kq, ..., ks. O

Theorem 3.10. For any ki, ..., ks € C,, where k; # k, the set (./\/'n[k], ki,..., ks>
is an ideal of semiring NN ).
Proof. Obviously (J\/'n[k], ki,..., ks) contains any of semirings N (k... kD),

where {k,..., k., } C {k1,...,ks} and also contains the ideal N Consequently, we
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choose the endomorphisms from different semirings. Let a € NH (A), where A =
(K, kDY, 6 € Nd(B), where B = {k{,...,k!} and A,B C {ki,...,ks}. Con-
sider k € Aand k ¢ B. Let k > k. Then a(k) = k and (k) < k implies (o + 5)(k) = k
and (a-3)(k) < k. Hence, it follows that a+ 3, a- 3 € (./\/'n[k], AU B). Let k < k. Then
a(k) = k and B(k) > k implies (a + B)(k) > k and (a - 8)(k) > k. Hence, it follows that
a+B,a-BeNH.

 Letae Nn[li] (A), where A = {k{,...,k,} and 3 € ./\[n[k]. Assume that k € A and
k > k. Then a(k) = k and (k) < k implies (a + 8)(k) = k and (- 8)(k) < k. Hence, it
follows that a+ 0, a- g € (./\/'n[k], A). Assume that k € A and k < k. Then a(k) = k and

B(k) > k implies (a+3)(k) > k and (a-3)(k) > k. So, it follows that a+ 3, -3 € ./\/'n[k].

Thus we show that (./\/'n[k], ki,... ,ks> is a semiring.

Let a € (J\/'n[k], ki, .. .,ks) and v ¢ (J\/'n[k], ki, .. .,ks). Hence, there is k € C,, such
that k& #k, lzzjé ki, where i =1,...,s, and 7(12;); I%.iLet kE<k (12:7> k). Then it follows
that a(k) > k (a(k) < k) which implies (a-v)(k) > k and (y-a)(k) > k ((a-y)(k) <k
and (- a)(k) < k). Thus, we prove that (Nn[k], ki,..., k:s> is an ideal of NN O

As a consequence, we obtain the following result:

Corollary 3.11. For any ki, ..., ks € Cp, where k; # k, in semiring NN ¥ there is
a chain of ideals ./\/'n[k] C (./\/'n[k], k:1> Cc...C (./\/'n[k], k:l,...,ks) C... Q./\/'./\/',[Lk].
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HWJIIIOTEHTHUW EJIEMEHTU HA ITIOJIVIIPBbCTEHA OT
EHIOMOP®UN3MU HA KPAVUHA BEPUTA 11 YNCJIA HA KATAJIAH

NBau . Tpeugmaduiaos, Jumurpunka 1. Biaagesa

Ilenra Ha craTusiTa € J1a ce onuimaT 0OOOIEHNsT Ha HUJIIIOTEHTHUTE eHIo0MOpdhu3Mu Ha
KpaifHa BEpHUra M Jia ce U3CJIe/IBa POoJIsiTa Ha duciaTa Ha Karaian 3a nmosynpbcreHuTe
OT TAKUBa €HJIO0MODP(MU3MHU.
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