# NILPOTENT ELEMENTS OF THE ENDOMORPHISM SEMIRING OF A FINITE CHAIN AND CATALAN NUMBERS* 

Ivan Trendafilov, Dimitrinka Vladeva

In this paper we aim to describe a generalization of the nilpotent endomorphisms of a finite chain and to consider the role of Catalan numbers for the semirings of such endomorphisms.

1. Introduction. The nilpotent elements in finite transformation semigroups are well studied, see [2], [3] and [6]. In [11] we show that some semigroups are actually semirings. In [9] we find some results in the endomorphism semiring of a finite chain for the nilpotent endomorphisms with fixed point 0. By similar reasonings in [7] Szigeti transfers some linear algebra theorems to lattices. The purpose of this paper is to prove analogous results for endomorphisms with a certain fixed point.
2. Preliminaries. An algebra $R=(R,+, \cdot)$ with two binary operations + and $\cdot$ on $R$, is called a semiring if: $\mathbf{1 .}(R,+)$ is a commutative semigroup, $\mathbf{2} \cdot(R, \cdot)$ is a semigroup, 3. both distributive laws hold $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(x+y) \cdot z=x \cdot z+y \cdot z$ for any $x, y, z \in R$.

Facts concerning semirings can be found in [4].
For a finite chain $\mathcal{C}_{n}=(\{0,1, \ldots, n-1\}, \vee)$ the endomorphisms form a semiring with respect to the addition and multiplication defined by:

$$
h=f+g \text { when } h(x)=f(x) \vee g(x), \quad h=f \cdot g \text { when } h(x)=f(g(x)) \text { for all } x \in \mathcal{C}_{n} .
$$

This semiring is called an endomorphism semirimg and is denoted by $\widehat{\mathcal{E}}_{\mathcal{C}_{n}}$, see [10]. If $\alpha \in \widehat{\mathcal{E}}_{\mathcal{C}_{n}}$ such that $f(k)=i_{k}$ for any $k \in \mathcal{C}_{n}$ we denote $\alpha$ as an ordered $n$-tuple $\imath i_{0}, i_{1}, i_{2}, \ldots, i_{n-1} \imath$. For any $k \in \mathcal{C}_{n}$ the set $\mathcal{E}_{\mathcal{C}_{n}}^{(k)}=\left\{\alpha \mid \alpha \in \widehat{\mathcal{E}}_{\mathcal{C}_{n}}, \alpha(k)=k\right\}$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_{n}}$. In particular, for $k=0$, semiring $\mathcal{E}_{\mathcal{C}_{n}}^{(0)}$ has zero element. An element $\alpha \in \mathcal{E}_{\mathcal{C}_{n}}^{(0)}$ is called nilpotent if $\alpha^{m}=0$ for some positive integer $m$.

The Catalan sequence is the sequence $C_{0}, C_{1}, \ldots, C_{n}, \ldots$, where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$, $n=0,1, \ldots$, see [1].

Proposition 2.1 ([9]). The set $\mathcal{N}_{n}$ of nilpotent elements of semiring $\mathcal{E}_{\mathcal{C}_{n}}^{(0)}$ consists of endomorphisms $\alpha$ such that $\alpha(k)<k$ for every $k \in \mathcal{C}_{n}, k \neq 0$. This set is a subsemiring of $\mathcal{E}_{\mathcal{C}_{n}}^{(0)}$ of order $C_{n-1}=\frac{1}{n}\binom{2 n-1}{n-1}$.

[^0]If $\alpha(k) \leq k$ for every $k \in \mathcal{C}_{n}$, the endomorphism $\alpha \in \mathcal{E}_{\mathcal{C}_{n}}^{(0)}$ is called, see [9], over nilpotent endomorphism. The subset of $\mathcal{E}_{\mathcal{C}_{n}}^{(0)}$ consisting of all the nilpotent endomorphisms, is denoted by $\mathcal{O} \mathcal{N}_{n}$.

Proposition 2.2 ([9]). The set $\mathcal{O} \mathcal{N}_{n}$ is a subsemiring of semiring $\mathcal{E}_{\mathcal{C}_{n}}^{(0)}$ of order $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
3. Nilpotent endomorphisms. For $k \in \mathcal{C}_{n}$ constant endomorphism $\langle k k \ldots k \imath$, see [5], has a remarkable role in semiring $\mathcal{E}_{\mathcal{C}_{n}}^{(k)}$. It is easy to verify, see [8], that this endomorphism is the multiplicatively absorbing element of the semiring. This implies the idea of studying endomorphisms similar to usual nilpotent elements.

For every constant endomorphism $\kappa_{k}=\imath k k \ldots k \imath$ the elements of

$$
\mathcal{N}_{n}^{[k]}=\left\{\alpha \mid \alpha \in \widehat{\mathcal{E}}_{\mathcal{C}_{n}}, \alpha^{n_{k}}=\kappa_{k} \text { for some natural number } n_{k}\right\}
$$

are called $k$-nilpotent endomorphisms.
We need the following lemma to clarify the structure of $\mathcal{N}_{n}^{[k]}$.
Lemma 3.1. For any natural $n$, $n \geq 2$, and $k \in\{1, \ldots, n-2\}$, the $k$-nilpotent endomorphisms are maps of the type

$$
\left\langle i_{0}, \ldots, i_{k-1}, k, i_{k+1}, \ldots, i_{n-1}\right\}
$$

where $i_{r}>r$ for $r=0, \ldots, k-1$ and $i_{s}<s$ for $s=k+1, \ldots, n-1$.
Proof. Let $\alpha \in \mathcal{N}_{n}^{[k]}$, where $n$ and $k$ are fixed.
Suppose that $\alpha(k) \leq k-1$. Then $\alpha(k-1) \leq \alpha(k) \leq k-1$. Using $\alpha(k-1) \leq k-1$ we observe by induction that $\alpha^{m}(k-1) \leq k-1$ for every natural $m$, which is a contradiction of the assumption that $\alpha \in \mathcal{N}_{n}^{[k]}$. Thus $\alpha(k) \geq \alpha(k-1) \geq k$. If we suppose that $\alpha(k)>k$ by induction it follows that $\alpha^{m}(k)>k$ for every natural $m$, which is a contradiction of $\alpha \in \mathcal{N}_{n}^{(k)}$. Hence, $\alpha(k)=k$.

Suppose that for some $r \leq k-1$ it follows $\alpha(r) \leq r$. Then, by induction, we receive that $\alpha^{m}(r) \leq r \leq k-1$ for every natural $m$, which is a contradiction to the assumption that $\alpha \in \mathcal{N}_{n}^{[k]}$. Hence, $\alpha(r)>r$ for every $r \leq k-1$.

Suppose that for some $s \geq k+1$ we have $\alpha(s) \geq s$. Now, by induction, we find that $\alpha^{m}(s) \geq s \geq k+1$ for every natural $m$, which is a contradiction to $\alpha \in \mathcal{N}_{n}^{[k]}$. Hence, $\alpha(s)<s$ for every $s \geq k+1$ and this completes the proof.

The next definition appears in [9]. An element $x$ of semiring $R$ with an additively absorbing element $a$ is called a maxpotent if $x^{n}=a$ for some positive integer $n$. For semiring $\widehat{\mathcal{E}}_{\mathcal{C}_{n}}$ the subset of maxpotent elements is $\mathcal{N}_{n}^{[n-1]}$. This set is nonempty because the absorbing element $2 n-1, n-1, \ldots, n-1$ 亿 of $\widehat{\mathcal{E}}_{\mathcal{C}_{n}}$ belongs to $\mathcal{N}_{n}^{[n-1]}$.

Lemma 3.2. The set $\mathcal{N}_{n}^{[n-1]}$ of maxpotent elements of semiring $\widehat{\mathcal{E}}_{\mathcal{C}_{n}}$ consists of endomorphisms $\alpha$ such that $\alpha(i)>i$ for every $i \in \mathcal{C}_{n}, i<n-1$.

Proof. We use similar reasonings to the ones in the second part of the last proof. Let $\alpha \in \mathcal{N}_{n}^{[n-1]}$. Suppose that for some $i<n-1$ it follows that $\alpha(i) \leq i$. Then, by induction, we obtain that $\alpha^{m}(i) \leq i<n-1$ for every natural $m$, which is a contradiction to the assumption that $\alpha \in \mathcal{N}_{n}^{[n-1]}$. Hence, $\alpha(i)>i$ for every $i<n-1$.

Theorem 3.3. For any natural $n, n \geq 2$, and $k \in\{0,1, \ldots, n-2, n-1\}$ the set of $k$ - nilpotent endomorphisms $\mathcal{N}_{n}^{[k]}$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_{n}}$. When $k>0$ there is not zero element in semiring $\mathcal{N}_{n}^{([k])}$. The order of semiring $\mathcal{N}_{n}^{[k]}$ is $\left|\mathcal{N}_{n}^{[k]}\right|=C_{k} . C_{n-k-1}$, where $C_{k}$ is the $k$-th Catalan number.

Proof. Let $k=0$ and $\alpha \in \mathcal{N}_{n}^{[0]}$. If we suppose that $\alpha(0)>0$, by induction, we find $\alpha^{m}(0)>0$ for every natural $m$, which is a contradiction to the assumption that $\alpha \in \mathcal{N}_{n}^{(0)}$. Hence the 0-nilpotent endomorphisms belong to semiring $\mathcal{E}_{\mathcal{C}_{n}}^{(0)}$. But in this semiring the endomorphism $200 \ldots 0\}$ is the zero element, so, there are nilpotent endomorphisms. Now, from Proposition 2.1, it follows that $\mathcal{N}_{n}^{[0]}=\mathcal{N}_{n}$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_{n}}$.

Let $\alpha, \beta \in \mathcal{N}_{n}^{[k]}$, where $n$ and $k$ are fixed and $k \in\{1, \ldots, n-2\}$.
For $r=0, \ldots, k-1$ from Lemma 3.1 it follows that $\alpha(r)>r$ and $\beta(r)>r$. Then $(\alpha+\beta)(r)=\alpha(r) \vee \beta(r)>r \vee r=r$ and $(\alpha \cdot \beta)(r)=\beta(\alpha(r)) \geq \beta(r)>r$.

From Lemma 3.1 it follows that $\alpha(k)=k$ and $\beta(k)=k$. Then $(\alpha+\beta)(k)=\alpha(k) \vee$ $\beta(k)=k \vee k=k$ and $(\alpha \cdot \beta)(k)=\beta(\alpha(k))=\beta(k)=k$.

For $s=k+1, \ldots, n-1$ from Lemma 3.1 it follows that $\alpha(s)<s$ and $\beta(s)<s$. Then $(\alpha+\beta)(s)=\alpha(s) \vee \beta(s)<s \vee s=s$ and $(\alpha \cdot \beta)(s)=\beta(\alpha(s)) \leq \beta(s)<s$.

Hence, $\mathcal{N}_{n}^{[k]}$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_{n}}$, where $k \in\{1, \ldots, n-2\}$.
Let $k=n-1$ and $\alpha, \beta \in \mathcal{N}_{n}^{[n-1]}$. Then for $i=0, \ldots, n-2$ from Lemma 3.2 it follows that $\alpha(i)>i$ and $\beta(i)>i$. Then $(\alpha+\beta)(i)=\alpha(i) \vee \beta(i)>i \vee i=i$ and $(\alpha \cdot \beta)(i)=\beta(\alpha(i)) \geq \beta(i)>i$. So $\mathcal{N}_{n}^{[n-1]}$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_{n}}$.

Thus we prove that for any $k \in\{0,1, \ldots, n-2, n-1\}$ the set of $k$-nilpotent endomorphisms $\mathcal{N}_{n}^{[k]}$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_{n}}$.

From this proof and Lemma 3.1 it follows that endomorphism $\imath 1, \ldots, 1, k, k, \ldots k$ is the neutral element of the semigroup $\left(\mathcal{N}_{n}^{[k]},+\right)$ for $k \in\{1, \ldots, n-2\}$. It is easy to calculate that $\imath 1, \ldots, 1, k, k, \ldots k \imath \cdot \imath k, \ldots, k \imath=\imath k, \ldots, k \imath$ which means that there is not a zero element in the semiring $\mathcal{N}_{n}^{[k]}$, where $k \in\{1, \ldots, n-2\}$.

From this proof and Lemma 3.2 it follows that $\{1, \ldots, 1, n-1, n-12$ is the neutral element of the semigroup $\left(\mathcal{N}_{n}^{[n-1]},+\right)$. From $21, \ldots, 1, n-1, n-1 \imath \cdot \imath n-1, \ldots, n-1 \imath=$ $n n-1, \ldots, n-1$ 亿 it follows that in semiring $\mathcal{N}_{n}^{[n-1]}$ there is not a zero element.

Let us consider arbitrary endomorphism $\alpha=\left\{i_{0}, \ldots, i_{k-1}, k, i_{k+1}, \ldots, i_{n-1}\right\}$ of semi$\operatorname{ring} \mathcal{N}_{n}^{[k]}$ and let $\left(k, i_{k+1}, \ldots, i_{n-1}\right)$ be the ordered $n-k$-tuple corresponding to the last part of $\alpha$. Since $i_{s}<s$ for any $s=k+1, \ldots, n-1$ it follows that $k+1>i_{k+1} \geq i_{k}=k$, i.e. $i_{k+1}=k$. The number of these $n-k$-tuples $\left(k, i_{k+1}, \ldots, i_{n-1}\right)$ is equal to the number of $n$ - $k$-tuples $\left(0, i_{k+1}-k, \ldots, i_{n-1}-k\right)$, which satisfies the conditions of Proposition 2.1. Hence, their number is $C_{n-k-1}$, which is the $(n-k-1)$-th Catalan number.

Let $\left(i_{0}, \ldots, i_{k-1}, k\right)$ be the ordered $k+1$-tuple corresponding to the first part of $\alpha$. Since $i_{r}>r$ for any $r=0, \ldots, k-1$ it follows that $k=i_{k} \geq i_{k-1}>k-1$, i.e. $i_{k-1}=k$. Instead of $k+1$-tuple $\left(i_{0}, \ldots, i_{k-1}, k\right)$ we consider $k+1$-tuple $\left(j_{0}, \ldots, j_{k}\right)$, where $j_{0}=0$, $j_{m+1}=k-i_{k-m-1}, m=0, \ldots k-1$. Then $j_{m}<m$ and $j_{m} \leq j_{m+1}$. The number of all $k+1$-tuples of this kind is $C_{k}$.

Since every $k+1$-tuple $\left(i_{0}, \ldots, i_{k-1}, k\right)$ can be combined with every $n-k$-tuple $\left(k, i_{k+1}, \ldots, i_{n-1}\right)$, then the order of semiring $\mathcal{N}_{n}^{[k]}$ is equal to $\left|\mathcal{N}_{n}^{[k]}\right|=C_{k} \cdot C_{n-k-1}$.

Corollary 3.4 The semirings $\mathcal{N}_{n}^{[k]}$ are disjoint.
Proof. Let $\alpha \in \mathcal{N}_{n}^{[k]}$ and $\alpha \in \mathcal{N}_{n}^{[\ell]}$. Then $\alpha(k)=k$ and $\alpha(\ell)=\ell$. If $\ell<k$, then $\alpha(\ell)>\ell$, and if $\ell>k$, then $\alpha(\ell)<\ell$. So $\ell=k$, i.e. for $k \neq \ell$ it follows that $\mathcal{N}_{n}^{[k]} \cap \mathcal{N}_{n}^{[\ell]}=\varnothing$.

Let us consider for any natural $n, n \geq 2$, and $k \in\{1, \ldots, n-2\}$ the endomorphisms of the type

$$
\left\langle i_{0}, \ldots, i_{k-1}, k, i_{k+1}, \ldots, i_{n-1}\right\}
$$

where $i_{r} \geq r$ for $r=0, \ldots, k-1$ and $i_{s} \leq s$ for $s=k+1, \ldots, n-1$. These maps are called near $k$-nilpotent endomorphisms. The subset of $\widehat{\mathcal{E}}_{\mathcal{C}_{n}}$ consisting of all near $k$-nilpotent endomorphisms is denoted by $\mathcal{N} \mathcal{N}_{n}^{[k]}$.

For $k=0$ we consider endomorphisms $\left\{0, i_{1}, \ldots, i_{n-1}\right\}$ such that $i_{s} \leq s$ for $s=$ $1, \ldots, n-1$ and they are the near 0 -nilpotent endomorphisms. These endomorphisms are just all the over nilpotent endomorphisms, so, the set of near 0-nilpotent endomorphisms is the semiring $\mathcal{O} \mathcal{N}_{n}=\mathcal{N} \mathcal{N}_{n}^{[0]}$, see Proposition 2.2.

The following reasonings are similar to ones from the proof of the last theorem.
Let $\alpha, \beta \in \mathcal{N N}_{n}^{[k]}$, where $n$ and $k$ are fixed and $k \in\{1, \ldots, n-2\}$
For $r=0, \ldots, k-1$ it follows that $(\alpha+\beta)(r)=\alpha(r) \vee \beta(r) \geq r \vee r=r$ and $(\alpha \cdot \beta)(r)=\beta(\alpha(r)) \geq \beta(r) \geq r$.

For $s=k$ we have $(\alpha+\beta)(k)=\alpha(k) \vee \beta(k)=k \vee k=k$ and $(\alpha \cdot \beta)(k)=\beta(\alpha(k))=$ $\beta(k)=k$.

For $s=k+1, \ldots, n-1$ it follows that $(\alpha+\beta)(s)=\alpha(s) \vee \beta(s) \leq s \vee s=s$ and $(\alpha \cdot \beta)(s)=\beta(\alpha(s)) \leq \beta(s) \leq s$.

Hence, $\mathcal{N} \mathcal{N}_{n}^{[k]}$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_{n}}$, where $k \in\{1, \ldots, n-2\}$.
For $k=n-1$ we consider endomorphisms $\left\{i_{0}, i_{1}, \ldots, i_{n-2}, n-1 \imath\right.$ such that $i_{r} \geq r$ for $r=0, \ldots, n-2$ and they are the near $n-1$-nilpotent endomorphisms. Note that the near $n-1$-nilpotent endomorphisms are similar to the under maxpotent endomorphisms (see [6], where these endomorphisms have the restriction $i_{0}=0$ ). Let the set of all near $n-1$ potent endomorphisms be denoted by $\mathcal{N} \mathcal{N}_{n}^{[n-1]}$. For $\alpha, \beta \in \mathcal{N} \mathcal{N}_{n}^{[n-1]}$ and $i=0, \ldots, n-2$ it follows that $\alpha(i) \geq i$ and $\beta(i) \geq i$. Then $(\alpha+\beta)(i)=\alpha(i) \vee \beta(i) \geq i \vee i=i$ and $(\alpha \cdot \beta)(i)=\beta(\alpha(i)) \geq \beta(i) \geq i$. So $\mathcal{N} \mathcal{N}_{n}^{[n-1]}$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_{n}}$.

Thus we prove
Proposition 3.5. For any natural $n$, $n \geq 2$, and $k \in\{0,1, \ldots, n-2, n-1\}$ the set of near $k$-nilpotent endomorphisms $\mathcal{N N}_{n}^{[k]}$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_{n}}$.

Theorem 3.6. For any natural $n, n \geq 2$, and $k \in\{0,1, \ldots, n-2, n-1\}$ the semiring $\mathcal{N}_{n}^{[k]}$ is an ideal of $\mathcal{N} \mathcal{N}_{n}^{([k])}$.

Proof. The case $k=0$ is just Theorem 3.9 of [9].
Let $k \in\{1, \ldots, n-2\}$ and let us choose arbitrary $\alpha \in \mathcal{N}_{n}^{[k]}$ and $\beta \in \mathcal{N} \mathcal{N}_{n}^{[k]}$. Then for any $r=0, \ldots, k-1$ it follows that $\alpha(r)>r$ and $\beta(r) \geq r$. Now we calculate

$$
(\alpha \cdot \beta)(r)=\beta(\alpha(r)) \geq \alpha(r)>r,(\beta \cdot \alpha)(r)=\alpha(\beta(r)) \geq \alpha(r)>r .
$$

For $r=k$ we find

$$
(\alpha \cdot \beta)(k)=\beta(\alpha(k))=\alpha(k)=k,(\beta \cdot \alpha)(k)=\alpha(\beta(k))=\alpha(k)=k
$$

For any $s=k+1, \ldots, n-1$ it follows that $\alpha(s)<s$ and $\beta(s) \leq s$, so, we have

$$
(\alpha \cdot \beta)(s)=\beta(\alpha(s)) \leq \alpha(s)<s,(\beta \cdot \alpha)(s)=\alpha(\beta(s)) \leq \alpha(s)<s
$$

Hence for $k \in\{1, \ldots, n-2\}$ the semiring $\mathcal{N}_{n}^{[k]}$ is an ideal of $\mathcal{N} \mathcal{N}_{n}^{[k]}$.
Let $k=n-1$. Then for any $i=0, \ldots, n-2$ it follows that $\alpha(i)>i$ and $\beta(i) \geq i$ and we find

$$
(\alpha \cdot \beta)(i)=\beta(\alpha(i)) \geq \alpha(i)>i,(\beta \cdot \alpha)(i)=\alpha(\beta(i)) \geq \alpha(i)>i
$$

and this completes the proof.
Proposition 3.7. The order of semiring $\mathcal{N N}_{n}^{[k]}$ is $\left|\mathcal{N \mathcal { N }} n_{n}^{[k]}\right|=C_{k+1} C_{n-k}$.
Proof. It follows immediately from the proof of Theorem 3.3 and Proposition 2.2.
We denote by $\mathcal{N}_{n}^{[k]}\left(k_{1}, \ldots, k_{s}\right)$ the subset of $\mathcal{N} \mathcal{N}_{n}^{[k]}$ consisting of endomorphisms with just $s+1$ different fixed points $k$ and $k_{1}, \ldots, k_{s}$.

Proposition 3.8. ' For any $k_{1}, \ldots, k_{s} \in \mathcal{C}_{n}$, where $k_{i} \neq k$, the set $\mathcal{N}_{n}^{[k]}\left(k_{1}, \ldots, k_{s}\right)$ is a subsemiring of $\mathcal{N} \mathcal{N}_{n}^{[k]}$.

Proof. Let $\alpha, \beta \in \mathcal{N}_{n}^{[k]}\left(k_{1}, \ldots, k_{s}\right)$. Then $(\alpha+\beta)\left(k_{i}\right)=k_{i}$ and $(\alpha \cdot \beta)\left(k_{i}\right)=k_{i}$ where $i=1, \ldots, s$. Let $\ell<k$ and $\ell \neq k_{i}, i=1, \ldots, s$. So, $\alpha(\ell)<\ell, \beta(\ell)<\ell$ and then $(\alpha+\beta)(\ell)<\ell$ and $(\alpha \cdot \beta)(\ell)<\ell$. Analogously, if $\ell>k$, we receive $(\alpha+\beta)(\ell)>\ell$ and $(\alpha \cdot \beta)(\ell)>\ell$. Hence, $\mathcal{N}_{n}^{[k]}\left(k_{1}, \ldots, k_{s}\right)$ is a semiring.

Proposition 3.9. Let, in semiring $\mathcal{N}_{n}^{[k]}\left(k_{1}, \ldots, k_{s}\right)$, all the fixed points by renumbering be $\ell_{1}<\ell_{2}<\cdots \ell_{s+1}$. Then the order of semiring $\mathcal{N}_{n}^{[k]}\left(k_{1}, \ldots, k_{s}\right)$ is equal to $C_{\ell_{1}} \prod_{i=1}^{s} C_{\ell_{i+1}-\ell_{i}-1} C_{n-\ell_{s+1}-1}$.

Proof. Let $\ell_{i}<\ell_{i+1} \leq k$ and let there be no other fixed point between $\ell_{i}$ and $\ell_{i+1}$. Let $\alpha \in \mathcal{N}_{n}^{[k]}\left(k_{1}, \ldots, k_{s}\right)$. Using the reasonings from the proof of Theorem 3.3 it follows that, for the part between $\ell_{i}$ and $\ell_{i+1}$ of the $n$-tuple, representing $\alpha$, there are $C_{\ell_{i+1}-\ell_{i}-1}$ possibilities. By the same way we find number $C_{\ell_{i+1}-\ell_{i}-1}$ in the case when $k \leq \ell_{i}<\ell_{i+1}$. For the first part of the $n$-tuple, representing $\alpha$, we consider $\ell_{1}+1$-tuples $\left(i_{0}, \ldots, i_{\ell_{1}-1}, \ell_{1}\right)$, where $\ell_{1} \geq i_{m}>m$ for $m=0, \ldots, \ell_{1}-1$. Hence, using the proof of Theorem 3.3, the number of these $\ell_{1}+1$-tuples is $C_{\ell_{1}}$. Similarly, we find that the number of possibilities for the last part of the $n$-tuple, representing $\alpha$, are $C_{n-\ell_{s+1}-1}$. So, the product of all these numbers, equal to $C_{\ell_{1}} \prod_{i=1}^{s} C_{\ell_{i+1}-\ell_{i}-1} C_{n-\ell_{s+1}-1}$, is the order of the semiring.

We denote by $\left(\mathcal{N}_{n}^{[k]}, k_{1}, \ldots, k_{s}\right)$ the subset of $\mathcal{N} \mathcal{N}_{n}^{[k]}$ consisting of endomorphisms with at most $s+1$ different fixed points $k$ and $k_{1}, \ldots, k_{s}$.

Theorem 3.10. For any $k_{1}, \ldots, k_{s} \in \mathcal{C}_{n}$, where $k_{i} \neq k$, the set $\left(\mathcal{N}_{n}^{[k]}, k_{1}, \ldots, k_{s}\right)$ is an ideal of semiring $\mathcal{N} \mathcal{N}_{n}^{[k]}$.

Proof. Obviously $\left(\mathcal{N}_{n}^{[k]}, k_{1}, \ldots, k_{s}\right)$ contains any of semirings $\mathcal{N}_{n}^{[k]}\left(k_{1}^{\prime}, \ldots, k_{m}^{\prime}\right)$, where $\left\{k_{1}^{\prime}, \ldots, k_{m}^{\prime}\right\} \subseteq\left\{k_{1}, \ldots, k_{s}\right\}$ and also contains the ideal $\mathcal{N}_{n}^{[k]}$. Consequently, we
choose the endomorphisms from different semirings. Let $\alpha \in \mathcal{N}_{n}^{[k]}(A)$, where $A=$ $\left\{k_{1}^{\prime}, \ldots, k_{m}^{\prime}\right\}, \beta \in \mathcal{N}_{n}^{[k]}(B)$, where $B=\left\{k_{1}^{\prime \prime}, \ldots, k_{r}^{\prime \prime}\right\}$ and $A, B \subseteq\left\{k_{1}, \ldots, k_{s}\right\}$. Consider $\bar{k} \in A$ and $\bar{k} \notin B$. Let $\bar{k}>k$. Then $\alpha(\bar{k})=\bar{k}$ and $\beta(\bar{k})<\bar{k}$ implies $(\alpha+\beta)(\bar{k})=\bar{k}$ and $(\alpha \cdot \beta)(\bar{k})<\bar{k}$. Hence, it follows that $\alpha+\beta, \alpha \cdot \beta \in\left(\mathcal{N}_{n}^{[k]}, A \cup B\right)$. Let $\bar{k}<k$. Then $\alpha(\bar{k})=\bar{k}$ and $\beta(\bar{k})>\bar{k}$ implies $(\alpha+\beta)(\bar{k})>\bar{k}$ and $(\alpha \cdot \beta)(\bar{k})>\bar{k}$. Hence, it follows that $\alpha+\beta, \alpha \cdot \beta \in \mathcal{N}_{n}^{[k]}$.

Let $\alpha \in \mathcal{N}_{n}^{[k]}(A)$, where $A=\left\{k_{1}^{\prime}, \ldots, k_{m}^{\prime}\right\}$ and $\beta \in \mathcal{N}_{n}^{[k]}$. Assume that $\bar{k} \in A$ and $\bar{k}>k$. Then $\alpha(\bar{k})=\bar{k}$ and $\beta(\bar{k})<\bar{k}$ implies $(\alpha+\beta)(\bar{k})=\bar{k}$ and $(\alpha \cdot \beta)(\bar{k})<\bar{k}$. Hence, it follows that $\alpha+\beta, \alpha \cdot \beta \in\left(\mathcal{N}_{n}^{[k]}, A\right)$. Assume that $\bar{k} \in A$ and $\bar{k}<k$. Then $\alpha(\bar{k})=\bar{k}$ and $\beta(\bar{k})>\bar{k}$ implies $(\alpha+\beta)(\bar{k})>\bar{k}$ and $(\alpha \cdot \beta)(\bar{k})>\bar{k}$. So, it follows that $\alpha+\beta, \alpha \cdot \beta \in \mathcal{N}_{n}^{[k]}$. Thus we show that $\left(\mathcal{N}_{n}^{[k]}, k_{1}, \ldots, k_{s}\right)$ is a semiring.

Let $\alpha \in\left(\mathcal{N}_{n}^{[k]}, k_{1}, \ldots, k_{s}\right)$ and $\gamma \notin\left(\mathcal{N}_{n}^{[k]}, k_{1}, \ldots, k_{s}\right)$. Hence, there is $\bar{k} \in \mathcal{C}_{n}$ such that $\bar{k} \neq k, \bar{k} \neq k_{i}$, where $i=1, \ldots, s$, and $\gamma(\bar{k})=\bar{k}$. Let $\bar{k}<k(\bar{k}>k)$. Then it follows that $\alpha(\bar{k})>\bar{k}(\alpha(\bar{k})<\bar{k})$ which implies $(\alpha \cdot \gamma)(\bar{k})>\bar{k}$ and $(\gamma \cdot \alpha)(\bar{k})>\bar{k}((\alpha \cdot \gamma)(\bar{k})<\bar{k}$ and $(\gamma \cdot \alpha)(\bar{k})<\bar{k})$. Thus, we prove that $\left(\mathcal{N}_{n}^{[k]}, k_{1}, \ldots, k_{s}\right)$ is an ideal of $\mathcal{N} \mathcal{N}_{n}^{[k]}$.

As a consequence, we obtain the following result:
Corollary 3.11. For any $k_{1}, \ldots, k_{s} \in \mathcal{C}_{n}$, where $k_{i} \neq k$, in semiring $\mathcal{N} \mathcal{N}_{n}^{[k]}$ there is a chain of ideals $\mathcal{N}_{n}^{[k]} \subseteq\left(\mathcal{N}_{n}^{[k]}, k_{1}\right) \subseteq \cdots \subseteq\left(\mathcal{N}_{n}^{[k]}, k_{1}, \ldots, k_{s}\right) \subseteq \cdots \subseteq \mathcal{N} \mathcal{N}_{n}^{[k]}$.

## REFERENCES

[1] R. Brualdi. Introductory combinatorics, Fifth edition, Prentice Hall, 2010.
[2] O. Ganyushkin, V. Mazorchuk. On the structure of $\mathcal{I} \mathcal{O}_{n}$. Semigroup Forum, 66, 3 (2003), 455-483.
[3] O. Ganyushkin, V. Mazorchuk. Combinatorics of nilpotents in symmetric inverse semigroups. Ann. Combin., 8, 2 (2004), 161-175.
[4] J. Golan. Semirings and Their Applications, Kluwer, Dordrecht, 1999.
[5] J. Jeẑek, T. Kepka, M. Maròti. The endomorphism semiring of a semilattice. Semigroup Forum, 78 (2009), 21-26.
[6] A. Laradji, A. Umar. On the number of nilpotents in the partial symmetric semigroup. Comm. Alg., 32, 8 (2004), 3017-3023.
[7] J. Szigeti. Linear algebra in lattices and nilpotent endomorphisms of semisimple modules. J. Algebra, 319 (2008), 296-308.
[8] I. Trendafilov, D. Vladeva. The endomorphism semiring of a finite chain. Proc. Techn. Univ.-Sofia, 61, 1 (2011), 9-18.
[9] I. Trendafilov, D. Vladeva. Subsemirings of the endomorphism semiring of a finite chain. Proc. Techn. Univ.-Sofia, 61, 1 (2011), 19-28.
[10] I. Trendafilov, D. Vladeva. Endomorphism semirings without zero of a finite chain. Proc. Techn. Univ.-Sofia, 61, 2 (2011) 9-18.
[11] I. Trendafilov, D. Vladeva. On some semigroups of the partial transformation semigroup. Appl. Math. in Eng. and Econ. - 38th Int. Conf. AIP Conf. Proc., 2012, (to appear).

Ivan Trendafilov<br>Department "Algebra and geometry"<br>Faculty of Applied Mathematics and Informatics<br>TU-Sofia<br>e-mail: ivan_d_trendafilov@abv.bg<br>Dimitrinka Vladeva<br>Department "Mathematics and physics"<br>LTU, Sofia<br>e-mail: d_vladeva@abv.bg

# НИЛПОТЕНТНИ ЕЛЕМЕНТИ НА ПОЛУПРЪСТЕНА ОТ ЕНДОМОРФИЗМИ НА КРАЙНА ВЕРИГА И ЧИСЛА НА КАТАЛАН 

Иван Д. Трендафилов, Димитринка И. Владева

Целта на статията е да се опишат обобщения на нилпотентните ендоморфизми на крайна верига и да се изследва ролята на числата на Каталан за полупръстените от такива ендоморфизми.


[^0]:    *2000 Mathematics Subject Classification: 16Y60, 06A05, 20M20.
    Key words: nilpotent endomorphism, semiring, Catalan numbers, order-preserving.

