МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2013 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2013 Proceedings of the Forty Second Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 2–6, 2013

NILPOTENT ELEMENTS OF THE ENDOMORPHISM SEMIRING OF A FINITE CHAIN AND CATALAN NUMBERS*

Ivan Trendafilov, Dimitrinka Vladeva

In this paper we aim to describe a generalization of the nilpotent endomorphisms of a finite chain and to consider the role of Catalan numbers for the semirings of such endomorphisms.

1. Introduction. The nilpotent elements in finite transformation semigroups are well studied, see [2], [3] and [6]. In [11] we show that some semigroups are actually semirings. In [9] we find some results in the endomorphism semiring of a finite chain for the nilpotent endomorphisms with fixed point 0. By similar reasonings in [7] Szigeti transfers some linear algebra theorems to lattices. The purpose of this paper is to prove analogous results for endomorphisms with a certain fixed point.

2. Preliminaries. An algebra $R = (R, +, \cdot)$ with two binary operations + and \cdot on R, is called a semiring if: **1.** (R, +) is a commutative semigroup, **2.** (R, \cdot) is a semigroup, **3.** both distributive laws hold $x \cdot (y + z) = x \cdot y + x \cdot z$ and $(x + y) \cdot z = x \cdot z + y \cdot z$ for any $x, y, z \in R$.

Facts concerning semirings can be found in [4].

For a finite chain $C_n = (\{0, 1, ..., n-1\}, \vee)$ the endomorphisms form a semiring with respect to the addition and multiplication defined by:

h = f + g when $h(x) = f(x) \lor g(x)$, $h = f \cdot g$ when h(x) = f(g(x)) for all $x \in \mathcal{C}_n$.

This semiring is called an *endomorphism semiring* and is denoted by $\widehat{\mathcal{E}}_{\mathcal{C}_n}$, see [10]. If $\alpha \in \widehat{\mathcal{E}}_{\mathcal{C}_n}$ such that $f(k) = i_k$ for any $k \in \mathcal{C}_n$ we denote α as an ordered *n*-tuple $i_0, i_1, i_2, \ldots, i_{n-1}$. For any $k \in \mathcal{C}_n$ the set $\mathcal{E}_{\mathcal{C}_n}^{(k)} = \{\alpha | \alpha \in \widehat{\mathcal{E}}_{\mathcal{C}_n}, \alpha(k) = k\}$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_n}$. In particular, for k = 0, semiring $\mathcal{E}_{\mathcal{C}_n}^{(0)}$ has zero element. An element $\alpha \in \mathcal{E}_{\mathcal{C}_n}^{(0)}$ is called nilpotent if $\alpha^m = 0$ for some positive integer m.

The Catalan sequence is the sequence $C_0, C_1, \ldots, C_n, \ldots$, where $C_n = \frac{1}{n+1} \binom{2n}{n}$, $n = 0, 1, \ldots$, see [1].

Proposition 2.1 ([9]). The set \mathcal{N}_n of nilpotent elements of semiring $\mathcal{E}_{\mathcal{C}_n}^{(0)}$ consists of endomorphisms α such that $\alpha(k) < k$ for every $k \in \mathcal{C}_n$, $k \neq 0$. This set is a subsemiring of $\mathcal{E}_{\mathcal{C}_n}^{(0)}$ of order $C_{n-1} = \frac{1}{n} \binom{2n-1}{n-1}$.

Key words: nilpotent endomorphism, semiring, Catalan numbers, order-preserving.

⁶2000 Mathematics Subject Classification: 16Y60, 06A05, 20M20.

If $\alpha(k) \leq k$ for every $k \in C_n$, the endomorphism $\alpha \in \mathcal{E}_{C_n}^{(0)}$ is called, see [9], over nilpotent endomorphism. The subset of $\mathcal{E}_{C_n}^{(0)}$ consisting of all the nilpotent endomorphisms, is denoted by \mathcal{ON}_n .

Proposition 2.2 ([9]). The set \mathcal{ON}_n is a subsemiring of semiring $\mathcal{E}_{\mathcal{C}_n}^{(0)}$ of order $C_n = \frac{1}{n+1} {\binom{2n}{n}}.$

3. Nilpotent endomorphisms. For $k \in C_n$ constant endomorphism $\langle k k \dots k \rangle$, see [5], has a remarkable role in semiring $\mathcal{E}_{C_n}^{(k)}$. It is easy to verify, see [8], that this endomorphism is the multiplicatively absorbing element of the semiring. This implies the idea of studying endomorphisms similar to usual nilpotent elements.

For every constant endomorphism $\kappa_k = \wr k k \dots k \wr$ the elements of

$$\mathcal{N}_n^{[k]} = \{ \alpha \mid \alpha \in \mathcal{E}_{\mathcal{C}_n}, \ \alpha^{n_k} = \kappa_k \text{ for some natural number } n_k \}$$

are called k-nilpotent endomorphisms.

We need the following lemma to clarify the structure of $\mathcal{N}_n^{[k]}$.

Lemma 3.1. For any natural $n, n \ge 2$, and $k \in \{1, \ldots, n-2\}$, the k-nilpotent endomorphisms are maps of the type

$$i_0, \ldots, i_{k-1}, k, i_{k+1}, \ldots, i_{n-1}$$

where $i_r > r$ for r = 0, ..., k - 1 and $i_s < s$ for s = k + 1, ..., n - 1.

Proof. Let $\alpha \in \mathcal{N}_n^{[k]}$, where *n* and *k* are fixed.

Suppose that $\alpha(k) \leq k-1$. Then $\alpha(k-1) \leq \alpha(k) \leq k-1$. Using $\alpha(k-1) \leq k-1$ we observe by induction that $\alpha^m(k-1) \leq k-1$ for every natural m, which is a contradiction of the assumption that $\alpha \in \mathcal{N}_n^{[k]}$. Thus $\alpha(k) \geq \alpha(k-1) \geq k$. If we suppose that $\alpha(k) > k$ by induction it follows that $\alpha^m(k) > k$ for every natural m, which is a contradiction of $\alpha \in \mathcal{N}_n^{(k)}$. Hence, $\alpha(k) = k$.

Suppose that for some $r \leq k-1$ it follows $\alpha(r) \leq r$. Then, by induction, we receive that $\alpha^m(r) \leq r \leq k-1$ for every natural m, which is a contradiction to the assumption that $\alpha \in \mathcal{N}_n^{[k]}$. Hence, $\alpha(r) > r$ for every $r \leq k-1$.

Suppose that for some $s \ge k + 1$ we have $\alpha(s) \ge s$. Now, by induction, we find that $\alpha^m(s) \ge s \ge k + 1$ for every natural m, which is a contradiction to $\alpha \in \mathcal{N}_n^{[k]}$. Hence, $\alpha(s) < s$ for every $s \ge k + 1$ and this completes the proof. \Box

The next definition appears in [9]. An element x of semiring R with an additively absorbing element a is called a *maxpotent* if $x^n = a$ for some positive integer n. For semiring $\widehat{\mathcal{E}}_{\mathcal{C}_n}$ the subset of maxpotent elements is $\mathcal{N}_n^{[n-1]}$. This set is nonempty because the absorbing element $\langle n-1, n-1, \ldots, n-1 \rangle$ of $\widehat{\mathcal{E}}_{\mathcal{C}_n}$ belongs to $\mathcal{N}_n^{[n-1]}$.

Lemma 3.2. The set $\mathcal{N}_n^{[n-1]}$ of maxpotent elements of semiring $\widehat{\mathcal{E}}_{\mathcal{C}_n}$ consists of endomorphisms α such that $\alpha(i) > i$ for every $i \in \mathcal{C}_n$, i < n-1.

Proof. We use similar reasonings to the ones in the second part of the last proof. Let $\alpha \in \mathcal{N}_n^{[n-1]}$. Suppose that for some i < n-1 it follows that $\alpha(i) \leq i$. Then, by induction, we obtain that $\alpha^m(i) \leq i < n-1$ for every natural m, which is a contradiction to the assumption that $\alpha \in \mathcal{N}_n^{[n-1]}$. Hence, $\alpha(i) > i$ for every i < n-1. \Box 266

Theorem 3.3. For any natural $n, n \ge 2$, and $k \in \{0, 1, ..., n - 2, n - 1\}$ the set of k-nilpotent endomorphisms $\mathcal{N}_n^{[k]}$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_n}$. When k > 0 there is not zero element in semiring $\mathcal{N}_n^{([k])}$. The order of semiring $\mathcal{N}_n^{[k]}$ is $\left|\mathcal{N}_n^{[k]}\right| = C_k \cdot C_{n-k-1}$, where C_k is the k-th Catalan number.

Proof. Let k = 0 and $\alpha \in \mathcal{N}_n^{[0]}$. If we suppose that $\alpha(0) > 0$, by induction, we find $\alpha^m(0) > 0$ for every natural m, which is a contradiction to the assumption that $\alpha \in \mathcal{N}_n^{(0)}$. Hence the 0-nilpotent endomorphisms belong to semiring $\mathcal{E}_{\mathcal{C}_n}^{(0)}$. But in this semiring the endomorphism $\langle 00 \dots 0 \rangle$ is the zero element, so, there are nilpotent endomorphisms. Now, from Proposition 2.1, it follows that $\mathcal{N}_n^{[0]} = \mathcal{N}_n$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_n}$.

Let $\alpha, \beta \in \mathcal{N}_n^{[k]}$, where n and k are fixed and $k \in \{1, \ldots, n-2\}$.

For $r = 0, \ldots, k - 1$ from Lemma 3.1 it follows that $\alpha(r) > r$ and $\beta(r) > r$. Then $(\alpha + \beta)(r) = \alpha(r) \lor \beta(r) > r \lor r = r$ and $(\alpha \cdot \beta)(r) = \beta(\alpha(r)) \ge \beta(r) > r$.

From Lemma 3.1 it follows that $\alpha(k) = k$ and $\beta(k) = k$. Then $(\alpha + \beta)(k) = \alpha(k) \vee$ $\beta(k) = k \lor k = k$ and $(\alpha \cdot \beta)(k) = \beta(\alpha(k)) = \beta(k) = k$.

For $s = k + 1, \ldots, n - 1$ from Lemma 3.1 it follows that $\alpha(s) < s$ and $\beta(s) < s$. Then $(\alpha + \beta)(s) = \alpha(s) \lor \beta(s) < s \lor s = s \text{ and } (\alpha \cdot \beta)(s) = \beta(\alpha(s)) \le \beta(s) < s.$

Hence, $\mathcal{N}_n^{[k]}$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_n}$, where $k \in \{1, \ldots, n-2\}$. Let k = n-1 and $\alpha, \beta \in \mathcal{N}_n^{[n-1]}$. Then for $i = 0, \ldots, n-2$ from Lemma 3.2 it follows that $\alpha(i) > i$ and $\beta(i) > i$. Then $(\alpha + \beta)(i) = \alpha(i) \lor \beta(i) > i \lor i = i$ and $(\alpha \cdot \beta)(i) = \beta(\alpha(i)) \ge \beta(i) > i$. So $\mathcal{N}_n^{[n-1]}$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_n}$.

Thus we prove that for any $k \in \{0, 1, \dots, n-2, n-1\}$ the set of k-nilpotent endomorphisms $\mathcal{N}_n^{[k]}$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_n}$.

From this proof and Lemma 3.1 it follows that endomorphism $\{1, \ldots, 1, k, k, \ldots, k\}$ is the neutral element of the semigroup $\left(\mathcal{N}_n^{[k]},+\right)$ for $k \in \{1,\ldots,n-2\}$. It is easy to calculate that $(1, \ldots, 1, k, k, \ldots, k) \in (k, \ldots, k) = (k, \ldots, k)$ which means that there is not a zero element in the semiring $\mathcal{N}_n^{[k]}$, where $k \in \{1, \ldots, n-2\}$.

From this proof and Lemma 3.2 it follows that $(1, \ldots, 1, n-1, n-1)$ is the neutral element of the semigroup $(\mathcal{N}_n^{[n-1]}, +)$. From $(1, \ldots, 1, n-1, n-1) (n-1, \ldots, n-1) = (1, \ldots, n-1)$ $(n-1,\ldots,n-1)$ it follows that in semiring $\mathcal{N}_n^{[n-1]}$ there is not a zero element.

Let us consider arbitrary endomorphism $\alpha = i_0, \ldots, i_{k-1}, k, i_{k+1}, \ldots, i_{n-1}$ of semiring $\mathcal{N}_n^{[k]}$ and let $(k, i_{k+1}, \ldots, i_{n-1})$ be the ordered n-k-tuple corresponding to the last part of α . Since $i_s < s$ for any $s = k + 1, \ldots, n - 1$ it follows that $k + 1 > i_{k+1} \ge i_k = k$, i.e. $i_{k+1} = k$. The number of these n - k-tuples $(k, i_{k+1}, \ldots, i_{n-1})$ is equal to the number of n - k-tuples $(0, i_{k+1} - k, \dots, i_{n-1} - k)$, which satisfies the conditions of Proposition 2.1. Hence, their number is C_{n-k-1} , which is the (n-k-1)-th Catalan number.

Let $(i_0, \ldots, i_{k-1}, k)$ be the ordered k + 1-tuple corresponding to the first part of α . Since $i_r > r$ for any r = 0, ..., k - 1 it follows that $k = i_k \ge i_{k-1} > k - 1$, i.e. $i_{k-1} = k$. Instead of k + 1-tuple $(i_0, \ldots, i_{k-1}, k)$ we consider k + 1-tuple (j_0, \ldots, j_k) , where $j_0 = 0$, $j_{m+1} = k - i_{k-m-1}, m = 0, \dots k - 1$. Then $j_m < m$ and $j_m \le j_{m+1}$. The number of all k + 1-tuples of this kind is C_k .

Since every k + 1-tuple $(i_0, \ldots, i_{k-1}, k)$ can be combined with every n - k-tuple $(k, i_{k+1}, \ldots, i_{n-1})$, then the order of semiring $\mathcal{N}_n^{[k]}$ is equal to $\left|\mathcal{N}_n^{[k]}\right| = C_k \cdot C_{n-k-1}$.

267

Corollary 3.4 The semirings $\mathcal{N}_n^{[k]}$ are disjoint.

Proof. Let $\alpha \in \mathcal{N}_n^{[k]}$ and $\alpha \in \mathcal{N}_n^{[\ell]}$. Then $\alpha(k) = k$ and $\alpha(\ell) = \ell$. If $\ell < k$, then $\alpha(\ell) > \ell$, and if $\ell > k$, then $\alpha(\ell) < \ell$. So $\ell = k$, i.e. for $k \neq \ell$ it follows that $\mathcal{N}_n^{[k]} \cap \mathcal{N}_n^{[\ell]} = \emptyset$.

Let us consider for any natural $n, n \ge 2$, and $k \in \{1, \ldots, n-2\}$ the endomorphisms of the type

 $\langle i_0,\ldots,i_{k-1},k,i_{k+1},\ldots,i_{n-1}\rangle$

where $i_r \geq r$ for $r = 0, \ldots, k-1$ and $i_s \leq s$ for $s = k+1, \ldots, n-1$. These maps are called *near k-nilpotent endomorphisms*. The subset of $\widehat{\mathcal{E}}_{\mathcal{C}_n}$ consisting of all near *k*-nilpotent endomorphisms is denoted by $\mathcal{NN}_n^{[k]}$.

For k = 0 we consider endomorphisms $\{0, i_1, \ldots, i_{n-1}\}$ such that $i_s \leq s$ for $s = 1, \ldots, n-1$ and they are the near 0-nilpotent endomorphisms. These endomorphisms are just all the over nilpotent endomorphisms, so, the set of near 0-nilpotent endomorphisms is the semiring $\mathcal{ON}_n = \mathcal{NN}_n^{[0]}$, see Proposition 2.2.

The following reasonings are similar to ones from the proof of the last theorem.

Let $\alpha, \beta \in \mathcal{NN}_n^{[k]}$, where n and k are fixed and $k \in \{1, \ldots, n-2\}$

For $r = 0, \ldots, k - 1$ it follows that $(\alpha + \beta)(r) = \alpha(r) \lor \beta(r) \ge r \lor r = r$ and $(\alpha \cdot \beta)(r) = \beta(\alpha(r)) \ge \beta(r) \ge r$.

For s = k we have $(\alpha + \beta)(k) = \alpha(k) \lor \beta(k) = k \lor k = k$ and $(\alpha \cdot \beta)(k) = \beta(\alpha(k)) = \beta(k) = k$.

For s = k + 1, ..., n - 1 it follows that $(\alpha + \beta)(s) = \alpha(s) \lor \beta(s) \le s \lor s = s$ and $(\alpha \cdot \beta)(s) = \beta(\alpha(s)) \le \beta(s) \le s$.

Hence, $\mathcal{NN}_n^{[k]}$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_n}$, where $k \in \{1, \ldots, n-2\}$.

For k = n-1 we consider endomorphisms $\wr i_0, i_1, \ldots, i_{n-2}, n-1 \wr$ such that $i_r \ge r$ for $r = 0, \ldots, n-2$ and they are the near n-1-nilpotent endomorphisms. Note that the near n-1-nilpotent endomorphisms are similar to the under maxpotent endomorphisms (see [6], where these endomorphisms have the restriction $i_0 = 0$). Let the set of all near n-1-potent endomorphisms be denoted by $\mathcal{NN}_n^{[n-1]}$. For $\alpha, \beta \in \mathcal{NN}_n^{[n-1]}$ and $i = 0, \ldots, n-2$ it follows that $\alpha(i) \ge i$ and $\beta(i) \ge i$. Then $(\alpha + \beta)(i) = \alpha(i) \lor \beta(i) \ge i \lor i = i$ and $(\alpha \cdot \beta)(i) = \beta(\alpha(i)) \ge \beta(i) \ge i$. So $\mathcal{NN}_n^{[n-1]}$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_n}$.

Thus we prove

Proposition 3.5. For any natural $n, n \ge 2$, and $k \in \{0, 1, ..., n-2, n-1\}$ the set of near k-nilpotent endomorphisms $\mathcal{NN}_n^{[k]}$ is a subsemiring of $\widehat{\mathcal{E}}_{\mathcal{C}_n}$.

Theorem 3.6. For any natural $n, n \ge 2$, and $k \in \{0, 1, \ldots, n-2, n-1\}$ the semiring $\mathcal{N}_n^{[k]}$ is an ideal of $\mathcal{NN}_n^{([k])}$.

Proof. The case k = 0 is just Theorem 3.9 of [9].

Let $k \in \{1, \ldots, n-2\}$ and let us choose arbitrary $\alpha \in \mathcal{N}_n^{[k]}$ and $\beta \in \mathcal{N}\mathcal{N}_n^{[k]}$. Then for any $r = 0, \ldots, k-1$ it follows that $\alpha(r) > r$ and $\beta(r) \ge r$. Now we calculate

 $(\alpha \cdot \beta)(r) = \beta(\alpha(r)) \ge \alpha(r) > r, \ (\beta \cdot \alpha)(r) = \alpha(\beta(r)) \ge \alpha(r) > r.$

For r = k we find

 $(\alpha \cdot \beta)(k) = \beta(\alpha(k)) = \alpha(k) = k, \ (\beta \cdot \alpha)(k) = \alpha(\beta(k)) = \alpha(k) = k.$

268

For any s = k + 1, ..., n - 1 it follows that $\alpha(s) < s$ and $\beta(s) \leq s$, so, we have

$$(\alpha \cdot \beta)(s) = \beta(\alpha(s)) \le \alpha(s) < s, \ (\beta \cdot \alpha)(s) = \alpha(\beta(s)) \le \alpha(s) < s$$

Hence for $k \in \{1, \ldots, n-2\}$ the semiring $\mathcal{N}_n^{[k]}$ is an ideal of $\mathcal{N}\mathcal{N}_n^{[k]}$.

Let k = n - 1. Then for any i = 0, ..., n - 2 it follows that $\alpha(i) > i$ and $\beta(i) \ge i$ and we find

$$(\alpha \cdot \beta)(i) = \beta(\alpha(i)) \ge \alpha(i) > i, \ (\beta \cdot \alpha)(i) = \alpha(\beta(i)) \ge \alpha(i) > i$$

and this completes the proof.

Proposition 3.7. The order of semiring $\mathcal{NN}_n^{[k]}$ is $\left|\mathcal{NN}_n^{[k]}\right| = C_{k+1}C_{n-k}$.

Proof. It follows immediately from the proof of Theorem 3.3 and Proposition $2.2.\square$

We denote by $\mathcal{N}_n^{[k]}(k_1, \ldots, k_s)$ the subset of $\mathcal{NN}_n^{[k]}$ consisting of endomorphisms with *just* s + 1 different fixed points k and k_1, \ldots, k_s .

Proposition 3.8. ' For any $k_1, \ldots, k_s \in C_n$, where $k_i \neq k$, the set $\mathcal{N}_n^{[k]}(k_1, \ldots, k_s)$ is a subsemiring of $\mathcal{N}\mathcal{N}_n^{[k]}$.

Proof. Let $\alpha, \beta \in \mathcal{N}_n^{[k]}(k_1, \ldots, k_s)$. Then $(\alpha + \beta)(k_i) = k_i$ and $(\alpha \cdot \beta)(k_i) = k_i$ where $i = 1, \ldots, s$. Let $\ell < k$ and $\ell \neq k_i$, $i = 1, \ldots, s$. So, $\alpha(\ell) < \ell$, $\beta(\ell) < \ell$ and then $(\alpha + \beta)(\ell) < \ell$ and $(\alpha \cdot \beta)(\ell) < \ell$. Analogously, if $\ell > k$, we receive $(\alpha + \beta)(\ell) > \ell$ and $(\alpha \cdot \beta)(\ell) > \ell$. Hence, $\mathcal{N}_n^{[k]}(k_1, \ldots, k_s)$ is a semiring.

Proposition 3.9. Let, in semiring $\mathcal{N}_n^{[k]}(k_1, \ldots, k_s)$, all the fixed points by renumbering be $\ell_1 < \ell_2 < \cdots \ell_{s+1}$. Then the order of semiring $\mathcal{N}_n^{[k]}(k_1, \ldots, k_s)$ is equal to $C_{\ell_1} \prod_{s=1}^{s} C_{\ell_{i+1}-\ell_i-1}C_{n-\ell_{s+1}-1}$.

$$C_{\ell_1} \prod_{i=1}^{\ell_{i+1}-\ell_i-1} C_{n-\ell_{s+1}-1}$$

Proof. Let $\ell_i < \ell_{i+1} \leq k$ and let there be no other fixed point between ℓ_i and ℓ_{i+1} . Let $\alpha \in \mathcal{N}_n^{[k]}(k_1, \ldots, k_s)$. Using the reasonings from the proof of Theorem 3.3 it follows that, for the part between ℓ_i and ℓ_{i+1} of the *n*-tuple, representing α , there are $C_{\ell_{i+1}-\ell_i-1}$ possibilities. By the same way we find number $C_{\ell_{i+1}-\ell_i-1}$ in the case when $k \leq \ell_i < \ell_{i+1}$. For the first part of the *n*-tuple, representing α , we consider $\ell_1 + 1$ -tuples $(i_0, \ldots, i_{\ell_1-1}, \ell_1)$, where $\ell_1 \geq i_m > m$ for $m = 0, \ldots, \ell_1 - 1$. Hence, using the proof of Theorem 3.3, the number of these $\ell_1 + 1$ -tuples is C_{ℓ_1} . Similarly, we find that the number of possibilities for the last part of the *n*-tuple, representing α , are $C_{n-\ell_{s+1}-1}$. So, the product of all these numbers, equal to $C_{\ell_1} \prod_{i=1}^s C_{\ell_{i+1}-\ell_i-1}C_{n-\ell_{s+1}-1}$, is the order of the k = 1.

semiring.

We denote by $\left(\mathcal{N}_n^{[k]}, k_1, \dots, k_s\right)$ the subset of $\mathcal{N}\mathcal{N}_n^{[k]}$ consisting of endomorphisms with *at most* s + 1 different fixed points k and k_1, \dots, k_s .

Theorem 3.10. For any $k_1, \ldots, k_s \in C_n$, where $k_i \neq k$, the set $\left(\mathcal{N}_n^{[k]}, k_1, \ldots, k_s\right)$ is an ideal of semiring $\mathcal{NN}_n^{[k]}$.

Proof. Obviously $\left(\mathcal{N}_n^{[k]}, k_1, \ldots, k_s\right)$ contains any of semirings $\mathcal{N}_n^{[k]}(k'_1, \ldots, k'_m)$, where $\{k'_1, \ldots, k'_m\} \subseteq \{k_1, \ldots, k_s\}$ and also contains the ideal $\mathcal{N}_n^{[k]}$. Consequently, we 269 choose the endomorphisms from different semirings. Let $\alpha \in \mathcal{N}_n^{[k]}(A)$, where $A = \{k'_1, \ldots, k'_m\}$, $\beta \in \mathcal{N}_n^{[k]}(B)$, where $B = \{k''_1, \ldots, k''_r\}$ and $A, B \subseteq \{k_1, \ldots, k_s\}$. Consider $\bar{k} \in A$ and $\bar{k} \notin B$. Let $\bar{k} > k$. Then $\alpha(\bar{k}) = \bar{k}$ and $\beta(\bar{k}) < \bar{k}$ implies $(\alpha + \beta)(\bar{k}) = \bar{k}$ and $(\alpha \cdot \beta)(\bar{k}) < \bar{k}$. Hence, it follows that $\alpha + \beta$, $\alpha \cdot \beta \in (\mathcal{N}_n^{[k]}, A \cup B)$. Let $\bar{k} < k$. Then $\alpha(\bar{k}) = \bar{k}$ and $(\alpha \cdot \beta)(\bar{k}) > \bar{k}$ implies $(\alpha + \beta)(\bar{k}) > \bar{k}$ and $(\alpha \cdot \beta)(\bar{k}) > \bar{k}$. Hence, it follows that $\alpha + \beta, \alpha \cdot \beta \in \mathcal{N}_n^{[k]}$.

Let $\alpha \in \mathcal{N}_n^{[k]}(A)$, where $A = \{k'_1, \dots, k'_m\}$ and $\beta \in \mathcal{N}_n^{[k]}$. Assume that $\bar{k} \in A$ and $\bar{k} > k$. Then $\alpha(\bar{k}) = \bar{k}$ and $\beta(\bar{k}) < \bar{k}$ implies $(\alpha + \beta)(\bar{k}) = \bar{k}$ and $(\alpha \cdot \beta)(\bar{k}) < \bar{k}$. Hence, it follows that $\alpha + \beta$, $\alpha \cdot \beta \in (\mathcal{N}_n^{[k]}, A)$. Assume that $\bar{k} \in A$ and $\bar{k} < k$. Then $\alpha(\bar{k}) = \bar{k}$ and $\beta(\bar{k}) > \bar{k}$ implies $(\alpha + \beta)(\bar{k}) > \bar{k}$ and $(\alpha \cdot \beta)(\bar{k}) > \bar{k}$. So, it follows that $\alpha + \beta, \alpha \cdot \beta \in \mathcal{N}_n^{[k]}$. Thus we show that $(\mathcal{N}_n^{[k]}, k_1, \dots, k_s)$ is a semiring.

Let $\alpha \in \left(\mathcal{N}_n^{[k]}, k_1, \dots, k_s\right)$ and $\gamma \notin \left(\mathcal{N}_n^{[k]}, k_1, \dots, k_s\right)$. Hence, there is $\bar{k} \in \mathcal{C}_n$ such that $\bar{k} \neq k, \bar{k} \neq k_i$, where $i = 1, \dots, s$, and $\gamma(\bar{k}) = \bar{k}$. Let $\bar{k} < k$ $(\bar{k} > k)$. Then it follows that $\alpha(\bar{k}) > \bar{k}$ $(\alpha(\bar{k}) < \bar{k})$ which implies $(\alpha \cdot \gamma)(\bar{k}) > \bar{k}$ and $(\gamma \cdot \alpha)(\bar{k}) > \bar{k}$ $((\alpha \cdot \gamma)(\bar{k}) < \bar{k})$ and $(\gamma \cdot \alpha)(\bar{k}) < \bar{k}$. Thus, we prove that $\left(\mathcal{N}_n^{[k]}, k_1, \dots, k_s\right)$ is an ideal of $\mathcal{NN}_n^{[k]}$. \Box

As a consequence, we obtain the following result:

Corollary 3.11. For any $k_1, \ldots, k_s \in C_n$, where $k_i \neq k$, in semiring $\mathcal{NN}_n^{[k]}$ there is a chain of ideals $\mathcal{N}_n^{[k]} \subseteq \left(\mathcal{N}_n^{[k]}, k_1\right) \subseteq \cdots \subseteq \left(\mathcal{N}_n^{[k]}, k_1, \ldots, k_s\right) \subseteq \cdots \subseteq \mathcal{NN}_n^{[k]}$.

REFERENCES

- [1] R. BRUALDI. Introductory combinatorics, Fifth edition, Prentice Hall, 2010.
- [2] O. GANYUSHKIN, V. MAZORCHUK. On the structure of \mathcal{IO}_n . Semigroup Forum, **66**, 3 (2003), 455–483.
- [3] O. GANYUSHKIN, V. MAZORCHUK. Combinatorics of nilpotents in symmetric inverse semigroups. Ann. Combin., 8, 2 (2004), 161–175.
- [4] J. GOLAN. Semirings and Their Applications, Kluwer, Dordrecht, 1999.
- [5] J. JEŻEK, T. KEPKA, M. MARÒTI. The endomorphism semiring of a semilattice. Semigroup Forum, 78 (2009), 21–26.
- [6] A. LARADJI, A. UMAR. On the number of nilpotents in the partial symmetric semigroup. Comm. Alg., 32, 8 (2004), 3017–3023.
- [7] J. SZIGETI. Linear algebra in lattices and nilpotent endomorphisms of semisimple modules. J. Algebra, **319** (2008), 296–308.
- [8] I. TRENDAFILOV, D. VLADEVA. The endomorphism semiring of a finite chain. Proc. Techn. Univ.-Sofia, 61, 1 (2011), 9–18.
- [9] I. TRENDAFILOV, D. VLADEVA. Subsemirings of the endomorphism semiring of a finite chain. Proc. Techn. Univ.-Sofia, 61, 1 (2011), 19–28.
- [10] I. TRENDAFILOV, D. VLADEVA. Endomorphism semirings without zero of a finite chain. Proc. Techn. Univ.-Sofia, 61, 2 (2011) 9–18.
- [11] I. TRENDAFILOV, D. VLADEVA. On some semigroups of the partial transformation semigroup. Appl. Math. in Eng. and Econ. – 38th Int. Conf. AIP Conf. Proc., 2012, (to appear).

²⁷⁰

Ivan Trendafilov Department "Algebra and geometry" Faculty of Applied Mathematics and Informatics TU-Sofia e-mail: ivan_d_trendafilov@abv.bg

Dimitrinka Vladeva Department "Mathematics and physics" LTU, Sofia e-mail: d_vladeva@abv.bg

НИЛПОТЕНТНИ ЕЛЕМЕНТИ НА ПОЛУПРЪСТЕНА ОТ ЕНДОМОРФИЗМИ НА КРАЙНА ВЕРИГА И ЧИСЛА НА КАТАЛАН

Иван Д. Трендафилов, Димитринка И. Владева

Целта на статията е да се опишат обобщения на нилпотентните ендоморфизми на крайна верига и да се изследва ролята на числата на Каталан за полупръстените от такива ендоморфизми.