MATEMATUKA W MATEMATUWYECKO OBPA3OBAHWE, 2013
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2013
Proceedings of the Forty Second Spring Conference

of the Union of Bulgarian Mathematicians
Borovetz, April 2-6, 2013

CREATING CALL AND REFERENCE GRAPHS USING
TERM REWRITING *

Todor Cholakov, Dimitar Birov

In this article we describe the idea of using term rewriting in an algorithm for ex-
tracting call and reference graph information out of source code. Three different
representations of the call graphs are described depending on the potential usage of
the generated graph for refactoring and reengineering purposes. We also described
several ideas about a tool that makes use of the created call graphs and analyzed
some of the currently available similar tools.

1. Introduction. Call and reference graphs allow analyzing the system’s behavior
and software dependencies and are widely used by developers in the processes of refactor-
ing, reengineering and discovering and fixing bugs. Although they have different usages,
they have similar structure and both help the developers to analyze the dependencies
between different software pieces. That is why we consider them together. In the next
paragraphs, we will give a short description of both call and reference graphs and what
each of them is useful for.

The purpose of this paper is to implement an algorithm for extracting call and ref-
erence graphs out of java sources using term rewriting. The output of this algorithm
may be used by tools that further analyze the resulting graphs either for debugging,
refactoring or documentation purposes. This implies the need to define several different
output formats for the resulting graph that would be useful in different cases depending
on the purpose of the user.

We focus on term rewriting, because it allows us to transform and filter the program
text, ignoring non-significant parts of the code. This approach will further allow us to
use the same algorithm on programs written in different programming languages with
little or no modifications.

In the next paragraphs we give some basics about call graphs, reference graphs, term
rewriting and the platform that we use for the implementation.

Call Graphs [1] are graphs representing method, function, procedure or constructor
invocations within the analyzed program or piece of software. The vertices of such graphs
are methods (In the rest of the paper, we will use the term “method” to designate the
three of them). And there is an edge (oriented arrow) from method1 to method?2 if

*2000 Mathematics Subject Classification: 68N19.
Key words: call graphs,reference graphs, reengineering, term rewriting.
The author gratefully acknowledges financial support by the Bulgarian National Science Fund within
project DO 02-102/23.04.2009

275



method1 calls directly method2. The call graph may have weights for the edges, which
depend on how many times method2 is called by method1.

Call graphs are useful for analyzing program behavior and structure. They allow the
programmer to follow easily the program execution path and eventually to find and fix
bugs that would be hardly to reproduce otherwise. Although the edges of the graph are
oriented from callers to callees, in real life tools we need to follow the graph in both
directions (see the examples below).

Call graphs may be combined with domain specific language (DSL) for making queries
on the graph. Examples of such queries would be:

— Which methods call A?

— Which methods call A n levels deep?

— Which methods are called by A n levels deep?

— Which are the methods in class C that are never called from within the class itself?

— Which are the most often called methods from within class C or from within a
group of classes?

All these questions and many others can be answered by analyzing the call graph.
This will lead to better and easier understanding of the piece of software by the developer
working on it, and to faster correcting of the errors.

For example if we have a field that has an invalid value during program execution at
method m1 and we consider that it may not be initialized, we may ask which methods
call this method and also ask which methods initialize the problematic field and construct
their call graph. Then we make the difference between the first and the second set and
see the potential places where m1 is called but the field is not initialized.

Except for using call graphs for demonstration and querying, they are also extensively
used in refactoring tools. For example in order to implement “rename method” refactor-
ing, one must be able to trace all references to that method and a call graph would be
very useful for this purpose.

Reference Graphs represent dependencies and references between classes. Class A
is considered to refer class B if class A is subclass of B, A calls a method of B or A
has variable of type B or A refers method or field of B. The edges of the graph may be
weighted depending on the count of the references from class A to class B.

Reference graphs are useful for determining high level dependencies. Especially they
are useful to determine which classes should be in the same component or package. For
example, if we have several classes that have a high degree of references each other,
but they refer rarely classes outside the group, we may consider them belonging to one
and the same component or package. This is helpful for refactoring tools that want to
reengineer an existing system and recreate or rearrange its components.

We chose to use languages based on term rewriting instead of procedural or object
oriented languages, because it gives a unified way to work with all kinds of program
elements. This greatly reduces the amount of code that needs to be written. Additionally
we chose a platform (Stratego/XT) that has an already written implementation of a java
parser and type checker (the Dryad library).

ATerms [2] (annotated terms) provide an easy and human readable way to represent

hierarchical information. As long as any class or piece of code may be represented by its
parse tree, the annotated terms may be used. They have the additional advantage that

276



they support annotations — any arbitrary data (such as type, current value and so on)
may be associated with a term without interfering in the hierarchy.
A simple ATerm defining a boolean literal used in method invocation looks like this:
Lit(Bool(False)){Type(Boolean)}

Term rewriting is a concept that defines the rules for transforming terms. Depend-
ing on the implementation a term rewriting system may give a powerful set of commands
that work on terms. Such systems give a very easy way for manipulating terms and
therefore software code. Usually such systems are extended to support term annotations
(ATerms) to achieve additional language expressivity.

Stratego/XT [3] is a language/system based on term rewriting. It has a large set
of commands that allow easy manipulation of the term hierarchy. Additionally it has
libraries that allow parsing of Java and C source code and converting it into a set of
ATerms.

The Dryad library is very useful in our case, because it gives instruments to parse any
java class or interface and transform it in a set of annotated terms. The type checking
abilities implemented in this library annotate each term with its type. The output that
this library produces is the raw data for our algorithm.

The easy navigation through the terms, the type checking abilities of Dryad and the
easy parsing of Java code are the main reasons to choose Stratego as implementation
base for our analysis. In Java for example implementing call graphs would be much more
complicated task.

Canonical form of class or method is a form that uniquely defines the class or
method and ignores any information that is not important. For classes this is the form

<package name>.<class name>

For methods this is

<defining class canonical name>.<method name>(<parameterl type in
canonical form>, <prameter2 type in canonical form>)

We don’t need the names of the variables or the returning type because this informa-
tion will not change which method is being referred.

2. Extracting the reference graph. In order to extract the reference graph we
used the following algorithm:

Step 1. We call a routine of the Dryad library that parses the Java sources to a
set of “CompilationUnit” ATerms and each call or variable usage is annotated with its
corresponding type. That is the raw data needed for the next steps.

Step 2. Out of each CompilationUnit we get the following info for all the classes in
it:

The exact class name in canonical form (for example "com.analyzed.Test1")

The parent class name also in canonical form. Generally we need all the class names
to be in canonical form in order to be able to connect them later

Step 3. We infer the types of all typed expressions. This includes variable, parameter
and field declarations and type castings. It also gets the return types of all methods.

Step 4. We infer the types of all other expressions and method calls. For example
"System.out.println()" would cause that the class java.lang.System is counted as
referred by our code, but also java.io.PrintStream is referred because the type of
System.out is java.io.PrintStream.

277



We divide the types in three categories — user defined, defined in the standard libraries
and primitive types.

We implemented an option to ignore all references to library classes and primitive
types. This is because the standard java libraries are so widely used that in most cases
they don’t give us any useful information. However there are cases when such information
is useful. For example consider a tool that want to separate Ul classes, business logic
classes and IO oriented classes. In this case we can leave the library references and state
that classes that mostly refer to "java.awt", "javax.swing" or "org.eclipse.swt"
classes are part of the UI and classes that refer to "java.io" are IO classes and classes
that refer more to classes from within the analyzed software than to library classes are
considered business logic.

Step 5. We transform the result to a list containing all the class names, and a list of
triples containing the edges of the graph (<start>, <end>, <weight>). A simple example
of this representation is:

(["org.proj.Main","org.proj.FileManipulation","org.proj.Dialog"],
[(1,2,3),(1,3,3),(3,2,6)1)

In the above example the Dialog class refers the FileManipulation class six times. The
elements in the triples are numbers which refer the corresponding element in the string
list. In this way we may manipulate the graph by any graph manipulation routine and
then get back to the original semantics of class names.

Although the result in the previous step is enough for the purpose of manipulating
the graph, it is not human readable, so we take one next step and print the graph in
GraphWiz’s ".dot" format [4] file which is readable from the ZEST [5] visualization
framework.

We chose the ZEST visualization framework, because the description of the graphs to
be visualized is in plain text, which makes the resulting graph easier to manipulate and
debug, and also there is a visualization plugin for Eclipse, which allows to easily view
and analyze the results of our program.

3. Implementing the call graph. The algorithm for extracting the call graphs is
very similar to the on for reference graphs. However, there are some differences between
the algorithms:

In step 3 and 4 we have to go to method level and extract the canonical form
of each defined method. Apart of method definitions we need to analyze only method
calls — we don’t count variable declarations as references. Constructing new objects
may or may not be considered a call to the appropriate constructor. We chose not to
count constructor invocations as method calls in our implementation because too many
questions arise about the implicit parameterless constructors that are always considered
present if no other constructor is defined.

In step 5 we have three possible representations of the call graph that must be
supported. This is because we may need to preserve relative positioning between calls
or we may choose to aggregate them depending on the usage of the result. For example
consider the following method:

package myPkg;
class A{
public int m1(){

278



B bVar;

C cVar;
bVar.doSomething() ;
cVar.createReport (bVar) ;
bVar.doSomething() ;

The resulting graph may be in one of the following forms:

1. Natural —myPkg.A.m1()->myPkg.B.doSomething(),
myPkg.C.createReport (myPkg.B) ,myPkg.B.doSomething() )

In this form we have for each edge all its heirs in the same order that the calls were
executed. This form is useful when we want to analyze the sequence of calls, coding
patterns or when we use the result in the refactoring process. If createReport() changes
bVar, it does matter that it is called before doSomething(). But this form is not useful
for creating metrics based on the call graph. Also it makes the graph larger and more
difficult for processing.

2. Metrics —myPkg.A.m1()-> ((myPkg.B.doSomething(),2),
(myPkg.C.createReport (myPkg.B), 1))

This form of presentation is basically the same as the first but it ignores duplicate
calls, and instead adds weights for each call, stating how many times it was executed
from the specified method. This presentation of the graph, gives much simpler graphs,
which are more suitable for applying metrics or searching for trends.

3. Machine processable — (["myPkg.A.m1 ()", "myPkg.B.doSomething()",
"myPkg.C.createReport (myPkg.B)"],[(1,2,2),(1,3,1)])

This form of presentation separates the semantics (method signatures) from the graph
representation, thus allowing a graph processing routine to work on it without knowing
the exact semantics.

All these representations have their usages and our program is able to produce as
output any of them.

The last part of this program is to print the result in human readable form. Again
the graph is printed in GraphWiz’s dot format, as all the methods of a class are in a
single sub graph.

4. Experiments. We implemented the proposed algorithms as Stratego scripts and
we managed to generate a call and reference graphs in the machine processable form. The
software that we analyzed had about 1382 classes (an IDE) and the resulting call graph
consisted of more than 8684 nodes (methods). There were 28939 connections (method
calls) in the call graph and 7758 references in the reference graph.

Although the algorithm does its job, there is much to be said about the abilities of
Stratego and Dryad library to process large amounts of code — we had to pass the classes
one by one to Stratego in order to produce the ATerms at step 1. After all the ATerms
were generated we managed to generate the graph without any further problems.

We also generated call and reference graphs for a small example project consisting of
three classes and several methods. In this case there were no issues with the Stratego
platform and the generation ran flawlessly.

In both experiments we generated also a file for GraphWiz. The visualization for the

279



small graphs was quite good, but for the large ones, the generated view was unusable,
because there were too many nodes and edges to be able to understand anything useful.

5. Similar works. Currently there are several tools that work with call or reference
graphs. We show them here with their main features to demonstrate the usages of the
concept of call graphs and to show what is still not implemented or needs improvement.

e Call graph viewer for Eclipse — uses Zest for graph visualization (which is a
possible solution for our tool, too). However we were unable to run the tool with none
of the recent versions of Eclipse (3.7.2, 4.2) to test its functionality more thoroughly.
According to the documentation the user must be able to add caller and callees to the
graph. Obviously it does not analyze the whole program, but instead analyzes only the
class that the use works on and its callers and callees.

e The call hierarchy feature in Eclipse [6] — it generates a partial call graph
about from where a method is called. However it does not generate a full call graph.
The call hierarchy is created incrementally when the user clicks on a method and tries
to expand it. Apparently the eclipse plugin uses some kind of indexing, because even for
relatively large projects getting the callees is quite fast, but still takes several seconds.
The plugin allows traversing through the call hierarchy and clicking on an element opens
it in the code editor.

e Most of the profilers like JProfiler, gprof and Optimizelt generate call
graphs based on dynamic execution and measurements to help developers to discover
bottlenecks in their software. These call graphs are usually partial, because they do not
use analyzing the complete software, but only the calls that were really executed in the
current run. This is quite useful approach, because it ignores potential executions that
never happen, and focuses on those that happen. However this is not suitable for refac-
toring purposes where the whole call graph is needed in order to determine dependencies
and software components. The static approach that we use have the advantage of taking
in account all possible flows, but the results are more difficult to use when a single flow
is needed.

e Reacher [7, 8] — a tool for visualizing and analyzing call graphs. It has some
very useful features concerning querying for different reachability questions. It allows
the developers to ask questions about which methods are called in the downstream of a
given method or to search methods that are in the upstream of the callers of a method.

6. Future research. Creating reference and call graphs is only a step to imple-
menting a more complicated refactoring and source analysis framework. Next steps for
developing this idea include:

e To develop a clustering algorithm that will be able to determine whether two code
pieces (classes or methods) belong to a common unit (a module or a class)

e To create and implement a query language that will allow the developers to trace
references to a method or dependencies between classes and methods.

7. Conclusion. Call graphs and reference graphs have many usages in the process
of software reengineering. They can help the developers to form components and classes,
especially when the code comes from procedural language. They are also useful for
discovering bugs in the software and for analyzing software performance and quality.

In this paper we have introduced a simple algorithm for generating call and refer-
ence graphs using the Stratego language and the Dryad library, and shown different
possibilities for representing these graphs depending on their potential usages.

280



(1]
2]
3]

ESRE=NEINE

3

REFERENCES

B. G. RYDER. Constructing the Call Graph of a Program. IEEE Transactions on Software
Engineering, SE-5 (1979), No 3, 216-226.

D. J. Howe. A type annotation scheme for Nuprl, Theorem Proving in Higher Order
Logics. Lecture Notes in Computer Science 1479 (1998), 207-224

M. BRAVENBOER, K. T. KALLEBERG, R. VERMAAS, E. VISSER. Stratego/XT 0.17. A
language and toolset for program transformation. Science of Computer Programming, T2
(2008), Issues 1-2, 52-70, ISSN 0167-6423.

The DOT Language, http://www.graphviz.org/content/dot-language

Zest visualization framework, http://www.eclipse.org/gef/zest/

Eclipse Indigo (3.7) Documentation, http://help.eclipse.org/indigo/index. jsp

T. D. Latoza, B. A. MYERS. Visualizing Call Graphs. Visual Languages and Human-
Centric Computing (2011).

T. D. LAaroza, A. KITTUR. Answering reachability questions, 2011.

D. Grove, G. DEFouw, J. DEAN, C. CHAMBERS. 1997. Call graph construction in object-
oriented languages. SIGPLAN Not. 32 (1997), No 10, 108-124.

Todor Plamenov Cholakov, Dimitar Yordanov Birov
Faculty of Mathematics and Informatics

University of Sofia

5, James Bourchier Blvd

1164 Sofia, Bulgaria

e-mail: todortk@abv.bg, birov@fmi.uni-sofia.bg

Cb3JABAHE HA TPA®U HA M3SBUKBAHUATA N

N3ITOJIBAHUATA YPE3 N3ITIOJIBBAHE HA ITPOEOBPA3YBAHUA

B'BbPXY TEPMOBE

Tomop II. Yonakos, AuMutrbp . Bupos

Tasm cratust onmcBa mjesiTa 3a M3IOJI3BaHe Ha Ipeobpa3yBaHe HA TEPMOBE B aJl-
FOPUTHM 33 M3BJANYAHETO HA MHAMOPMAIUATA 38 U3BUKBAHUATA U PEPEPEHIIMUTE OT
nporpamuus kKo, OIrcaHu ca TP Bb3MOXKHY [IPEJICTABAHU Ha TpaduTe HA U3BUKBaA~
HUSITa B 3aBUCUMOCT OT ITOTEHIIMAIHOTO M3I0JI3BaHe Ha FeHepUpaHus rpad 3a IeIuTe
Ha aHaJN3, pepaKTOPUHT Win peeHkuHepuHT. OnucBamMe HSKOJIKO WU 338 WHCTPY-
MEHT, KONTO M3I0JI3Ba MeHEPpUPAHUTE Ipadu M aHAJIUSUPAME HSIKOU ChIIECTBYBAIN
MOI00HN MHCTPYMEHTH.

281



