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We give some ways to construct problems for Olympiads for university students. The
material is organized into 3 sections, tracing different aspects of composing such prob-
lems: 1. Using mistakes, 2. Using known problems and 3. Passing from “elementary
mathematics” to “higher” one and asking “What happens if?”.

We first mention that unfortunately Olympiads for secondary schools are much more
popular than student ones. Probably this is a result of a political decision and it is
not so bad. What is not so good is that increasing the number and different forms of
competitions leads to some kind of populism. Anyway, we share here some ways to create
Olympiad problems for University Students.

1. Using mistakes. Most teachers have some experience with exotic student mis-
takes. Below we describe some of them.

Mistake 1 (incorrect division, problem offered at IMC’2012 [3]). Sometimes one can
find the following “equality” in exam tests

(1)
1

a + b
=

1

a
+

1

b
.

Obviously this does not hold in general. But relation (1) may be used to generate real
mathematical problems.

Problem 1.1 a) (P. Stoev, Vl. Todorov). Given a number a 6= 0 find all numbers b
for which (1) holds.

For this purpose solve the equation
1

a + x
=

1

a
+

1

x
, or x2 + ax + a2 = 0, which gives

x1,2 =
−1 ± i

√
3

2
a. Note that a may not be real.

b) (Vl. Todorov). Suppose that (1) holds. Prove that for every integer n the identity
1

a2n + b2n
=

1

a2n
+

1

b2n
is valid.

These problems are not difficult. For example, the answer of b) can be obtained from

the identity
1

z
+ z = −1 whenever z2 + z + 1 = 0. Then

1

z2
+ z2 = −1 and so on. This

should be true for every field of characteristic different from 2n for any n ∈ N. This
condition holds for arbitrary nonzero a, b ∈ C.

Problem 1.2 (P. Stoev, Vl. Todorov). Is it possible to find a field F for which (1) is
an identity?
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If we replace a and b by 1 we get 1 = 4; 3 = 0 in F. So, F must be of characteristic
≤ 3. It is easy to see that if F = Z3, then (1) is an identity.

The relation (1) holds also for F = Z2 which is surprising to some extent. It is
true because in Z2 the identity (1) does not make sense. Hence it remains true in this
case since the empty set admits arbitrary properties. This is a reason to consider the
factor space F = Z2[x]/(x2 + x + 1). It is easy to verify that F is a field having four
elements. Moreover, (1) holds for every two admissible elements of F. This problem was
prepositional for IMC’2012 but it was rejected as “too hard”, and we could not discuss
it in more details.

Relation (1) can generate even more nontrivial problems. Consider two of them.

Problem 1.3 (P. Stoev, M. Konstantinov, Vl. Todorov). For which n × n real or
complex matrices A and B does the equality

(A + B)−1 = A−1 + B−1

hold?

Setting X = A−1B we obtain the matrix equation

(2) X2 + X + I = 0,

where I is the identity matrix. The general solution Σn of (2) may be very involved.
The set Σ1 has two elements x1,2 = (−1 ± i

√
3)/2. The set Σ2 contains four isolated

diagonal solutions, two 1-parametric families of solutions and one 2-parametric family of
solutions.

Problem 1.4 (P. Stoev, M. Konstantinov, Vl. Todorov). The matrices A and B are
given such that AB = BA and (A + B)−1 = A−1 + B−1. Prove that (A2n

+ B2n

)−1 =
A−2n

+ B−2n

.

Mistake 2 (incorrect differentiation). One can see the fake “equality” (f(x)g(x))
′

=
f ′(x)g′(x) in some student papers. However, it may help to generate infinitely many real
mathematical problems.

Problem 1.5 (P. Stoev, Vl. Todorov). Let f(x) = xn. Find all functions g for which
(f(x)g(x))

′

= f ′(x)g′(x) holds (this problem may be appropriate for student Olympiads).

The solution is not too hard, just replace f(x) by xn to obtain

nxn−1g(x) + xng′(x) = nxn−1g′(x); ng(x) + xg′(x) = ng′(x);
g′(x)

g(x)
=

n

n − x
.

Thus (ln g(x))
′

=
n

n − x
and we have

g(x) = C exp

(

n

n − x

)

,

where C is a constant. We may also choose f(x) to be different from xn. We leave to
the reader to find g if f(x) = sin x.

Similar problems may be inspired by other widespread mistakes like

(3)

∫

f(x)g(x)dx =

∫

f(x)dx

∫

g(x)dx

or
(

f(x)

g(x)

)

′

=
f ′(x)

g′(x)
.
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For example, if f(x) = sinx then (3) holds when

g(x) = C exp

(

x

2
+

1

4
sin 2x

)

.

Thus it is possible to construct a lot of problems using such mistakes.

Mistake 3 (improper use of the (ε, δ)–language). Many students have problems with
the (ε, δ)–definitions of continuity for a function f : T → R, where T ⊂ R contains at
least two points (for students we assume that T is an interval). When using this language

they often make mistakes and, instead of the desired function property, define something
else. A typical error is to forget one or both of the inequalities δ > 0, ε > 0.

Problem 1.6 (M. Konstantinov, At. Hamamdjiev). Let S1 be the set of functions
f : T → R such that for any ε > 0 there exists δ = δ(ε) such that for all x, x0 ∈ T the
inequality |x−x0| ≤ δ implies |f(x)− f(x0)| ≤ ε (the inequality δ > 0 is missing). Prove
that S1 is the set of all functions.

Hint. Taking δ = −1 we see that the inequality |x − x0| ≤ −1 is never fulfilled and
implies anything.

Problem 1.7 (M. Konstantinov, At. Hamamdjiev). Consider the set S2 of functions
f : T → R such that for any ε there exists δ = δ(ε) > 0 such that for all x, x0 ∈ T the
inequality |x−x0| ≤ δ implies |f(x)− f(x0)| ≤ ε (the inequality ε > 0 is missing). Prove
that S2 is the empty set.

Hint. Take ε = −1 and choose the corresponding δ = δ(−1). Then for x = x0 we
have 0 = |x − x| ≤ δ which implies 0 = |f(x) − f(x)| ≤ −1 which is a contradiction.

Consider now the following definition. The function f : T → R is uniformly continuous
if for any ε > 0 there exists δ = δ(ε) > 0 such that for all x, x0 ∈ T the inequality |x −
x0| ≤ δ implies f(x)− f(x0) ≤ ε (the modulus signs are missing as it happens in student
papers). This modification seems fake but it is correct (interchange the arguments x and
x0). This definition is more “economical” and should be recognized as preferable. A
student attempt to define uniform continuity leads to a nontrivial result as follows.

Problem 1.8 (M. Konstantinov). Let S3 be the set of functions f : T → R such
that for any ε > 0 there exists δ = δ(ε) > 0 such that for all x, x0 ∈ T the inequality
|f(x) − f(x0)| ≤ δ implies |x − x0| ≤ ε (x and x0 are replaced by f(x) and f(x0),
respectively). Prove that S3 is the set of functions having uniformly continuous inverse.

Problems of type 1.6–1.8 as well as other similar problems had been used by the
Russian Mathematical School of A. Myshkis.

2. Using known problems. Ancient Egyptians used to write rational numbers as

sums of aliquot fractions of type
1

k
with different divisors (probably for philosophical

or religion reasons). For example,
2

7
=

1

7
+

1

8
+

1

56
follows from the equality

1

k
=

1

k + 1
+

1

k(k + 1)
. Replacing here numbers by matrices, we obtain interesting problems.

Problem 2.1 (P. Stoev and Vl. Todorov, SEEMOUS’2010 [2]). Let A and B be
n × n matrices with integer entries (integer n-matrices) such that that B−1 exists and
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A 6= 0. Prove that AB−1 can be represented as

AB−1 =

m
∑

k=1

N−1
k ,

where Nk is an integer matrix for every k and Ni 6= Nj for i 6= j.

Let us provide a solution of this problem (as usual it may have many solutions). We
note that if A and A + I are invertible then A−1 = (A + I)−1 + (A(A + I))−1, where I
is the identity matrix. Note that this observation does not lead immediately to similar
considerations as in the Egypt case.

Problem 2.2 (Vl. Todorov). Every power series
∞
∑

n=0
an(x − a)n has a radius of

convergence. What shall happen if we replace (x − a)n with something else, e.g. with
(x − bn)n, where {bn} is a given sequence?

It is not difficult to prove that if {bn} is an arithmetic progression, then the series
∞
∑

n=0

an(x−bn)n does not converge for any x provided an ≥ 1

n!
. What if an’s are arbitrary?

On the other hand, it is not very hard to realize that the set Q of rational numbers

can be rearranged as Q = {q0, q1, . . . } so that the series

∞
∑

n=0

(x − qn)n

n!
is convergent for

any x. As above, we may ask (for {an} being a given sequence) whether it is possible

to rearrange the set Q so that the series

∞
∑

n=0

an(x − qn)n is convergent for all x? The

answer seems to be “yes”.

Problem 2.3 (Vl. Todorov). Now we are going to replace the summands in given
power series by something else. For example, it seems reasonable to replace the numbers
with matrices. But we are going to replace the powers with the cross product of vectors
in R3. The obstacle here is that the cross product of the vector with itself gives the
zero vector. That is why we define the power of vector variable ~r under some basic fixed
non-zero vector ~a ∈ R3. For an arbitrary vector ~r ∈ R3 we set ~a × ~r[0] = ~a. Next, for
every integer n ∈ N let us define

~rn
~a =

(

~a × ~r(n−1)
)

× ~r,

where × denotes the cross product.

Note that in this way we may obtain a lot of problems. For example, one may
consider the analogues of an arbitrary analytic function by replacing xn by “the powers
of vectors”. Thus, one can consider functions of vector arguments like

~f~a(~r) = exp~a(~r) =

∞
∑

n=0

~rn
~a

n!
= cos |~r|~a +

(

~a.~r

~r2
− ~a.~r

~r2
cos |~r|

)

~r +
sin |~r|
|~r| ~a × ~r

or

~g~a(~r) = sin~a(~r) =

∞
∑

n=0

(−1)n ~r
(2n+1)
~a

(2n + 1)!
= sh |~r|(~a × ~r)

and so on. We can also ask what the sets ~f~a(R3) and ~g~a(R3) are (as well as other images
of subsets of R3).
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3. Passing from “Elementary” to “Higher Mathematics” and asking “What

happens if?” In this section we use school problems to obtain Olympiad problems for
students (as a rule, the problems obtained in this way are not very hard).

Problem 3.1 (Vl. Todorov). Let a = BC, b = CA and c = AB be the sides of the
triangle ABC with area S and angles α, β, γ at the vertices A, B, C.

a) Prove that if α < π/2 then

4S

b2 + c2 − a2

(

1 − 4S

b2 + c2 − a2

)

< α <
4S

b2 + c2 − a2
.

This follows easily from the inequalities x − x2/4 ≤ arctanx ≤ x.
b) Prove that for γ ≤ π/2 we have the inequalities

√
2 sin

γ

2
6

c√
a2 + b2

≤ exp

(

−ab cosγ

a2 + b2

)

.

Note that this is obtained as a corollary of ln(1 + x) ≤ x.

c) (NSOM’09) Suppose that γ = π/2 and a < b. Set

αn =
a

b
− a3

3b3
± · · · + (−1)n+1 a2n−1

(2n− 1) b2n−1
.

Prove that lim
n→∞

αn = α.

Problem 3.2 (Vl. Todorov, NSOM’06 [1]). Let Ki, i ≥ 1, be squares with vertices
Ai, Bi, Ci, Di, where each Ki+1 is inscribed in Ki so that Ai+1 ∈ AiBi, Bi+1 ∈ BiCi,
Ci+1 ∈ CiDi, Di+1 ∈ DiAi, AiAi+1 = λAi+1Bi, where λ ≥ 0.

Prove that if for some i 6= j the sides of Ki and Kj are parallel, then the number
1

π
arctanλ is rational.

This should be an easy problem. Clearly, this problem may generate more complicate
ones (for example, in the case of higher dimensional cubes).

Problem 3.3 (Vl. Todorov, SEEMOUS’07 [2]). It is well known that every rational
number a ∈ [0, 1] can be represented as a periodical decimal fraction

a = 0.a0a1 · · ·ak (ak+1ak+2 · · ·ak+p) .

If a ∈ [0, 1] and its decimal representation are fixed, we define fn(x), x ∈ (−1, 1), by

fn(x) = a0 + a1x + a2x
2 + · · · + anxn.

a) Prove that the limit f(x) = lim
n→∞

fn(x) exists.

b) Prove that f(x) is a rational function: f(x) = P (x)/Q(x), where P and Q are
polynomials.

c) Prove that these polynomials may be chosen with integer coefficients.
Hint. To solve c) it is sufficient to see that f(0.1) = a.

Problem 3.4 (Vl. Todorov, NSOM’06 [1]). Suppose that α = {a1, a2, . . .} is a

permutation of the integers ak and consider the expression gn(α) =
1

a1
+

1

2a2
+ · · ·+ 1

nan

.

a) Prove that g(α) = lim
n→∞

gn(α) exists.

b) Evaluate inf
α

g(α) and sup
α

g(α) (answer: inf
α

g(α) = 0 and sup
α

g(α) = π2/6 ).

Problem 3.5 (S. Stefanov, NSOM’07 [1]). a) Prove that there exists a non-constant
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(continuous) periodic function f : R → R for which

(4) f(x + 1) + f(x − 1) = pf(x)

if and only if |p| ≤
√

2.

b) If p =
√

2 find a solution with an integer period.

Note. In the original problem there was a mistake – the assumption “continuous”
was missing. How does this change the problem?

As usual, we do not provide the precise solutions and limit ourselves with hints only.
To solve the “continuous” part consider equation (4) over the integers Z and put f(n) =
an. Then (4) may be written as a recurrent equation

(5) an+1 − pan + an−1 = 0.

Next we note that each continuous periodic function is bounded which means that the
characteristic equation λ2 − pλ + 1 = 0 has discriminant D = p2 − 4 ≤ 0 – recall that
every solution of (5) is of the type an = C1λ

n
1 + C2λ

n
2 where C1,2 are constants and

λ1,2 are the roots of the characteristic equation. Furthermore, it is easy to see that the

solution of (4) is C1 cosαx + C2 sin αx where α = arccos
p

2
for |p| < 2. We leave to the

reader of this paper to find a solution for |p| = 2 and turn to the case |p| > 2.

Clearly, in this case (4) does not have a continuous solution. But it is possible to
obtain some interesting solutions. To do this consider the set

(6) M = {x|x = m + n
√

2; m, n ∈ Z}.
Note that M is an additive subgroup of R and x ∈ M implies x ± 1 ∈ M. Moreover, if

x /∈ M then x± 1 /∈ M. Next, take a number λ with λ +
1

λ
= p. It is obvious that one of

solutions is the function f(x) = 0 if x /∈ M and f(x) = λm if x = m + n
√

2 ∈ M. Check
that f is a solution of (4) with period

√
2. Generally, M and f admit exotic properties.

For example, f is unbounded at every point because M is a dense subset of R. Changing
p with a given concrete number one can obtain many interesting problems.

Problem 3.6 (P. Stoev, Vl. Todorov). Suppose that every number x ∈ [0, 1] is
written as a decimal fraction x = 0.x1x2 · · · . Some x may be written in two ways, e.g.
0.2300 · · · = 0.2299 · · · . Here we shall consider only fractions with infinite “tails” of 9, so
we write 0.9999 · · · instead of 1 (except for x = 0).

Define the function f : [0, 1] → [0, 1] by f(0) = 0 and f(x) = 0.(x1 + x2)10(x3 +
x4)10 · · · if 0 < x = 0.x1x2x3 · · · . Here (a + b)10 = a + b if a + b < 10 and (a + b)10 =
a + b − 10 otherwise. The function f has really some exotic properties.

a) (NSOM’04) Prove that f is continuous at every point different from k 10−n.

b) Prove that f is not monotone on any non-degenerate subinterval of [0, 1].

c) Let a ∈ [0, 1] and A = f−1(a). Prove that there is a map g : A → R, which is
“onto”.

Hint. Consider the set A1 = f−1(1). Part of A1 consists only of fractions, formed
consecutively by the groups of pairs of digits (81) and (72). Next, assign 0 to the group
(81) and 1 to (72) and consider the binary fraction formed by the above correspondence.
It follows now that some subset of A1 has the same power as the interval [0, 1].

d) (NSOM’04) It follows from a) that f is integrable. Prove that

∫ 1

0

f(x) dx = 0.5.
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Problem 3.7 (Vl. Babev, NSOM’07 [1]). Let f : [1,∞) → (0,∞) be a continuous
function such that for every a > 0 the equation f(x) = ax has a solution in [1,∞).

a) Prove that for each a > 0 the equation f(x) = ax has infinitely many solutions.
b) Does assertion a) remain true if f is strictly increasing? (the answer is “yes”)

Remark. The authors apologize to the colleagues who have created other interesting
problems which are not included in this exposition.
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ВЪРХУ НЯКОИ НАЧИНИ ЗА СЪСТАВЯНЕ НА ЗАДАЧИ

ЗА СТУДЕНТСКИ ОЛИМПИАДИ

Атанас Хамамджиев, Петър Стоев, Михаил Константинов,

Симеон Стефанов, Владимир Тодоров

Представени са някои начини за съставяне на задачи за студентски олимпиади.

Материалът е представен в 3 секции, посветени на различни аспекти от констру-

ирането на такива задачи: 1. Използване на грешки; 2. Използване на известни

задачи и 3. Преход от „елементарна“ към „висша“ математика и питане „Какво

ще стане, ако?“.
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