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This paper presents an application of one of the latest regression methods – general-
ized PathSeeker (GPS), stemming from the new generation of predictive techniques
which use the data mining approach. The method is designed for statistical analysis
of data, when classical parametric modeling is not applicable or does not provide suf-
ficiently good results. Experimental data from the field of laser technology have been
processed using GPS and associated data mining techniques such as TreeNet, ISLE
and RuleRunner. The influence of 10 operating laser parameters on the output power
of copper bromide vapor lasers has been modeled. The obtained best linear regression
models have high coefficients of determination R

2 = 98% for the learn sample and
97% for the test sample. Advantages and disadvantages of the GPS method have
been discussed.

Introduction. Regression is among the most preferred and the most used methods
for fitting to data. It is widely used in natural sciences, engineering, environmental,
behavioral and social sciences, and other areas to describe possible relationships between
variables and build appropriate models. The models can then be applied for prediction
or forecasting future observations or for quantifying the strength of the relationship
between investigated variables.

The foundations of the classical regression method originate in the writings of Legen-
dre (1805), Gauss (1809) and Fisher (1920). However, new challenges arise with the
appearance of huge datasets with high dimensions, multicollinearity, nonlinear interac-
tions between variables, and the need for higher practical accuracy and predictive ability
of the constructed models.

Consider a data set of n observations {y,X} = {yi,Xi}
n
i=1 = {yi, xi1, . . . , xip}

n
i=1,

where y is the dependent variable and X is the matrix of p vectors of independent variables
X1, X2, . . . , Xp. The classical multiple linear regression (MLR) model for fitting to these
data is

(1) ŷ = a0 + a1X1 + a2X2 + · · · + apXp, εi = yi − ŷi, i = 1, . . . , n

where a = (a0, a1, . . . , ap) is the vector of the regression coefficients (or parameters)
and εi are the residuals (or error terms) of the model. The model (1) assumes that the
dependence between y and X1, X2, . . . , Xp is linear and the residuals form an unobserved
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random variable. The dependent variable y is also called response and the independent
variables are called predictors or regressors. The problem is to determine the estimates
â of the regression coefficients which minimize a given loss function.

Usually the loss function is taken as a mean squared error (MSE)

(2) L(y, ŷ) =

n
∑

i=1

(yi − ŷi)
2/n.

In this case a unique solution exits, known as ordinary least squared (OLS) regression
model.

In practice, the application of classical regression exhibits many problems. The main
of these are: the fulfilling of the theoretical assumptions of the method, including the
requirement of the normal distribution of the response, determination of the substan-
tial predictors to include in the model, lack of external knowledge (because all data
are used for the model construction), appearance of unstable solutions in the case of
multicollinearity and more.

To overcome these problems many other types of regression methods and techniques,
parametric and nonparametric ones have been developed. An overview of the current
state and the capabilities of regression and predictive statistical techniques, including of
data mining methods, can be found, for example, in [1–3].

Alternative approaches to constructing useful regression models based on linear com-
binations of the form (1) include the well-known ridge regression, developed in [4], and
the least absolute shrinkage and selection operator (Lasso) regression [5], as well as their
generalizations as elastic net family [6], and other methods. These methods are based
on the use of the penalized coefficient estimation. This usually introduces a bias into the
estimation, but leads to reduced variability of the estimate.

One of the latest regression methods is the generalized PathSeeker (GPS) regularized
regression, entirely oriented towards algorithmization and extensive computer calcula-
tions. GPS is a new generation statistical method, developed by Jerome Friedman in
2008 [7] and implemented in the spring of 2013 as part of the software package Salford
Predictive Modeler [8, 9]. Despite its high performance, as a linear regression technique,
the GPS method is sensitive to the distribution of data. To improve its applicability, GPS
is used in combination with additional techniques such as TreeNet, known also as ensem-
ble of boosted trees, Importance Sampled Learning Ensembles (ISLE) and RuleLearner
[10–12].

In this paper the GPS is applied to construct and analyze an empirical model in
the area of laser physics. Experimental data have been studied for a family of copper
bromide (CuBr) lasers, developed in the Georgi Nadjakov Institute of Solid State Physics,
Bulgarian Academy of Sciences [13]. Based on these data, various statistical models
were built in [14] by using multiple linear regression, principal component regression,
nonlinear regression and multivariate adaptive regression splines (MARS). In the recent
papers [15, 16] high quality models have been built and examined using the MARS and
CART (Classification and Regression Trees) methods [17, 18].

In this study we first construct a GPS model by using the initial variables similarly
to classical regression. The second type of model is constructed on the basis of the
ensemble of the trees, generated by TreeNet. For the compression of the trees and post-
processing additional techniques such as ISLE and RuleLearner have been applied. A
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comparison between the best GPS models obtained and the classical stepwise multiple
linear regression model is presented.

The GPS models are built by means of the Salford Predictive Modeler software [8]
and the stepwise regression model is obtained by using the SPSS statistical package [19].

1. Brief introduction of the regularized regression methods and GPS re-

gression. The standard regularized modeling aims to find a regression equation (1) for
fitting to data by solving the following optimization problem for the regression coefficients

(3) â(λ) = argmin
a

[⌢

R(a) + λP (a)
]

where R(a) is the empirical loss function, selected among different error criteria (e.g.
MSE in (2)), P (a) is a penalty function and λ > 0 is the regularization parameter. In
ridge regression [4] the penalty function is selected as P (a) =

∑p

j=0
a2

j . The other well-

known method is the Lasso method, which uses P (a) =
∑p

j=0
|aj |. In the extended power

family [7] the penalty function is generalized to the form P (a) = Pγ(a) =
∑p

j=0
|aj |

γ ,
0 ≤ γ ≤ 2. For γ = 1 one obtains the above mentioned Lasso regression, which allows
to introduce variables sparingly and generate reasonably sparse solutions. For γ = 2
it is Ridge regression, which allows the sparing introduction of variables and generates
reasonably sparse solutions. The Ridge regression contributes to estimating stabilization
in the presence of extreme multicollinearity. The difference between Lasso and ridge
regression is that in ridge regression, as the penalty is increased, all parameters are
reduced while still remaining non-zero, while in Lasso, increasing the penalty will cause
more and more of the parameters to be driven to zero.

Further extension in terms of penalty function is represented by the elastic net family
as the combination [6]:

(4) Pβ(a) =

p
∑

j=1

(β − 1) a2
j/2 + (2 − β) |aj |, 1 ≤ β ≤ 2,

where β is the coefficient of elasticity, which is further extended with a suitable formula
for 0 ≤ β < 1 [7].

Other similar methods have been proposed for different penalties in (3), along with
minimization methods. Algorithmically, the model coefficients are found by seeking the
minimum (3), for example by using the gradient descend method (see [7]).

With the GPS method, the abovementioned methods are generalized and the problem
of calculation complexity has been resolved through sequential path search directly in the
parameter space under a given penalty P (a) without solving the optimization problem
at each step. Especially, for all a the penalty function has to satisfy the condition

(5)

{

∂P (a)

∂ |aj|
> 0

}p

1

.

The class (5) includes as a special case the families of power and elastic net penalties,
as well as all known penalties of the same type. The meta-logic of the GPS algorithm
and illustrative examples with analysis are given in [7].

The GPS regularized regression is designed to handle continuous or binary data and
builds high-quality linear models in the usual form (1) producing a number of paths
(classes) of regression. GPS is implemented in Salford Predictive Modeler software as
a very fast forward stepping algorithm with a specialized variable selection procedure
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[8]. There is generated a collection of models by constructing a path based on selected
predictors X as a sequence of iterations (steps) in the space of coefficients. This includes
zero coefficient model, sequence of 1-variable models, sequence of 2-variable models, etc.
At every step a new variable selected to fulfill a complex of criteria is added, or the
coefficient of some model variable is adjusted. The quality of models is achieved using
a number of commonly used goodness-of-fit measures for learn and test samples as the
coefficient of determination R2, MSE, etc.

Despite its advantages, the GPS has some limitations [7]. As a linear regression
technique it is sensitive to data distribution. The method does not provide automatic
discovery of nonlinearities, interactions between predictors, or a missing values handling
feature. In practice, the use of GPS as a data mining engine is highly efficient in combina-
tion with model simplification techniques mentioned above. The basic one among them
is TreeNet stochastic gradient boosting, which is applied for preprocessing the data in
order to obtain more adequate predictors, based on the generated trees. This technique
is designed to handle both regression and classification problems. The original model,
produced by TreeNet is an ensemble of hundreds or even thousands of small trees Ti(X)
(normally with 2 to 6 terminal nodes) in the form

(6) ỹ = y0 + b1T1(X) + b2T2(X) + · · · + bMTM (X).

where M is the number of trees. Usually, for the least square loss criterion (2), y0 = ȳ
(mean value of y), which gives an initial model. Then using this response all the residuals
g0

i = yi − y0
i , (i = 1, 2, . . . , n) are computed. At any current stage of construction of the

next tree, respectively the next model, a random sample is drawn from the learn data
and the tree built by using current residuals from the response as dependent variables.
The original TreeNet model combines all trees with equal coefficients. A more detailed
description of the algorithm is given in [10]. In essence every tree can be considered
as a new variable transformation represented by a continuous variable as a function of
inputs. Furthermore, every node (internal or terminal) can also be represented as a
dummy variable. These variables are then used by GPS as predictor variables.

In fact, many of the obtained trees are usually equal or have very similar structure.
The compression of the TreeNet model can be performed using the ISLE algorithm
by removing redundant trees. The coefficients of the models (6) are then adjusted by
the GPS method. The RuleLearner algorithm has to be applied as a post-processing
technique which selects the most influential subset of nodes, thus further reducing model
complexity. Different combinations of these methods can also be carried out to obtain
the best model for fitting to data.

2. Description of experimental data for CuBr laser. We will model the data
of CuBr laser. The development of this type of lasers continues to be topical [13]. This
is due to the fact that in the visible range (wavelengths 510.6 nm and 578.2 nm), these
lasers operate at highest output power and have unique properties. One of the impor-
tant technological objectives is the development of new laser devices of this type with
enhanced output power. In particular, statistical modeling supports the investigation of
the influence of the main laser operating parameters (laser tube geometry, input power,
neutral gas pressure, etc.) on output laser power and allows predictions to be made.

We consider data of 10 input basic variables which determine the CuBr laser operation:
D (mm) – inner diameter of the laser tube, DR (mm) – inner diameter of the rings, L
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(cm) – electrode separation (length of the active area), PIN (kW) – input electrical
power, PRF (KHz) – pulse repetition frequency, PNE (Torr) – neon gas pressure, PH2
(Torr) – hydrogen gas pressure, PL (kW/cm) – specific electrical power per unit length,
C (nF) – equivalent capacity of the condensation battery, TR (◦C) – temperature of
CuBr reservoirs. The response variable is Pout (W) – output laser power. The data are
of historical type. The sample size is n = 387. Here we have to mention the complexity,
long duration and high cost of each conducted experiment. A detailed description of the
laser device, the data and their sources are given in [13, 14].

It can be mentioned that although the general population is assumed to be normally
distributed, the available data, and especially the response variable Pout, is not normally
distributed. Also high multicollinearity exists between some of the independent variables
[14]. This way, the statistical analysis of the considered data set requires application of
appropriate statistical techniques to direct the experiments aimed at further development
of the copper bromide laser devices.

3. Construction of GPS model using the 10 initial predictors. We first con-
struct the model by applying the GPS method with the initial 10 independent variables
and the dependent variable Pout. When desiring to build a model, we need to set up the
basic control parameters of the selected analysis method. The model setup procedure
includes the selection of elasticities (given in the brackets): Compact (0.0), Lasso (1.0),
Ridged Lasso (1.1) and Ridge regression (2.0), where the Compact method with elasticity
0.0 is similar to the stepwise multiple regression. There can be selected the volumes of the
learn and test samples, penalty constrains, different regression performance evaluation
criteria, path controls as a maximum number of the steps and a maximum number of the
points in the path and others. As a rule, all variables are standardized before processing
to equalize their influence in the model. Also, if necessary, some procedures for handling
outliers and missing values could be adjusted. The confidence bounds for the best model
are usually established at level 0.05 or at another given level.

For our model we choose the analysis method GPS with all types of penalties, MSE
and the coefficient of determination R2 as main regression performance criteria, and a
significance level of 0.05. The learn sample is chosen as 80% or 319 randomly selected
cases and the test sample is the remaining 20% or 68 of the whole investigated sample.
Other controls are stated by default.

The obtained best GPS model is Lasso (1.0) or GPS with elasticity β = 1. The
coefficients of the best model are given in the second column of Table 1.

It can be observed that only 4 coefficients are substantially non-zero, the remaining
6 coefficients are small and are taken to be zero in the optimal model. In the 3rd column
are given the values of the variable importance of the four non-zero coefficients in the
model. The input electric power PIN has the biggest influence, followed by C, PH2
and PL. This result is in very good agreement with other type of statistical models,
obtained for instance in [15, 16]. In the last two columns there are given the coefficients
of the classical stepwise multiple linear regression and their significance. Excluding the
insignificant constant and excluded variable PH2, the values of other available regression
coefficients are similar to these in the optimal GPS model. We have to give here the
coefficient of determination of the classical stepwise MLR model, which is R2 = 0.931
(see also Fig. 1a)).

The main selected criteria for model performance are the coefficient of determination
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Table 1. The coefficients and some characteristics for models with 10 initial variables

Variable
Best GPS model: Lasso(1.0) Classical stepwise regression

Coefficients
Variable

importancea
Coefficients Significance

Constant −25.41652 – −14.160 0.104
PIN 10.98233 100 11.044 0.000
L 0.21793 – 0.219 0.000
DR 0.33317 – 0.460 0.000

PH2 5.43409 46.7 – –
C −6.14385 53.3 −6.258 0.000
PRF −0.03769 – – –
TR −0.03265 – −0.049 0.001
D 0.13923 – – –
PL 1.63285 13.3 1.580 0.003
PNE −0.01892 – –

aThe values of the variable importance is relative to the biggest importance, equal to 100.

Fig. 1. Comparison of the experimental data of the output laser power Pout versus the predicted
values from the following models: a) stepwise multiple linear regression; b) the best GPS model,

based on the 10 initial independent variables; c) the best GPS/Rule Learner – ISLE model
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R2 and MSE, for the learn and test samples. Other standard measures of goodness-of-fit
such as RMSE (root MSE), MAD (mean absolute deviation), AIC (Akaike Information
Criterion) and others are also calculated and can be used for model evaluation. The
basic performance characteristics of the obtained GPS models in this study are given in
Table 2. The plots of the model predicted values against the experimental values of the
output laser power Pout are given in Fig. 1a) and b).

4. Construction of GPS model using the variables from the TreeNet tree

ensemble. As was mentioned above, the GPS regression has some limitations that could
be overcome by applying it jointly with the TreeNet and other data mining techniques.
The idea is to preprocess the initial data set by the TreeNet method, which produces
regression models in the form of a large amount of small decision trees (6) [10]. Each
tree typically contains about six terminal nodes. On the basis of the trees new predictor
variables are determined. This way a new data set can be obtained in order to run a
regularized regression, namely the GPS, and to improve the model. As was mentioned
above, the ISLE and Rule Learner techniques are designed to optimize the TreeNet
original solution by compressing the tree ensemble and post-processing the rules.

Table 2. Basic statistics of model performance for the obtained optimal GPS models

Criterion
Best GPS 10-variables Best GPS/RuleLearner

model: Lasso(1.0) model: ISLE – Lasso(1.0)
Learn sample Test sample Learn sample Test sample

MSE 80.471 94.211 21.805 43.488
RMSE 8.971 9.706 4.670 6.595
MAD 5.978 6.974 3.247 4.620

MRAD 0.380 0.415 0.272 0.260
R∧2 0.933 0.930 0.982 0.968
AIC 1421.742 331.098 1019.209 292.530

In our analysis we used all possible combinations of all these techniques and carried
out the GPS regularized regression by choosing the upper limit of 200 trees. All other
control parameters were fixed to the same settings as in the previous analysis in Section 3.
For the original TreeNet model, the MSE as a function of the number of trees is shown
in Fig. 2.

Fig. 2. Dependence of the MSE on the number of trees in the TreeNet model

One can observe the fast improvement in terms of the mean squared error when the
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number of trees increases.
The model performance for different methods is illustrated in Fig. 3. Detailed infor-

mation is given in Table 3. Here the ISLE model with GPS-Lasso(1.0) is the optimal one,
with only 17 trees included in the model, respectively 18 non-zero coefficients, taking into
account the constant term. The basic statistics of model performance are presented in the
last 2 columns of Table 2. The comparison of the predicted values with the experimental
values of Pout are plotted in Fig. 1c).

Fig. 3. Model performance of the RL techniques. The noted original model corresponds to the
pure TreeNet model

Table 3. Basic statistics of model performance for the different GPS models

Model
Learn

R
2

Learn
N Coef.

% Comp-
ression

Test
R

2

Test
N Coef.

% Comp-
ression

Elasticity

Original (TreeNet) 0.94263 195 0.0% 0.90712 200 0.0%
ISLE 0.98172 17 91.3% 0.96762 17 91.0% Lasso (1.0)
RuleLearner 0.98994 81 95.8% 0.98014 81 95.5% Lasso (1.0)
ISLE RuleLearner 0.98993 83 95.7% 0.98013 83 95.5% Lasso (1.0)

5. Discussion with conclusion. From Table 1 and Fig. 1a) and b) one can see that
the best GPS model based only on the initial 10 variables and the response has almost
the same performance as the classical stepwise MLR model. As shown in Table 2, the
obtained best GPS models demonstrate very good statistical indices, including relatively
high values of the coefficient of determination R2 of around and over 93%. The second
best GPS/RuleLearner model was found to be an ISLE model with R2 equal to 98% for
the learn sample and 97% for the test sample. This performance is in good agreement
with 95% accuracy of the physical measures. In conclusion, all derived models can be
used to describe and predict the experiment.

At the same time, from a practical point of view, the predictions of the models in the
region of high laser output power as seen in Fig. 1, are not satisfactory and needs specific
model selection strategy. This can be based on using special holdout samples when
checking the model performance criteria. Also appropriate preliminary transformations
of data or other approach may improve the accuracy of the models.
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Finally, we can note that the constructed models are comparable to the other existing
models built on the same data sample using CART and MARS methods [15, 16]. It can
be concluded that the obtained models can be further analyzed and used in order to
improve the output laser characteristics, in our case the very important one – the output
laser power.
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ЕДНО ПРИЛОЖЕНИЕ НА ОБОБЩЕНАТА PATHSEEKER

РЕГУЛЯРИЗИРАЩА РЕГРЕСИЯ

Снежана Гочева-Илиева

Тази работа представя едно приложениe на един от най-новите регресионни мето-
ди Generalized PathSeeker (GPS), отнасящ се към новата генерация предсказващи
статистически техники, основаващи се на подхода за интелигентна обработка на
данни. Методът е разработен за статистически анализ на данни, когато класичес-
кото параметрично моделиране не е приложимо или не довежда до достатъчно
добри резултати. С помощта на GPS и асоциираните с него техники като TreeNet
и RuleLearner са обработени експериментални данни от областта на лазерните
технологии. Построени са модели за моделиране на влиянието на 10 лазерни ра-
ботни параметри върху изходната мощност на лазери с пари на меден бромид.
Получените най-добри линейни регресионни модели имат много добро качество,
с коефициенти на детерминация R

2 = 98% за обучителната и 97% за тестовата
извадка. Дискутирани са преимуществата и недостатъците на метода.
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