MATEMATUKA W MATEMATUHECKO OBPA3OBAHWE, 2014
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2014
Proceedings of the Forty Third Spring Conference
of the Union of Bulgarian Mathematicians
Borovetz, April 2-6, 2014

APPROXIMATION OF SOME IMPULSE FUNCTIONS —
IMPLEMENTATION IN PROGRAMMING ENVIRONMENT
MATHEMATICA®

Andrey Andreev, Nikolay Kyurkchiev

The basic problem in antenna synthesis is, given a radiation pattern, to find such a
current distribution that implements it. In this paper we consider Fourier Transform
and Hausdorff approximation approaches for approximate solution of the problem.
These two methods are compared numerically and their implementation in the pro-
gramming environment MATHEMATICA is considered. The MATHEMATICA codes
provided facilitate the research in the field of antenna-feeder technics, analysis and
synthesis of antenna patterns and filters, noise minimization by suitable approxima-
tion of impulse functions.

1. Fourier transform approach. In the case of a line source the normalized antenna
pattern F'(w) and its current distribution i(s) are connected as follows [5]

(1) Fw) = i(s)e?*™* ds,

“\ﬂh

Y
where L is the antenna apperture length, X is the length of the wave, w is the frequency.

L L
If we suppose that i(s) =0 for s ¢ [fﬁ, ﬁ] then equality (1) takes the form
o0
(2) F(w) = / i(s)e?*™* ds,

—0oo
which is the well known Fourier transform of the function i(s) and the inverse Fourier
transform gives

(3) i(s) = / F(w)e 7™ dw.

The function i(s) represents the current distribution in the pattern and is computed from
(3). In antenna-feeder technics the most fraquent signals F' are of rectangular type as is
shown in Fig. 1. This is the reason the notion of spectral density of rectangular signal is
used.
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Fig. 1

Examples ([5]). If

1, |w| <e¢,
) Flw) = { 0, IwI > c.
we get from (3) that i(s) is
) sin(2mes)
= 2 _
i(s) “ores
If we truncate the function i(s) and define it as
L
’L(S), |5| < oy
i(s) := . L2)\
’ |S| > ﬁ

then the expression (2) returns an approximation F'(w) to the function F(w). It follows
from (2) that F' can be written approximately as

Fo=L (s (St o) - i (nto )

In the programming environment MATHEMATICA the following operator can be used
for the above calculations [1]: “SinIntegral[z] gives the sine integral function Si(z)”. Let

L
us fix ¢ = 0.5, and N = 10. The following is a simple MATHEMATICA code which

makes the calculations and provides (see Fig. 2) the graph of the function F and the
graph of the emitting chart.

R[x_] = (SinIntegral[10 7 * (x + 0.5)] — SinIntegral[10* 7 % (x — 0.5)])/7
Plot[R[x],{x, —1, 1}, AxesLabel — {Style[x,Large, Bold,Red],
Style[F[x],Large, Bold,Blue]}, LabelStyle — Directive[Orange, Bold],
PlotLabel — R[x]]

Let us note that the Fourier transform is closely connected with Gibb’s phenomena.

This is evident in Fig. 2. One way to avoid this unpleasant effect is the approximation
of function F(w) in Hausdorff metric.

In Fig. 2 the variable x is used instead of w. Another simple MATHEMATICA code
for drawing the graph of the function 7 is
R1[x_] =2%0.5%8in[2* 7% 0.5 % x|/(2 % 7 % 0.5 % x)
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Fig. 2

Plot[R1[x], {x,—5,5},PlotRange — Full, AxesLabel — {Style[x,Large, Bold,Red],

Style[i[x]|,Large,Bold,Bluel]}, LabelStyle — Directive|Orange,Bold], PlotLabel — R1[x]]
In Fig. 3 the graph of 7 is given where z is used instead of s.

Fig. 3
Note. In the programming environment MATHEMATICA there exist various spe-
cialized operators such as

FourierTransform|...]; FourierSinTransform|...]; InverseFourierSinTransform|...|

etc., which can be used for Fourier approximation of non-periodical signals [1].

2. Hausdorff approximation approach. Let us consider the function sgn x whose
graph is given in Fig. 5. This function plays an important role in the theory of impulse
technics.

One consequence from Haar’s theorem is the assertion that for any natural number n
n

and any number 0 < A < 1 there exists a unique polynomial Q2,41 = quac%ﬂ of

k=0
the best uniform approximation of the constant 1 in the interval [A, 1]. The polynomials
Q2n+1 take part in some technical problems such as antenna synthesis and electrical
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= 1, x| =2¢c
Print|"Fafxp=] ] [
[ ‘i(){l], 3 | >c,]

c = Input["Give the value of the parameter c "];
Print["The walwe of the parameter: c = ', c]:
Print['The antenna design technigues using Fourier analysis"]:

L L L
Print[" Fia)=— (Si(I?r(xu::))—si(;n(x-c)))" H
7T

o= Input [" Give the value of the parameter p- ; "l
Print["The walue of the parameter: p = ", p]:
Print["Graph of the function F{x}): "]:
R[x ] = (SinIntegral [p«Pi« (¥ +c)] - SinIntegral [p+Pi« (x-c)]) /Pi:
Plot[R[x], {x, -1, 1}, AxesLabel — {Style[x, Large, Bold, Red],
Style[F[x], Large, Bold, Blue] }, LahelStyle — Directive[Orange, Bold], FlotLabel — R[x]]

lx | =c,

1
Falx)= i
d(){ﬂ,lx\>c,

The walue of the parameter: ¢ = 0.35

The antenna design technicues using Fourier analysis
1 L L

Fx)=— (510 -m(x+c))-8i( -m(x-c)))
T a i

The walue of the parameter: p = 25

Graph of the function F(x):

[+ 0.33))

F(,\'}

i
|..l VAt " VeV

s ' 10

Manipulate[Plot[(SinIntegralp| * Pi % (x + c)] — SinIntegral[p] x Pi x (x — ¢)])/P1i,
{x,—1,1},PlotRange — Full], {c,0.1,0.9, Appearance — ”0Open”}, {p], 10, 100,
Appearance — ”0Open” }]
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Fig. 5

schemes. Therefore their explicit finding excites a certain interest. It follows from the
generalized Chebyshev theorem that:

1. if 01, 09,...,0, are internal points of maximum deviation of Q2,41 in the interval
(A, 1], then Q5,1 (£0;) = 0 for ¢ = 1,...,n which leads to
AdQany1(x -
6 Qpa(e) = D T2 g2
i=1
The solution of (5) is
(6) Qan+1(x) = C(n)I, (),
where
£ n
™ L@ = [ ] - ot)a
o i=1
and C(n) is a constant;
2. if o9 = A and 0,41 = 1, then Qanq1(00) = Qanyi(o2) = -+ = Qany1(0s);
n+1 n
Q2n+1(01) = Q2n+1(03) = s = Q2n+1(0—l), Where s =2 5 :| 3 l =2 |:§i| —+ 1. The

condition 2 shows that [4]
(8) U(o1s--,00) = [In(02) = 1n(00)]* 4 [In(03) = In(01)]* 4+ - -+ L (1) = Ln(00-1)]* = 0.
The function U depends on the variables 1,09, ...,0, and from (7) it follows

1 1 < _
L(x) = 271——1—1:E2n+1 ] ;U?ﬂfwl Ly (*1)"0%0% .. .0721.33.

The constants 01,03, ...,0, can be uniquely determined from (8) whereupon the poly-

nomial Qa,41 can be explicitly represented using (6) since C(n) = Lo T (o) In
[4] a numerical method is proposed for finding of alternation points 01,09, ...,0,. The
authors suggest a modification of the difference-gradient method for minimization of the
function U(o1, 09, . ..,0,). The numerical experiments show that the solution of (8) is a
hard problem and the question of computing of the polynomials (6) is open. We propose
another approach based on the MATHEMATICA options.
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Remark. Let the polynomial Psy,41(z) = Zpkx%"’l satisfy: Popy1(An) = 1 —
k=0
An, 00 = An; Pongi1(00) = Pongi(02) = -+ = Pont1(0s); Ponyi(o1) = Pangi(o3) =

1
n—2|— }; Il =2 [g} + 1. It is proved in [4] that the

polynomial P51 is the polynomial of the best Hausdorff approximation of the function
sgn (z) in [—1, 1] by algebraic polynomials of degree 2n + 1 and A, is the best Hausdorff
approximation. The conditions above determine completely the polynomial P, 41 and for
finding \,, 01, 02, ..., 0y, the following operator must be used from the programming
environment MATHEMATICA: FindMinimum[f, {{x, %o}, {¥,¥o},...}] which “searches
for a local minimum in a function of several variables”. In what follows we illustrate
the possibilities of MATHEMATICA for finding the polynomial of the best Hausdorff
approximation of the function sgn x.

oo = Pypy1(0y), where s = 2

Example. Let n = 3. We are looking for the polynomial P;(z). Let us start with
A7 /= 0.171622 and accuracy e = 10~°. The test provided in our control example follows.
Let flx ]| = 1/7%x" —1/5% (012 + 6022+ 032) xx° 4+ 1/3 % (02%03% 4 012032 + #1%02%) x x° —
(63% % 01% % 02%) x x. Using the operators FindMinimum|(£[02] — £[t])? + (£[03] — £[01])* +
(£[1] — £[02))?, {{01,0.3},{62,0.6},{63,0.9}}]; Print|[TableForm[%]] we find 2.7747 *
107%0; 91 = 0.354572720549729, 62 = 0.6699168186173807, 63 = 0.9116252786309404.
Now the following operators must be applied: ¢ = 2/(£[t] + £[0.3134934291772114]);:
Plx_|=cx (1/7%x" — 1/5% (012 4+ 022 + 03%) x x° + 1/3 % (022032 + 012032 + 01%022) *
x® — (03% x 012 * 622) x x); Abs[P[t] — 1]; Abs[t — Abs[P[t] — 1]]; Plot[P[x], {x, —1,1},
PlotRange — Full, AzesLabel — {z,y}, PlotLabel — Plx]]. They give —115.227,
0.171623; 6.39626 % 10~ 7. The graph of the polynomial P; of the best approximation is
shown below. This polynomial satisfies the accuracy condition |[A7 — |Pr(A\7) — 1|] < ¢,
where € = 6.39626 x 10"

x'?
-115.227 i 0.281114 " +0.177958 -* — 0.0468905 x

10} /- = 2

0s - /

116



REFERENCES

[1] M. TroTT. The MATHEMATICA GuideBook for Numerics, New York, Springer-Verlag,

2006.

[2] N. KYURKCHIEV, A. ANDREEV. Hausdor{f approximation of functions different from zero at
one point -implementation in programming environment MATHEMATICA. Serdica Journal

of Computing, 7, 4 (2013), 135-142.

[3] N. KYURKCHIEV, A. ANDREEV. Synthesis of slot aerial grids with Hausdorfl-type directive
patterns — implementation in programming environment MATHEMATICA. Compt. rend.

Acad. bulg. sci., 66, 11 (2013), 1521-1528.

[4] S. MARKOV, BL. SENDOV. On the numerical evaluation of a class of polynomials of best
approximation. Ann. Univ. Sofia, Fac. Math., 61 (1968), 1727 (in Bulgarian).
[5] ecen665web.groups.et.byu.net. Copyright © 2005 by Karl F. Warnick.

Andrey Andreev

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences

Acad. G. Bonchev Str., BlL. 8

1113 Sofia, Bulgaria

e-mail: andreev@math.bas.bg

Nikolay Kyurkchiev

Faculty of Mathematics, Informatics
and Information Technology

Paisii Hilendarski University of Plovdiv
236, Bulgaria Blvd.

4003 Plovdiv, Bulgaria

e-mail: nkyurk@uni-plovdiv.bg

and

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 8

1113 Sofia, Bulgaria

e-mail: nkyurk@math.bas.bg

AITPOKCVMUWPAHE HA HAKOU MMIIYJICHU ®YHKIINU —
NMMIIJIEMEHTAIINSA B ITIPOTPAMHATA CPEJA MATHEMATICA

Annpeit C. AuagpeeB, Hukousaii B. Kiopkunes

B Taszm crarms ce pasmiexxia 3ajadara 3a AlpPOKCHMUDAaHE HA HIKOW HMITYJICHU
GYHKIUNA, KOUTO UTPasIT BaXKHa POJisi B 00JIACTTAa HA aHTEHHO-(pUepHaATAa TEXHUKA
[P CHHTE3 W aHAJIN3 Ha JUarpaMu Ha W3/rbuBaHe U nudposu ¢punrpu. Pazpaborenn
ca moxynu B mporpamuara cpega MATHEMATICA 3a obiekyaBaHe Ha WHXKEHEPHUTE

pa3dJeTn.
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