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The basic problem in antenna synthesis is, given a radiation pattern, to find such a
current distribution that implements it. In this paper we consider Fourier Transform
and Hausdorff approximation approaches for approximate solution of the problem.
These two methods are compared numerically and their implementation in the pro-
gramming environment MATHEMATICA is considered. The MATHEMATICA codes
provided facilitate the research in the field of antenna-feeder technics, analysis and
synthesis of antenna patterns and filters, noise minimization by suitable approxima-
tion of impulse functions.

1. Fourier transform approach. In the case of a line source the normalized antenna
pattern F (ω) and its current distribution i(s) are connected as follows [5]

(1) F (ω) =

L

2λ
∫

−
L

2λ

i(s)ej2πωs ds,

where L is the antenna apperture length, λ is the length of the wave, ω is the frequency.

If we suppose that i(s) = 0 for s /∈ [−
L

2λ
,

L

2λ
] then equality (1) takes the form

(2) F (ω) =

∞
∫

−∞

i(s)ej2πωs ds,

which is the well known Fourier transform of the function i(s) and the inverse Fourier
transform gives

(3) i(s) =

∞
∫

−∞

F (ω)e−j2πωs dω.

The function i(s) represents the current distribution in the pattern and is computed from
(3). In antenna-feeder technics the most fraquent signals F are of rectangular type as is
shown in Fig. 1. This is the reason the notion of spectral density of rectangular signal is
used.
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Fig. 1

Examples ([5]). If

(4) F (ω) =

{

1, |ω| ≤ c,
0, |ω| > c.

we get from (3) that i(s) is

i(s) = 2c
sin(2πcs)

2πcs
.

If we truncate the function i(s) and define it as

i(s) :=











i(s), |s| ≤
L

2λ
,

0, |s| >
L

2λ

then the expression (2) returns an approximation F̃ (ω) to the function F (ω). It follows
from (2) that F can be written approximately as

F (ω) ≈
1

π

(

Si

(

L

λ
π(ω + c)

)

− Si

(

L

λ
π(ω − c)

))

.

In the programming environment MATHEMATICA the following operator can be used
for the above calculations [1]: “SinIntegral[z] gives the sine integral function Si(z)”. Let

us fix c = 0.5, and
L

λ
= 10. The following is a simple MATHEMATICA code which

makes the calculations and provides (see Fig. 2) the graph of the function F and the
graph of the emitting chart.

R[x−] = (SinIntegral[10 ∗ π ∗ (x + 0.5)] − SinIntegral[10 ∗ π ∗ (x− 0.5)])/π

Plot[R[x], {x,−1, 1}, AxesLabel→ {Style[x, Large, Bold,Red],
Style[F[x], Large, Bold, Blue]},LabelStyle→ Directive[Orange, Bold],
PlotLabel→ R[x]]

Let us note that the Fourier transform is closely connected with Gibb’s phenomena.
This is evident in Fig. 2. One way to avoid this unpleasant effect is the approximation
of function F (ω) in Hausdorff metric.

In Fig. 2 the variable x is used instead of ω. Another simple MATHEMATICA code
for drawing the graph of the function i is

R1[x−] = 2 ∗ 0.5 ∗ Sin[2 ∗ π ∗ 0.5 ∗ x]/(2 ∗ π ∗ 0.5 ∗ x)
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Fig. 2

Plot[R1[x], {x,−5, 5}, PlotRange→ Full, AxesLabel→ {Style[x, Large, Bold, Red],
Style[i[x], Large, Bold, Blue]}, LabelStyle→ Directive[Orange, Bold], PlotLabel→ R1[x]]

In Fig. 3 the graph of i is given where x is used instead of s.

Fig. 3

Note. In the programming environment MATHEMATICA there exist various spe-
cialized operators such as

FourierTransform[...]; FourierSinTransform[...]; InverseFourierSinTransform[...],

etc., which can be used for Fourier approximation of non-periodical signals [1].
2. Hausdorff approximation approach. Let us consider the function sgn x whose

graph is given in Fig. 5. This function plays an important role in the theory of impulse
technics.

One consequence from Haar’s theorem is the assertion that for any natural number n

and any number 0 < λ < 1 there exists a unique polynomial Q2n+1 =

n
∑

k=0

qkx2k+1 of

the best uniform approximation of the constant 1 in the interval [λ, 1]. The polynomials
Q2n+1 take part in some technical problems such as antenna synthesis and electrical
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Manipulate[Plot[(SinIntegralρ] ∗ Pi ∗ (x + c)] − SinIntegral[ρ] ∗ Pi ∗ (x− c)])/Pi,
{x,−1, 1}, PlotRange → Full], {c, 0.1, 0.9, Appearance → ”Open”}, {ρ], 10, 100,
Appearance → ”Open”}]

Fig. 4
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Fig. 5

schemes. Therefore their explicit finding excites a certain interest. It follows from the
generalized Chebyshev theorem that:

1. if σ1, σ2, . . . , σn are internal points of maximum deviation of Q2n+1 in the interval
[λ, 1], then Q′

2n+1(±σi) = 0 for i = 1, . . . , n which leads to

(5) Q′

2n+1(x) =
dQ2n+1(x)

dx
=

n
∏

i=1

(x2 − σ2
i ).

The solution of (5) is

(6) Q2n+1(x) = C(n)In(x),

where

(7) In(x) =

x
∫

0

n
∏

i=1

(t2 − σ2
i ) dt

and C(n) is a constant;

2. if σ0 = λ and σn+1 = 1, then Q2n+1(σ0) = Q2n+1(σ2) = · · · = Q2n+1(σs);

Q2n+1(σ1) = Q2n+1(σ3) = · · · = Q2n+1(σl), where s = 2

[

n + 1

2

]

; l = 2
[n

2

]

+ 1. The

condition 2 shows that [4]

(8) U(σ1, . . . , σn) = [In(σ2)−In(σ0)]
2+[In(σ3)−In(σ1)]

2+· · ·+[In(1)−In(σn−1)]
2 = 0.

The function U depends on the variables σ1, σ2, . . . , σn and from (7) it follows

In(x) =
1

2n + 1
x2n+1 −

1

2n − 1

n
∑

i=1

σ2
i x2n−1 + · · · + (−1)nσ2

1σ2
2 . . . σ2

n.x.

The constants σ1, σ2, . . . , σn can be uniquely determined from (8) whereupon the poly-

nomial Q2n+1 can be explicitly represented using (6) since C(n) =
2

In(σ0) + In(σ1)
. In

[4] a numerical method is proposed for finding of alternation points σ1, σ2, . . . , σn. The
authors suggest a modification of the difference-gradient method for minimization of the
function U(σ1, σ2, . . . , σn). The numerical experiments show that the solution of (8) is a
hard problem and the question of computing of the polynomials (6) is open. We propose
another approach based on the MATHEMATICA options.
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Remark. Let the polynomial P2n+1(x) =
n

∑

k=0

pkx2k+1 satisfy: P2n+1(λn) = 1 −

λn, σ0 = λn; P2n+1(σ0) = P2n+1(σ2) = · · · = P2n+1(σs); P2n+1(σ1) = P2n+1(σ3) =

· · · = P2n+1(σl), where s = 2

[

n + 1

2

]

; l = 2
[n

2

]

+ 1. It is proved in [4] that the

polynomial P2n+1 is the polynomial of the best Hausdorff approximation of the function
sgn (x) in [−1, 1] by algebraic polynomials of degree 2n + 1 and λn is the best Hausdorff
approximation. The conditions above determine completely the polynomial P2n+1 and for
finding λn, σ1, σ2, . . . , σn, the following operator must be used from the programming
environment MATHEMATICA: FindMinimum[f, {{x, x0}, {y, y0}, . . . }] which “searches
for a local minimum in a function of several variables”. In what follows we illustrate
the possibilities of MATHEMATICA for finding the polynomial of the best Hausdorff
approximation of the function sgnx.

Example. Let n = 3. We are looking for the polynomial P7(x). Let us start with
λ7 ≈ 0.171622 and accuracy ε = 10−6. The test provided in our control example follows.
Let f[x−] = 1/7∗x7−1/5∗ (θ12+θ22 +θ32)∗x5 +1/3∗ (θ22θ32 +θ12θ32 +θ12θ22)∗x3−
(θ32 ∗ θ12 ∗ θ22) ∗ x. Using the operators FindMinimum[(f[θ2]− f[t])2 + (f[θ3]− f[θ1])2 +
(f[1] − f[θ2])2, {{θ1, 0.3}, {θ2, 0.6}, {θ3, 0.9}}]; Print[TableForm[%]] we find 2.7747 ∗
10−20; θ1 = 0.354572720549729, θ2 = 0.6699168186173807, θ3 = 0.9116252786309404.
Now the following operators must be applied: c = 2/(f[t] + f[0.3134934291772114]);:
P[x−] = c ∗ (1/7 ∗ x7 − 1/5 ∗ (θ12 + θ22 + θ32) ∗ x5 + 1/3 ∗ (θ22θ32 + θ12θ32 + θ12θ22) ∗
x3 − (θ32 ∗ θ12 ∗ θ22) ∗ x); Abs[P[t] − 1]; Abs[t − Abs[P[t] − 1]]; Plot[P[x], {x,−1, 1},
PlotRange → Full, AxesLabel → {x, y}, PlotLabel → P [x]]. They give −115.227;
0.171623; 6.39626 ∗ 10−7. The graph of the polynomial P7 of the best approximation is
shown below. This polynomial satisfies the accuracy condition |λ7 − |P7(λ7) − 1|| ≤ ǫ,
where ǫ = 6.39626 ∗ 10−7.
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АПРОКСИМИРАНЕ НА НЯКОИ ИМПУЛСНИ ФУНКЦИИ –

ИМПЛЕМЕНТАЦИЯ В ПРОГРАМНАТА СРЕДА MATHEMATICA

Андрей С. Андреев, Николай В. Кюркчиев

В тази статия се разглежда задачата за апроксимиране на някои импулсни

функции, които играят важна роля в областта на антенно-фидерната техника

при синтез и анализ на диаграми на излъчване и цифрови филтри. Разработени

са модули в програмната среда MATHEMATICA за облекчаване на инженерните

разчети.
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