МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2014 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2014 Proceedings of the Forty Third Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 2–6, 2014

COVARIANT VECTOR DECOMPOSITION OF THREE-DIMENSIONAL ROTATIONS*

Danail S. Brezov, Clementina D. Mladenova, Ivaïlo M. Mladenov

The main purpose of this paper is to provide an alternative representation for the generalized *Euler* decomposition (with respect to arbitrary axes) obtained in [1, 2] by means of vector parametrization of the *Lie* group SO(3). The scalar (angular) parameters of the decomposition are explicitly written here as functions depending only on the contravariant components of the compound vector-parameter in the basis, determined by the three axes. We also consider the case of coplanar axes, in which the basis needs to be completed by a third vector and in particular, two-axes decompositions.

1. Vector-parameters in the *Euler* decomposition. Vector-parameters, also known as *Rodrigues'* or *Gibbs'* vectors, are naturally introduced via stereographic projection. For the rotation group in \mathbb{R}^3 we consider the spin cover $SU(2) \cong \mathbb{S}^3 \longrightarrow SO(3) \cong \mathbb{RP}^3$ and identify \mathbb{S}^3 with the set of the unit quaternions (cf. [4])

$$\zeta = (\zeta_0, \boldsymbol{\zeta}) = \zeta_0 + \zeta_1 \mathbf{i} + \zeta_2 \mathbf{j} + \zeta_3 \mathbf{k}, \qquad |\zeta|^2 = \zeta \bar{\zeta} = 1, \qquad \bar{\zeta} = (\zeta_0, -\boldsymbol{\zeta}), \qquad \zeta_\alpha \in \mathbb{R}.$$

The corresponding group morphism is given by the adjoint action of \mathbb{S}^3 in its *Lie* algebra of skew-*Hermitian* matrices, in which we expand vectors $\mathbf{x} \in \mathbb{R}^3 \to x_1 \mathbf{i} + x_2 \mathbf{j} + x_3 \mathbf{k} \in \mathfrak{su}(2)$. The resulting SO(3) matrix transforming the *Cartesian* coordinates of \mathbf{x} has the form

(1)
$$\mathcal{R}(\zeta) = (\zeta_0^2 - \boldsymbol{\zeta}^2)\mathcal{I} + 2\,\boldsymbol{\zeta}\otimes\boldsymbol{\zeta}^t + 2\,\zeta_0\boldsymbol{\zeta}^\times,$$

where \mathcal{I} and $\boldsymbol{\zeta} \otimes \boldsymbol{\zeta}^t$ denote the identity and the tensor (dyadic) product in \mathbb{R}^3 respectively, whereas $\boldsymbol{\zeta}^{\times}$ is the skew-symmetric matrix, associated with the vector $\boldsymbol{\zeta}$ via *Hodge* duality. The famous *Rodrigues'* rotation formula then follows directly with the substitution

$$\zeta_0 = \cos \frac{\varphi}{2}, \qquad \boldsymbol{\zeta} = \sin \frac{\varphi}{2} \, \mathbf{n}, \qquad (\mathbf{n}, \mathbf{n}) = 1.$$

On the other hand, we may choose to get rid of the unnecessary fourth coordinate by projecting $\zeta \to \mathbf{c} = \frac{\zeta}{\zeta_0} = \tan\left(\frac{\varphi}{2}\right) \mathbf{n}$ and thus obtain the entries of the rotation matrix (1) expressed as rational functions of the *vector-parameter* \mathbf{c} in the form

(2)
$$\mathcal{R}(\mathbf{c}) = \frac{(1-\mathbf{c}^2)\mathcal{I} + 2\,\mathbf{c}\otimes\mathbf{c}^t + 2\,\mathbf{c}^{\times}}{1+\mathbf{c}^2}.$$

*2010 Mathematics Subject Classification: 20C35, 22E70, 81R05.

Key words: quaternions, rotations, Lie group representations.

Quaternion multiplication then gives the composition law of vector-parameters as

(3)
$$\langle \mathbf{c}_2, \mathbf{c}_1 \rangle = \frac{\mathbf{c}_2 + \mathbf{c}_1 + \mathbf{c}_2 \times \mathbf{c}_1}{1 - (\mathbf{c}_2, \mathbf{c}_1)}, \qquad \mathcal{R}(\mathbf{c}_2) \mathcal{R}(\mathbf{c}_1) = \mathcal{R}(\langle \mathbf{c}_2, \mathbf{c}_1 \rangle)$$

and in the case of three rotations $\mathbf{c} = \langle \mathbf{c}_3, \mathbf{c}_2, \mathbf{c}_1 \rangle$ we have

(4)
$$\mathbf{c} = \frac{\mathbf{c}_3 + \mathbf{c}_2 + \mathbf{c}_1 + \mathbf{c}_3 \times \mathbf{c}_2 + \mathbf{c}_3 \times \mathbf{c}_1 + \mathbf{c}_2 \times \mathbf{c}_1 + (\mathbf{c}_3 \times \mathbf{c}_2) \times \mathbf{c}_1 - (\mathbf{c}_3, \mathbf{c}_2) \mathbf{c}_1}{1 - (\mathbf{c}_3, \mathbf{c}_2) - (\mathbf{c}_3, \mathbf{c}_1) - (\mathbf{c}_2, \mathbf{c}_1) + (\mathbf{c}_3, \mathbf{c}_2, \mathbf{c}_1)}.$$

It is not difficult to see that the operation is associative and constitutes a representation of SO(3), since the identity and inverse elements are also well-defined by $\langle \mathbf{c}, 0 \rangle = \langle 0, \mathbf{c} \rangle = \mathbf{c}$, $\langle \mathbf{c}, -\mathbf{c} \rangle = 0$. Among the advantages of this representation are more economical calculations, rational expressions for the matrix entries of $\mathcal{R}(\mathbf{c})$ and a correct description of the topology of $SO(3) \cong \mathbb{RP}^3$. For applications in rigid body mechanics we refer to [3, 5].

As for the generalized *Euler* decompositions, we start with the much simpler two axes setting $\mathcal{R}(\mathbf{c}) = \mathcal{R}(\mathbf{c}_2) \mathcal{R}(\mathbf{c}_1)$, where $\mathbf{c}_k = \tau_k \hat{\mathbf{c}}_k$ and $\mathbf{c} = \tau \mathbf{n}$ ($\hat{\mathbf{c}}_k^2 = \mathbf{n}^2 = 1$) are the corresponding vector-parameters. We also denote ($\hat{\mathbf{c}}_j, \mathcal{R}(\mathbf{c}) \hat{\mathbf{c}}_k$) = r_{jk} and ($\hat{\mathbf{c}}_j, \hat{\mathbf{c}}_k$) = g_{jk} . Taking an appropriate scalar product provides the necessary and sufficient condition for the existence of the above decomposition in the form $r_{21} = g_{21}$. Next, multiplying $\mathbf{c} = \langle \mathbf{c}_2, \mathbf{c}_1 \rangle$ on the left by \mathbf{n}^{\times} and projecting along $\hat{\mathbf{c}}_1$ and $\hat{\mathbf{c}}_2$ respectively, we obtain

where we make use of the notations

$$v_k = (\hat{\mathbf{c}}_k, \mathbf{n}), \qquad \tilde{v}_1 = (\hat{\mathbf{c}}_2 \times \hat{\mathbf{c}}_3, \mathbf{n}), \qquad \tilde{v}_2 = (\hat{\mathbf{c}}_3 \times \hat{\mathbf{c}}_1, \mathbf{n}), \qquad \tilde{v}_3 = (\hat{\mathbf{c}}_1 \times \hat{\mathbf{c}}_2, \mathbf{n})$$

Note that vanishing denominators in the above expressions are related to *half-turns*, i.e., rotations by a straight angle. In particular, if $\mathbf{n} \perp \hat{\mathbf{c}}_{1,2}$ ($v_1 = v_2 = 0$), we have a decomposition into a pair of reflections, which is a well-known result in elementary geometry.

In the case of three axes $\mathcal{R}(\mathbf{c}) = \mathcal{R}(\mathbf{c}_3)\mathcal{R}(\mathbf{c}_2)\mathcal{R}(\mathbf{c}_1)$, such that $\hat{\mathbf{c}}_2$ cannot be parallel to $\hat{\mathbf{c}}_1$ or $\hat{\mathbf{c}}_3$, we use the scalar product $(\hat{\mathbf{c}}_3, \mathcal{R}(\mathbf{c}) \hat{\mathbf{c}}_1) = (\hat{\mathbf{c}}_3, \mathcal{R}(\tau_2 \hat{\mathbf{c}}_2) \hat{\mathbf{c}}_1)$ to obtain

$$(r_{31} + g_{31} - 2g_{12}g_{23})\tau_2^2 + 2\omega\tau_2 + r_{31} - g_{31} = 0, \qquad \omega = (\hat{\mathbf{c}}_1, \hat{\mathbf{c}}_2 \times \hat{\mathbf{c}}_3).$$

The above quadratic equation has real roots given by

(6)
$$\tau_2^{\pm} = \frac{-\omega \pm \sqrt{\Delta}}{r_{31} + g_{31} - 2g_{12}g_{23}}$$

as long as its discriminant is non-negative

(7)
$$\Delta = \begin{vmatrix} 1 & g_{12} & r_{31} \\ g_{21} & 1 & g_{23} \\ r_{31} & g_{32} & 1 \end{vmatrix} \ge 0$$

which plays the role of a necessary and sufficient condition for the existence of the decomposition. In order to find the remaining two scalar parameters, we use the composition

$$\mathbf{c}_1 = \langle -\mathbf{c}_2, -\mathbf{c}_3, \mathbf{c} \rangle, \qquad \mathbf{c}_2 = \langle -\mathbf{c}_3, \mathbf{c}, -\mathbf{c}_1 \rangle, \qquad \mathbf{c}_3 = \langle \mathbf{c}, -\mathbf{c}_1, -\mathbf{c}_2 \rangle.$$
119

Namely, multiplying by $\hat{\mathbf{c}}_k^{\times}$ on the left and projecting over \mathbf{n} , we obtain the linear-fractional relations between τ_k , which yield the solutions for the generic case in the form

$$\tau_1^{\pm} = \frac{g_{32} - r_{32}}{(g_{32} + r_{32})\tau \upsilon_1 - (g_{31} + r_{31})\tau \upsilon_2 + (r_{31} - g_{31})/\tau_2^{\pm}}$$

(8)

$$\tau_3^{\pm} = \frac{g_{21} - r_{21}}{(g_{21} + r_{21})\tau \upsilon_3 - (g_{31} + r_{31})\tau \upsilon_2 + (r_{31} - g_{31})/\tau_2^{\pm}}$$

while in the symmetric one we consider the limit $\tau \to \infty$ and thus obtain

(9)
$$\tau_1^{\pm} = \frac{g_{23} - v_2 v_3}{v_1 \tilde{v}_1 + v_2 \tilde{v}_2 + (v_1 v_3 - g_{13})/\tau_2^{\pm}}, \quad \tau_3^{\pm} = \frac{g_{12} - v_1 v_2}{v_2 \tilde{v}_2 + v_3 \tilde{v}_3 + (v_1 v_3 - g_{13})/\tau_2^{\pm}}.$$

In the three axes setting we may also have degenerate solutions, related to a singularity of the map $\mathbb{RP}^3 \to \mathbb{T}^3$, known as *gimbal lock*, which is given by the condition

(10)
$$\hat{\mathbf{c}}_3 = \pm \mathcal{R}(\mathbf{c}) \, \hat{\mathbf{c}}_1$$

In that case the parameters τ_1 and τ_3 cannot be determined independently. Instead, we have the effective two-axes decomposition $\mathcal{R}(\mathbf{c}) = \mathcal{R}(\tau_2 \hat{\mathbf{c}}_2) \mathcal{R}(\tilde{\tau}_1 \hat{\mathbf{c}}_1)$, where the solutions

form an one-parameter set, expressed in terms of the generalized Euler angles as

$$\varphi_1 \pm \varphi_3 = 2 \arctan\left(\frac{\tilde{\upsilon}_3}{g_{12}\upsilon_1 - \upsilon_2}\right), \qquad \varphi_2 = 2 \arctan\left(\frac{\tilde{\upsilon}_3}{g_{12}\upsilon_2 - \upsilon_1}\right).$$

2. Covariant form of the solutions. First, we consider the simpler case of two axes $\mathbf{c} = \langle \tau_2 \hat{\mathbf{c}}_2, \tau_1 \hat{\mathbf{c}}_1 \rangle$, in which it is necessary to complete the basis with a third vector

(12)
$$\mathbf{c} = \xi_1 \, \hat{\mathbf{c}}_1 + \xi_2 \, \hat{\mathbf{c}}_2 + \xi_3 \, \hat{\mathbf{c}}_1 \times \hat{\mathbf{c}}_2.$$

If we denote the adjoint matrix of g with γ , we have $|\hat{\mathbf{c}}_1 \times \hat{\mathbf{c}}_2|^2 = 1 - g_{12}^2 = \gamma^{33}$. Note that in formula (5) we use the covariant components of \mathbf{c} in the same basis

(13)
$$\tau v_1 = \xi_1 + g_{12}\xi_2, \quad \tau v_2 = \xi_2 + g_{12}\xi_1, \quad \tau \tilde{v}_3 = \gamma^{33}\xi_3$$

Thus, by direct substitution, we obtain the decomposability condition $r_{21} = g_{21}$ as

(14)
$$\xi_1\xi_2 + (1 - g_{12}\xi_3)\xi_3 = 0$$

and the solutions themselves are given by the expressions

One peculiar symmetry becomes apparent from the above formula, namely $\tau_1\xi_2 - \tau_2\xi_1 = 0$.

In the three axes setting we first consider the case, in which $\{\hat{\mathbf{c}}_k\}$ constitutes a basis

$$\mathbf{c} = \xi_1 \, \hat{\mathbf{c}}_1 + \xi_2 \, \hat{\mathbf{c}}_2 + \xi_3 \, \hat{\mathbf{c}}_3 = \langle \tau_3 \hat{\mathbf{c}}_3, \tau_2 \hat{\mathbf{c}}_2, \tau_1 \hat{\mathbf{c}}_1 \rangle.$$

We substitute the matrix entries r_{ij} , calculated according to (2) in the solutions (6), (8) 120 and use the inverse metric tensor $g^{-1} = \omega^{-2} \gamma$ for lifting the indices of **c**. Thus, we obtain 13 ~ 2 23cc 12cc + 22cc

$$\tau_2^{\pm} = \frac{-\omega \pm \sqrt{\omega^2 - \sigma^2 + 2\gamma^{13}\sigma}}{\sigma - 2\gamma^{13}}, \qquad \sigma = 2\frac{\gamma^{13}\xi_2^2 - \gamma^{23}\xi_1\xi_2 - \gamma^{12}\xi_2\xi_3 + \gamma^{22}\xi_1\xi_3 - \omega\xi_2}{\xi_1^2 + \xi_2^2 + \xi_3^2 + 2g_{12}\xi_1\xi_2 + 2g_{23}\xi_2\xi_3 + 2g_{13}\xi_1\xi_3}$$

for the middle parameter and for the other two

$$\tau_{1}^{\pm} = \frac{\gamma^{13}\xi_{1}\xi_{2} + \gamma^{12}\xi_{1}\xi_{3} - \gamma^{11}\xi_{2}\xi_{3} - \gamma^{23}\xi_{1}^{2} - \omega\xi_{1}}{\omega\left(\xi_{1}^{2} + \xi_{2}^{2} + 2g_{12}\xi_{1}\xi_{2} + g_{13}\xi_{1}\xi_{3} + g_{23}\xi_{2}\xi_{3}\right) - \gamma^{23}\xi_{1} + \gamma^{13}\xi_{2} + \kappa_{2}/\tau_{2}^{\pm}}$$

$$(16)$$

$$\tau_{3}^{\pm} = \frac{\gamma^{13}\xi_{2}\xi_{3} + \gamma^{23}\xi_{1}\xi_{3} - \gamma^{33}\xi_{1}\xi_{2} - \gamma^{12}\xi_{3}^{2} - \omega\xi_{3}}{\omega\left(\xi_{2}^{2} + \xi_{3}^{2} + g_{12}\xi_{1}\xi_{2} + g_{13}\xi_{1}\xi_{3} + 2g_{23}\xi_{2}\xi_{3}\right) + \gamma^{13}\xi_{2} - \gamma^{12}\xi_{3} + \kappa_{2}/\tau_{2}^{\pm}}$$

respectively, in which we use the notation $\kappa_2 = \gamma^{13}\xi_2^2 - \gamma^{23}\xi_1\xi_2 - \gamma^{12}\xi_2\xi_3 + \gamma^{22}\xi_1\xi_3 - \omega\xi_2$.

In the case $\omega = 0$ we use expansion in the basis (12) and the explicit relations (13) between the covariant and contravariant components of \mathbf{c} in order to obtain

(17)
$$\tau_2^{\pm} = \pm \sqrt{\frac{\mathring{\sigma}}{2\gamma^{13} - \mathring{\sigma}}}, \qquad \mathring{\sigma} = 2\frac{\gamma^{13}\xi_2^2 - \gamma^{23}(\xi_1\xi_2 + \xi_3) - g_{13}\gamma^{33}\xi_3^2}{1 + \xi_1^2 + \xi_2^2 + \gamma^{33}\xi_3^2 + 2g_{12}\xi_1\xi_2}.$$

Denoting $\mathring{\kappa}_2 = \gamma^{13}\xi_2^2 - \gamma^{23}(\xi_1\xi_2 + \xi_3) - g_{13}\gamma^{33}\xi_3^2$, we have for $\tau_{1,3}$ the expressions $\gamma^{13}(\xi_1\xi_2 - \xi_2) - \gamma^{23}\xi^2 + g_{22}\gamma^{33}\xi^2$

$$\tau_{1}^{\pm} = \frac{\gamma^{13}(\xi_{1}\xi_{2}-\xi_{3})-\gamma^{23}\xi_{1}^{2}+g_{23}\gamma^{33}\xi_{3}^{2}}{(\gamma^{13}+g_{12}\gamma^{23})\xi_{1}\xi_{3}+(\gamma^{23}+g_{12}\gamma^{13})\xi_{2}\xi_{3}+\gamma^{13}\xi_{2}-\gamma^{23}\xi_{1}+\mathring{\kappa}_{2}/\tau_{2}^{\pm}}$$
(18)

$$\tau_{3}^{\pm} = \frac{g_{12}\xi_{3}^{2}-\gamma^{33}(\xi_{1}\xi_{2}+\xi_{3})}{(g_{12}\gamma^{23}+g_{13}\gamma^{33})\xi_{1}\xi_{3}+(\gamma^{23}+g_{23}\gamma^{33})\xi_{2}\xi_{3}+\gamma^{13}\xi_{2}+\mathring{\kappa}_{2}/\tau_{2}^{\pm}}.$$

If the compound rotation is symmetric, i.e., $\varphi = \pi$ and $\mathcal{R}(\mathbf{c}) = \mathcal{O}(\mathbf{n}) = 2\mathbf{n} \otimes \mathbf{n}^t - \mathcal{I}$, considering the limit $\tau \to \infty$ in the solutions we substitute the coordinates ξ_k with the contravariant components η_k in the expansion of the unit vector \mathbf{n} ($\xi_k = \tau \eta_k$) dropping all linear and constant terms in the expressions. For example, in the case $\omega = 0$ we have

$$\tau_{1}^{\pm} = \frac{\gamma^{13}\eta_{1}\eta_{2} - \gamma^{23}\eta_{1}^{2} + g_{23}\gamma^{33}\eta_{3}^{2}}{(\gamma^{13} + g_{12}\gamma^{23})\eta_{1}\eta_{3} + (\gamma^{23} + g_{12}\gamma^{13})\eta_{2}\eta_{3} + (\gamma^{13}\eta_{2}^{2} - \gamma^{23}\eta_{1}\eta_{2} - g_{13}\gamma^{33}\eta_{3}^{2})/\tau_{2}^{\pm}}$$

$$(19)$$

$$\tau_{3}^{\pm} = \frac{g_{12}\eta_{3}^{2} - \gamma^{33}\eta_{1}\eta_{2}}{(\gamma^{13} + g_{12}\gamma^{23})\eta_{1}\eta_{2} + (\gamma^{23} + g_{12}\gamma^{23})\eta_{1}\eta_{2}}$$

$$\tau_3^{\pm} = \frac{g_{12}\eta_3 - \gamma - \eta_1\eta_2}{(g_{12}\gamma^{23} + g_{13}\gamma^{33})\eta_1\eta_3 + (\gamma^{23} + g_{23}\gamma^{33})\eta_2\eta_3 + (\gamma^{13}\eta_2^2 - \gamma^{23}\eta_1\eta_2 - g_{13}\gamma^{33}\eta_3^2)/\tau_2^{\pm}}$$

where

(20)
$$\tau_2^{\pm} = \pm \sqrt{\frac{\mathring{\sigma}}{2\gamma^{13} - \mathring{\sigma}}}, \qquad \mathring{\sigma} = 2\frac{\gamma^{13}\eta_2^2 - \gamma^{23}\eta_1\eta_2 - g_{13}\gamma^{33}\eta_3^2}{\eta_1^2 + \eta_2^2 + \gamma^{33}\eta_3^2 + 2g_{12}\eta_1\eta_2}$$

The case $\omega \neq 0$ is treated similarly and so is the decomposition with respect to two axes.

As for the degenerate case (10), if $\omega = 0$ we may use the result obtained in the two axes setting combined with (11) in order to express

(21)
$$\tilde{\tau}_1 = \frac{\tau_1 \pm \tau_3}{1 \mp \tau_1 \tau_3} = -\frac{\xi_3}{\xi_2}, \qquad \tau_2 = -\frac{\xi_3}{\xi_1}.$$
 (21)

If $\omega \neq 0$ on the other hand, the solutions are given by

(22)
$$\tilde{\tau}_1 = \frac{\tau_1 \pm \tau_3}{1 \mp \tau_1 \tau_3} = \frac{\omega \xi_3}{\gamma^{23} \xi_3 - \gamma^{33} \xi_1}, \qquad \tau_2 = \frac{\omega \xi_3}{\gamma^{13} \xi_3 - \gamma^{33} \xi_1}.$$

In both cases we may use η_k instead of ξ_k so that the expressions are valid when $\tau \to \infty$.

If we need to express ξ_k on the other hand, it is straightforward to use the composition law (4) and then take the correct scalar products. Thus, in the case $\omega \neq 0$ we obtain

$$\xi_1 = \frac{(1 - g_{23}\tau_2\tau_3)\tau_1 + \omega^{-1}(\gamma^{12}\tau_1\tau_3 - \gamma^{13}\tau_1\tau_2 - \gamma^{11}\tau_2\tau_3)}{1 - g_{12}\tau_1\tau_2 - g_{13}\tau_1\tau_3 - g_{23}\tau_2\tau_3 + \omega\tau_1\tau_2\tau_3}$$

(23)
$$\xi_2 = \frac{(1+g_{13}\tau_1\tau_3)\tau_2 + \omega^{-1}(\gamma^{22}\tau_1\tau_3 - \gamma^{12}\tau_2\tau_3 - \gamma^{23}\tau_1\tau_2)}{1-g_{12}\tau_1\tau_2 - g_{13}\tau_1\tau_3 - g_{23}\tau_2\tau_3 + \omega\tau_1\tau_2\tau_3}$$

$$\xi_3 = \frac{(1 - g_{12}\tau_1\tau_2)\tau_3 + \omega^{-1}(\gamma^{23}\tau_1\tau_3 - \gamma^{13}\tau_2\tau_3 - \gamma^{33}\tau_1\tau_2)}{1 - g_{12}\tau_1\tau_2 - g_{13}\tau_1\tau_3 - g_{23}\tau_2\tau_3 + \omega\tau_1\tau_2\tau_3} \cdot$$

For $\omega = 0$ the corresponding result is

$$\mathring{\xi}_{1} = \frac{(1 - g_{23}\tau_{2}\tau_{3})\tau_{1} - \gamma^{13}(1 - g_{12}\tau_{1}\tau_{2})\tau_{3}/\gamma^{33}}{1 - g_{12}\tau_{1}\tau_{2} - g_{13}\tau_{1}\tau_{3} - g_{23}\tau_{2}\tau_{3}}$$

$$\mathring{\xi}_{2} = \frac{(1+g_{13}\tau_{1}\tau_{3})\tau_{2} - \gamma^{23}(1-g_{12}\tau_{1}\tau_{2})\tau_{3}/\gamma^{33}}{1-g_{12}\tau_{1}\tau_{2} - g_{13}\tau_{1}\tau_{3} - g_{23}\tau_{2}\tau_{3}}, \quad \mathring{\xi}_{3} = \frac{\gamma^{23}\tau_{1}\tau_{3}/\gamma^{33} - \gamma^{13}\tau_{2}\tau_{3}/\gamma^{33} - \tau_{1}\tau_{2}}{1-g_{12}\tau_{1}\tau_{2} - g_{13}\tau_{1}\tau_{3} - g_{23}\tau_{2}\tau_{3}}.$$

Likewise, in the case of two axes we have a linear system for $\xi_{1,2}$ with solutions, given by

(24)
$$\xi_1 = \frac{\tau_1}{1 - g_{12}\tau_1\tau_2}, \qquad \xi_2 = \frac{\tau_2}{1 - g_{12}\tau_1\tau_2}$$

Since the above expressions are rational in terms of the parameters τ_j , if any of these diverges, i.e., $\varphi_k = \pi$, we can still obtain the correct formulae, applying *l'Hôpital's* rule.

Similar expressions hold for the relations between the scalar parameters and the covariant components of **c** in the corresponding basis. However, these are almost straightforward to write considering the results obtained in [1, 2]. Another possible generalization involves the hyperbolic case, i.e., the three-dimensional *Lorentz* group SO(2, 1), which can be treated in an analogous way. Some of the advantages of this new representation for the numerous applications of the generalized Euler decomposition (cf. [3, 4, 5]) are quite obvious. The explicit dependence only on the contravariant components allows, apart from its purely geometric merits, for straightforward differentiation, as well as for obtaining the decomposition in a rotated frame from one that has been given.

REFERENCES

- D. BREZOV, C. MLADENOVA, I. MLADENOV. Vector Decompositions of Rotations. J. Geom. Symmetry Phys., 28 (2012), 67–103.
- [2] D. BREZOV, C. MLADENOVA, I. MLADENOV. Some New Results on Three-Dimensional Rotations and Pseudo-Rotations. AIP Conf. Proc., vol. 1561, 2013, 275–288.
- 122

- [3] C. MLADENOVA. Group Theory in the Problems of Modeling and Control of Multi-Body Systems. J. Geom. Symmetry Phys., 8 (2006), 17–121.
- [4] J. KUIPERS. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality. Princeton University Press, New Jersey, 1999.
- [5] E. PIÑA. Rotations with Rodrigues' Vector. Eur. J. Phys., 32 (2011), 1171–1178.

Danail S. Brezov University of Architecture Civil Engineering and Geodesy 1, Hristo Smirnenski Blvd 1046 Sofia, Bulgaria e-mail: danail.brezov@gmail.com Clementina D. Mladenova Institute of Mechanics Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 4 1113 Sofia, Bulgaria e-mail: clem@imbm.bas.bg

Ivaïlo M. Mladenov Institute of Biophysics Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 21 1113 Sofia, Bulgaria e-mail: mladenov@bio21.bas.bg

КОВАРИАНТНО РАЗЛАГАНЕ НА ТРИМЕРНИ РОТАЦИИ

Данаил С. Брезов, Клементина Д. Младенова, Ивайло М. Младенов

В тази статия предлагаме алтернативно представяне на решенията, получени преди това в [1, 2] за обобщеното разлагане на *Euler* (около три произволни оси) чрез векторна параметризация на групата SO(3). Скаларните (ъглови) параметри в разлагането са представени като явни функции, зависещи само от контравариантните компоненти на вектор-параметъра на композитната ротация в базиса, определен от трите оси в разлагането. Отделно сме разгледали случаите, в които осите са компланарни и базисът следва да бъде допълнен, и в частност разлагането на две въртения.