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The main purpose of this paper is to provide an alternative representation for the
generalized Euler decomposition (with respect to arbitrary axes) obtained in [1, 2]
by means of vector parametrization of the Lie group SO(3). The scalar (angular)
parameters of the decomposition are explicitly written here as functions depending
only on the contravariant components of the compound vector-parameter in the ba-
sis, determined by the three axes. We also consider the case of coplanar axes, in
which the basis needs to be completed by a third vector and in particular, two-axes
decompositions.

1. Vector-parameters in the Euler decomposition. Vector-parameters, also
known as Rodrigues’ or Gibbs’ vectors, are naturally introduced via stereographic pro-
jection. For the rotation group in R

3 we consider the spin cover SU(2) ∼= S
3 −→ SO(3) ∼=

RP
3 and identify S

3 with the set of the unit quaternions (cf. [4])

ζ = (ζ0, ζ) = ζ0 + ζ1i + ζ2j + ζ3k, |ζ|2 = ζζ̄ = 1, ζ̄ = (ζ0,− ζ), ζα ∈ R.

The corresponding group morphism is given by the adjoint action of S
3 in its Lie algebra

of skew-Hermitian matrices, in which we expand vectors x ∈ R
3 → x1i+x2j+x3k ∈ su(2).

The resulting SO(3) matrix transforming the Cartesian coordinates of x has the form

(1) R(ζ) = (ζ2
0 − ζ2)I + 2 ζ⊗ ζt + 2 ζ0ζ

×,

where I and ζ⊗ζt denote the identity and the tensor (dyadic) product in R
3 respectively,

whereas ζ× is the skew-symmetric matrix, associated with the vector ζ via Hodge duality.
The famous Rodrigues’ rotation formula then follows directly with the substitution

ζ0 = cos
ϕ

2
, ζ = sin

ϕ

2
n, (n,n) = 1.

On the other hand, we may choose to get rid of the unnecessary fourth coordinate by

projecting ζ → c =
ζ

ζ0

= tan
(ϕ

2

)

n and thus obtain the entries of the rotation matrix

(1) expressed as rational functions of the vector-parameter c in the form

(2) R(c) =
(1 − c2) I + 2 c⊗ ct + 2 c×

1 + c2
·

*2010 Mathematics Subject Classification: 20C35, 22E70, 81R05.
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Quaternion multiplication then gives the composition law of vector-parameters as

(3) 〈c2, c1〉 =
c2 + c1 + c2× c1

1 − (c2, c1)
, R(c2)R(c1) = R(〈c2, c1〉)

and in the case of three rotations c = 〈c3, c2, c1〉 we have

(4) c =
c3 + c2 + c1 + c3× c2 + c3× c1 + c2× c1 + (c3× c2)× c1 − (c3, c2) c1

1 − (c3, c2) − (c3, c1) − (c2, c1) + (c3, c2, c1)
·

It is not difficult to see that the operation is associative and constitutes a representation of
SO(3), since the identity and inverse elements are also well-defined by 〈 c, 0 〉=〈 0, c 〉=c,
〈c, −c〉=0. Among the advantages of this representation are more economical calcula-
tions, rational expressions for the matrix entries of R(c) and a correct description of the
topology of SO(3) ∼= RP

3. For applications in rigid body mechanics we refer to [3, 5].

As for the generalized Euler decompositions, we start with the much simpler two
axes setting R(c) = R(c2)R(c1), where ck = τkĉk and c = τn (ĉ2

k = n2 = 1) are the
corresponding vector-parameters. We also denote (ĉj ,R(c) ĉk) = rjk and (ĉj , ĉk) = gjk.
Taking an appropriate scalar product provides the necessary and sufficient condition
for the existence of the above decomposition in the form r21 = g21. Next, multiplying
c = 〈c2, c1〉 on the left by n× and projecting along ĉ1 and ĉ2 respectively, we obtain

(5) τ1 =
υ̃3

g12υ1 − υ2

, τ2 =
υ̃3

g12υ2 − υ1

,

where we make use of the notations

υk = (ĉk,n) , υ̃1 = (ĉ2× ĉ3,n) , υ̃2 = (ĉ3× ĉ1,n) , υ̃3 = (ĉ1× ĉ2,n) ·
Note that vanishing denominators in the above expressions are related to half-turns,
i.e., rotations by a straight angle. In particular, if n ⊥ ĉ1,2 (υ1 = υ2 = 0), we have
a decomposition into a pair of reflections, which is a well-known result in elementary
geometry.

In the case of three axes R(c) = R(c3)R(c2)R(c1), such that ĉ2 cannot be parallel
to ĉ1 or ĉ3, we use the scalar product (ĉ3,R(c) ĉ1) = (ĉ3,R(τ2ĉ2) ĉ1) to obtain

(r31 + g31 − 2g12g23) τ2
2 + 2ω τ2 + r31 − g31 = 0, ω = (ĉ1, ĉ2× ĉ3).

The above quadratic equation has real roots given by

(6) τ±

2 =
−ω ±

√
∆

r31 + g31 − 2g12g23

as long as its discriminant is non-negative

(7) ∆ =

∣

∣

∣

∣

∣

∣

1 g12 r31

g21 1 g23

r31 g32 1

∣

∣

∣

∣

∣

∣

≥ 0

which plays the role of a necessary and sufficient condition for the existence of the decom-
position. In order to find the remaining two scalar parameters, we use the composition

c1 = 〈−c2,−c3, c 〉, c2 = 〈−c3, c,−c1 〉, c3 = 〈 c,−c1,−c2 〉.
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Namely, multiplying by ĉ×k on the left and projecting over n, we obtain the linear-
fractional relations between τk, which yield the solutions for the generic case in the form

τ±

1 =
g32 − r32

(g32 + r32)τυ1 − (g31 + r31)τυ2 + (r31 − g31)/τ±

2

(8)

τ±

3 =
g21 − r21

(g21 + r21)τυ3 − (g31 + r31)τυ2 + (r31 − g31)/τ±

2

while in the symmetric one we consider the limit τ → ∞ and thus obtain

(9) τ±

1
=

g23 − υ2υ3

υ1υ̃1 + υ2υ̃2 + (υ1υ3 − g13)/τ±

2

, τ±

3
=

g12 − υ1υ2

υ2υ̃2 + υ3υ̃3 + (υ1υ3 − g13)/τ±

2

·

In the three axes setting we may also have degenerate solutions, related to a singularity
of the map RP

3 → T
3, known as gimbal lock, which is given by the condition

(10) ĉ3 = ±R(c) ĉ1.

In that case the parameters τ1 and τ3 cannot be determined independently. Instead, we
have the effective two-axes decomposition R(c) = R(τ2ĉ2)R(τ̃1ĉ1), where the solutions

(11) τ̃1 =
τ1 ± τ3

1 ∓ τ1τ3

=
υ̃3

g12υ1 − υ2

, τ2 =
υ̃3

g12υ2 − υ1

form an one-parameter set, expressed in terms of the generalized Euler angles as

ϕ1 ± ϕ3 = 2 arctan

(

υ̃3

g12υ1 − υ2

)

, ϕ2 = 2 arctan

(

υ̃3

g12υ2 − υ1

)

·

2. Covariant form of the solutions. First, we consider the simpler case of two
axes c = 〈τ2ĉ2, τ1ĉ1〉, in which it is necessary to complete the basis with a third vector

(12) c = ξ1 ĉ1 + ξ2 ĉ2 + ξ3 ĉ1× ĉ2.

If we denote the adjoint matrix of g with γ, we have | ĉ1× ĉ2 |2 = 1 − g2
12 = γ33. Note

that in formula (5) we use the covariant components of c in the same basis

(13) τυ1 = ξ1 + g12ξ2, τυ2 = ξ2 + g12ξ1, τ υ̃3 = γ33ξ3.

Thus, by direct substitution, we obtain the decomposability condition r21 = g21 as

(14) ξ1ξ2 + (1 − g12ξ3)ξ3 = 0

and the solutions themselves are given by the expressions

(15) τ1 = −ξ3/ξ2, τ2 = −ξ3/ξ1·
One peculiar symmetry becomes apparent from the above formula, namely τ1ξ2 − τ2ξ1 = 0.

In the three axes setting we first consider the case, in which {ĉk} constitutes a basis

c = ξ1 ĉ1 + ξ2 ĉ2 + ξ3 ĉ3 = 〈τ3ĉ3, τ2ĉ2, τ1ĉ1〉.
We substitute the matrix entries rij , calculated according to (2) in the solutions (6), (8)
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and use the inverse metric tensor g−1 = ω−2γ for lifting the indices of c. Thus, we obtain

τ±

2 =
−ω ±

√

ω2 − σ2 + 2γ13σ

σ − 2γ13
, σ = 2

γ13ξ2
2 − γ23ξ1ξ2 − γ12ξ2ξ3 + γ22ξ1ξ3 − ωξ2

ξ2
1 + ξ2

2 + ξ2
3 + 2g12ξ1ξ2 + 2g23ξ2ξ3 + 2g13ξ1ξ3

for the middle parameter and for the other two

τ±

1 =
γ13ξ1ξ2 + γ12ξ1ξ3 − γ11ξ2ξ3 − γ23ξ2

1 − ωξ1

ω (ξ2
1

+ ξ2
2

+ 2g12ξ1ξ2 + g13ξ1ξ3 + g23ξ2ξ3) − γ23ξ1 + γ13ξ2 + κ2/τ±

2

(16)

τ±

3
=

γ13ξ2ξ3 + γ23ξ1ξ3 − γ33ξ1ξ2 − γ12ξ2
3 − ωξ3

ω (ξ2
2 + ξ2

3 + g12ξ1ξ2 + g13ξ1ξ3 + 2g23ξ2ξ3) + γ13ξ2 − γ12ξ3 + κ2/τ±

2

respectively, in which we use the notation κ2 = γ13ξ2
2 −γ23ξ1ξ2−γ12ξ2ξ3 +γ22ξ1ξ3−ωξ2.

In the case ω = 0 we use expansion in the basis (12) and the explicit relations (13)
between the covariant and contravariant components of c in order to obtain

(17) τ±

2 = ±
√

σ̊

2γ13 − σ̊
, σ̊ = 2

γ13ξ2
2 − γ23(ξ1ξ2 + ξ3) − g13γ

33ξ2
3

1 + ξ2
1 + ξ2

2 + γ33ξ2
3 + 2g12ξ1ξ2

·

Denoting κ̊2 = γ13ξ2
2 − γ23(ξ1ξ2 + ξ3) − g13γ

33ξ2
3 , we have for τ1,3 the expressions

τ±

1 =
γ13(ξ1ξ2 − ξ3) − γ23ξ2

1 + g23γ
33ξ2

3

(γ13 + g12γ23)ξ1ξ3 + (γ23 + g12γ13)ξ2ξ3 + γ13ξ2 − γ23ξ1 + κ̊2/τ±

2

(18)

τ±

3 =
g12ξ

2
3 − γ33(ξ1ξ2 + ξ3)

(g12γ23 + g13γ33)ξ1ξ3 + (γ23 + g23γ33)ξ2ξ3 + γ13ξ2 + κ̊2/τ±

2

·

If the compound rotation is symmetric, i.e., ϕ = π and R(c) = O(n) = 2n ⊗ nt− I,
considering the limit τ →∞ in the solutions we substitute the coordinates ξk with the
contravariant components ηk in the expansion of the unit vector n (ξk = τηk) dropping
all linear and constant terms in the expressions. For example, in the case ω = 0 we have

τ±

1 =
γ13η1η2 − γ23η2

1 + g23γ
33η2

3

(γ13 + g12γ23)η1η3 + (γ23 + g12γ13)η2η3 + (γ13η2
2 − γ23η1η2 − g13γ33η2

3)/τ±

2

(19)

τ3
± =

g12η
2
3 − γ33η1η2

(g12γ23 + g13γ33)η1η3 + (γ23 + g23γ33)η2η3 + (γ13η2
2
− γ23η1η2 − g13γ33η2

3
)/τ±

2

where

(20) τ±

2
= ±

√

σ̊

2γ13 − σ̊
, σ̊ = 2

γ13η2
2 − γ23η1η2 − g13γ

33η2
3

η2
1

+ η2
2

+ γ33η2
3

+ 2g12η1η2

·

The case ω 6= 0 is treated similarly and so is the decomposition with respect to two axes.

As for the degenerate case (10), if ω = 0 we may use the result obtained in the two
axes setting combined with (11) in order to express

(21) τ̃1 =
τ1 ± τ3

1 ∓ τ1τ3

= −ξ3

ξ2

, τ2 = −ξ3

ξ1

.
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If ω 6= 0 on the other hand, the solutions are given by

(22) τ̃1 =
τ1 ± τ3

1 ∓ τ1τ3

=
ω ξ3

γ23ξ3 − γ33ξ1

, τ2 =
ω ξ3

γ13ξ3 − γ33ξ1

·

In both cases we may use ηk instead of ξk so that the expressions are valid when
τ → ∞.

If we need to express ξk on the other hand, it is straightforward to use the composition
law (4) and then take the correct scalar products. Thus, in the case ω 6= 0 we obtain

ξ1 =
(1 − g23τ2τ3)τ1 + ω−1(γ12τ1τ3 − γ13τ1τ2 − γ11τ2τ3)

1 − g12τ1τ2 − g13τ1τ3 − g23τ2τ3 + ωτ1τ2τ3

ξ2 =
(1 + g13τ1τ3)τ2 + ω−1(γ22τ1τ3 − γ12τ2τ3 − γ23τ1τ2)

1 − g12τ1τ2 − g13τ1τ3 − g23τ2τ3 + ωτ1τ2τ3

(23)

ξ3 =
(1 − g12τ1τ2)τ3 + ω−1(γ23τ1τ3 − γ13τ2τ3 − γ33τ1τ2)

1 − g12τ1τ2 − g13τ1τ3 − g23τ2τ3 + ωτ1τ2τ3

·

For ω = 0 the corresponding result is

ξ̊1 =
(1−g23τ2τ3)τ1 − γ13(1−g12τ1τ2)τ3/γ33

1 − g12τ1τ2 − g13τ1τ3 − g23τ2τ3

ξ̊2 =
(1+g13τ1τ3)τ2 − γ23(1−g12τ1τ2)τ3/γ33

1 − g12τ1τ2 − g13τ1τ3 − g23τ2τ3

, ξ̊3 =
γ23τ1τ3/γ33 − γ13τ2τ3/γ33 − τ1τ2

1 − g12τ1τ2 − g13τ1τ3 − g23τ2τ3

·

Likewise, in the case of two axes we have a linear system for ξ1,2 with solutions, given by

(24) ξ1 =
τ1

1 − g12τ1τ2

, ξ2 =
τ2

1 − g12τ1τ2

·

Since the above expressions are rational in terms of the parameters τj , if any of these
diverges, i.e., ϕk = π, we can still obtain the correct formulae, applying l’Hôpital’s rule.

Similar expressions hold for the relations between the scalar parameters and the co-
variant components of c in the corresponding basis. However, these are almost straight-
forward to write considering the results obtained in [1, 2]. Another possible generalization
involves the hyperbolic case, i.e., the three-dimensional Lorentz group SO(2, 1), which can
be treated in an analogous way. Some of the advantages of this new representation for the
numerous applications of the generalized Euler decomposition (cf. [3, 4, 5]) are quite ob-
vious. The explicit dependence only on the contravariant components allows, apart from
its purely geometric merits, for straightforward differentiation, as well as for obtaining
the decomposition in a rotated frame from one that has been given.
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КОВАРИАНТНО РАЗЛАГАНЕ НА ТРИМЕРНИ РОТАЦИИ

Данаил С. Брезов, Клементина Д. Младенова, Ивайло M. Младенов

В тази статия предлагаме алтернативно представяне на решенията, получени
преди това в [1, 2] за обобщеното разлагане на Euler (около три произволни
оси) чрез векторна параметризация на групата SO(3). Скаларните (ъглови) па-
раметри в разлагането са представени като явни функции, зависещи само от
контравариантните компоненти на вектор-параметъра на композитната ротация
в базиса, определен от трите оси в разлагането. Отделно сме разгледали слу-
чаите, в които осите са компланарни и базисът следва да бъде допълнен, и в
частност разлагането на две въртения.
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