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In this paper we consider the properties of weighted voting games having a dummy
player and two basic decision power indices. In principle, a player can be assigned
weight zero, but in practice this player would be a dummy. We will discuss the games
in which a player has a positive weight and can also be a dummy. The most famous
example of this somewhat paradoxical phenomenon is offered by Luxembourg in the
Council of Ministers of the EU between 1958 and 1973. Luxembourg held weight one
but was a dummy and we call this case the voting paradox of Luxembourg.

1. Introduction. The notion of a simple game was introduced by John von Neu-
mann and Oscar Morgenstern in their monumental book Theory of Games and Economic
Behavior in 1944 [5]. This game is a conflict in which the only objective is winning and
the only rule is an algorithm to decide which coalitions are winning. When the number
of players is small in a voting game it can occur that one of the players has no influence
on the result of this game.

In order to study the voting paradox of Luxembourg mathematically we must first
define a few terms.

Definition 1. A simple game is a pair (N,v) where N = {1,2,....,n} is a set of
players, n = |N| > 2, and v : 2 — {0,1} is the characteristic function which satisfies
the following three conditions:

(1) v(0) = 0.

(2) v(N) =1.

(3) if S and T are coalitions of players in N such that S C T, then v(S) < v(T).

The characteristic function v for a coalition S indicates the value of S. For each
coalition S C N there is either v(S) =0 or v(S) = 1.

Definition 2. For a coalition S C N, we define that coalition S is winning if and
only if v(S) = 1, coalition S is losing if and only if v(S) = 0, and the losing coalition
S is blocking if and only if N\S is a losing coalition too. The collection of all winning
coalitions is denoted by W .

By definition N € W therefore, W is nonempty.

Definition 3. Let us label the players by 1,2,...,n and let S € W, S is called a
minimal winning coalition if and only if S\{i} is a losing coalition for all i € S. The
collection of all minimal winning coalitions is denoted by MW .
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It is easy to prove that MW C W is nonempty.

Definition 4. A player who does mot belong to any minimal winning coalition is
called a dummy, i.e., player i € N is a dummy if and only if i ¢ S for all S € MW. A
player who belongs to all minimal coalitions is called a veto player, i.e., a player i € N
has capacity to veto if and only if i € S for all S € MW . A player i € N is a dictator if
and only if {i} is a winning coalition, i.e. {i} € MW.

Of course, if i € N and v(SU{i})—v(S) =0 for all S C N, then player 7 is a dummy.

2. Weighted voting games. We will consider a special class of simple games called
weighted voting games with dichotomous voting rule — acceptance or rejection. The
basic formal framework of this study is as follows. The symbol [¢; w1, wa, ..., w,] will be
used, where ¢ and wy,ws, ..., w, are nonnegative integer numbers such that w; < ¢ <

n

Z wy = 7 for all i € N. By convention, we take w; > w; if ¢ < j. Here we have the

k=1
following properties:

(1)1<g<T.

(2) n = |N| > 2 is the number of players.

(3) w; > 0 is the number of votes of player i € N and wy > 1.

(4) q is the needed quota so that a coalition can win.

The symbol [g; w1, wa, ..., w,] represents the simple game (N, v) defined by

L, Y w>gq
U(S) _ kesS 7
0, Z wi < q
kesS
where S C N.

Of course, if i € N and w; = 0, then player 7 is a dummy.

Remark 1. A simple game (N, v) is called proper if and only if v(S) + v(N\S) < 1
for all S C N. In a proper game S and N\S cannot both be winning coalition. It is
easy to show that if 2¢ > 7, then the weighted voting game (N,v) is proper. In an
improper game there will be at least one pair of non-intersection winning coalitions. If
v(S) +v(N\S) =1 for all S C N, then the game is said to be decisive.

Example 1. The voting method of the Security Council of the United Nations,
formed by 5 permanent and 10 temporary members, is the game in which each one of the
permanent members has 7 votes and each one of the temporary members has only one
vote, the established quota being 39 votes, all votes are 45. We observe that any coalition
which does not include all of the 5 permanent members has at most 4 x 7 + 10 = 38
votes, which is a number inferior to the fixed quota. As a result this coalition will not be
winning. Hence, each one of the permanent members has capacity to veto any proposal.
For more information see [2] and [4].

Example 2. The Bulgarian Parliament with 240 seats uses two rules: a simple
majority by quota 121 (more than 50%) and a qualified majority by quota 161 (more
than %) The Finish Parliament with 200 seats uses three rules: a simple majority by
quota 101 (more than 50%), a qualified majority by quota 134 (more than %), and in
some special case by quota 167 (more than 3) [2].

Example 3. The U. S. Congress has a nonvoting delegate who represents the District
of Columbia; therefore, this delegate is a dummy.

139



Example 4. Note that in principle a player can be assigned weight zero, but in
practice this player would be silly, because it would be a dummy. However, a player
having positive weight can also be a dummy. It is known that Luxembourg as a member
of the European Union Council of Ministers in the period 1958-1973 had weight one but
was a dummy. Now, we call this situation the voting paradox of Luxembourg.

3. Decision power indices of the players. The weighted voting games employ
mathematical models which are used to analyze the distribution of decision power of the
players. This analysis of power is central in political science. In general, it is difficult to
define the idea of power, but for the special case of voting power mathematical power
indices have been used. There are two most widely used measures of voting power in
the weighted voting games — the Shapley—Shubik power index and the Banzhaf power
index. The Shapley—Shubik power index in a voting situation depends on the number
of orderings in which each player is pivotal. The Banzhaf power index depends on the
number of ways in which each player can affect a negative swing.

3.1. The Shapley—Shubik power index. The Shapley—Shubik power index was
introduced by the mathematician Lloyd Shapley and the economist Martin Shubik in
1954 [3]. For player i € N this index is defined by

sln—s—1)!
¢ = Z %,
S¢W,Su{i}eWw
where s = |S|. If we assume that all n! orderings are equiprobable, then ¢; is the
probability of player ¢ being pivotal in a winning coalition, that is, SU ({¢} is a winning
and S is a losing coalition.

Remark 2. In the classical theory a negative swing for player ¢ € N is a pair of
coalitions (S U {i}, S) such that SU{:} is winning and S is losing, i.e., i ¢ S, v(SU{i}) =1
and v(S) = 0. It is easy to show that v(S) —v(S\{i}) is always either zero or one for all
SCNandalli e N. If S C Nandi ¢ S, then v(S)—v(S\{i})=0.f SC Nandi€ S,
then v(S)—v(S\{i}) = 1 (when S is winning and S\ {4} is losing) or v(S) —v(S\{i}) =0
(when S and S\{i} are winning or S and S\{i} are losing).

From Remark 2 it follows that

pr= 3 B gy s\ (i)

n!
SCN

s—1)l(n—s)! )
=y BRI s,
SCN:iesS ’
For each player ¢ € N we also obtain

n—1 . .
jin—j3-1) .
P Vi
j=0
where each d;- is the number of negative swings of player ¢ in a coalition of size j.
The Shapley-Shubik index is the vector ¢ = (¢1,¢2,...,d,) and it has the normal-
n
ization property, i.e., Z ¢; = 1.

i=1
3.2. The Banzhaf power index. The Banzhaf power index was introduced by the
American jurist and law professor John Banzhaf IIT in 1965 [1]. The absolute Banzhaf
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index concerns the number of times each player ¢ € N could change a coalition from
losing to winning and it requires that we know the number of negative swings for each
player i. For each player ¢ € N, the absolute Banzhaf index is denoted by 7; and it equals
the number of negative swings for this player.
The normalized Banzhaf power index is the vector 8 = (61, B2, .. ., Bn), given by
B = nL for 1=1,2,...,n.
D k=1 "k

Remark 3. It is easy to show that
mi= Y (0S) —v(S\{i)) = D (©S)—v(S\{i})
SCN SCN:ieS
for all ¢ = 1,2,...,n. See also Remark 2. The Banzhaf index is similar of the Penrose-
Banzhaf (or Banzhaf-Coleman) index which is defined by

v(S) —v(S\{i}) _ m ,
bi:Z 1 = on-1 fori=1,2,...,n.

SCN

Remark 4. Let S C N be a minimal winning coalition and 7 € N. It is easy to show
that v(S) —v(S\{i}) =1 for all i € S and v(S) —v(S\{i}) =0for alli ¢ S.

4. Analysis of the voting paradox of Luxembourg. Consider the Council of
Ministers in the period 1958-1973. The decision rule is a weighted voting game
[12;4,4,4,2,2,1]. In this game the players are: Germany, France, Italy, Belgium, Nether-
lands and Luxembourg. Note that the total sum of the weights is 17 and the quota is
12, i.e., 7 = 17 and ¢ = 12. The number of winning coalitions is 14 and they are: {1, 2,
3,4,5,6}, {1,2,3,4,5}, {1,2,3, 4,6}, {1, 2, 3,5, 6}, {1, 2, 3,4}, {1, 2, 3, 5}, {1, 2,
3,6}, {1, 2,4, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {1, 2, 3}, {1, 2, 4, 5}, {1, 3, 4, 5}
and {2, 3, 4, 5}. The number of minimal winning coalitions is 4 and they are: {1,2,3},
{1, 2, 4,5}, {1, 3,4, 5} and {2, 3, 4, 5}. As a result we see that Luxembourg (player 6)
is a dummy player. This game has no veto player and no dictator. We also get that this
game has at least one blocking coalition, for example {1,4}. Note that coalition {4, 5,6}
is losing but not blocking.

These notes allow us to discuss the case when a player has positive weight and is a
dummy.

Let us consider a proper game [g; wy,wa,...,Ws_1,w,] when n > 3 and w, > 0.
Then, w; > 0 for allt € N.

Theorem 1. Leti,j € N and i # j. The following statements are true.

(a) If player i is not a dummy and player j is a dummy, then w; > w;.
(b) If player i is a dummy and w; > wj, then player j is also a dummy.
Proof. (a) Let us denote MWy, = {S € MW : k € S} for k € N. It is easy to show
that MW; is not empty and MW is empty.
IfSe MW; c MW, then Z wg > q. For T = S\{i} it follows that Z wg +w; > q
kes keT

and Zwk < g, i.e., T is a losing coalition. It is known that player j is a dummy;

keT
therefore, j ¢ S and j ¢ T. Let us now consider the coalition P = T U {j}. There are

two cases:
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Case 1. Let P be a losing coalition. In this case we have Z wg +wj < q.

keT
Case 2. Let P be a winning coalition. From the condition that j is a dummy it follows

that T = P\{j} is a winning coalition too. This leads to a contradiction.

Finally, we obtain Z wy +w; < q.

keT
From the inequalities Z wy + w; > q and Z wg +w;j < g we get w; > wj.
keT keT

(b) Let us assume that player j is not a dummy. From player ¢ being a dummy
and part (a) it follows that w; < w;. This leads to a contradiction with the condition
w; > wj; therefore, player j is a dummy.

The theorem is proven. O

Theorem 2. Let i € N. The following statements are equivalent:

(a) Player i is a dummy.

(b) ¢ =0.

(c) mi =0.

Proof. First step: (a) = (b). Let player ¢ be a dummy.

For S C N and ¢ € S there are two cases:

Case 1. If S ¢ W, then v(S) = 0. It is clear that also v(S\{i}) = 0. As a result we
get v(S) —v(S\{i}) = 0.

Case 2. If S € W, then v(S) = 1. It is easy to show that S ¢ MW, therefore,
v(S\{i}) = 1. As a result we also get v(S) — v(S\{i}) =0.

Finally, we obtain v(S) — v(S\{i}) = 0 for all S C N. Thus, for the Shapley-Shubik
power index we have

¢; = Z (5= Dln = )t (v(S) —v(S\{i})) = Z MO —0.

n! n!
SCN:ieS SCN:ieS
Second step: (b) = (c). In this case, let ¢; = 0.
—1)l(n—s)!
From ¢; = Z W (v(S) —v(S\{i})) = 0 it follows that v(S) —

SCN:eS
v(S\{i}) = 0 for all S C N when ¢ € S. Hence, for the Banzhaf power index we
have n; = Z (v(S) —v(S\{i})) = 0. As a result we obtain §; =n; = 0.
SCN:ieS
Third step: (¢) = (a). Finally, let 3; = 0.
From n; = Z (v(S) —v(S\{i})) = 0 it follows that v(S) — v(S\{i}) = 0 for all
SCN:eS

S C N when ¢ € S§. There are two cases:

Case 1. If v(S) =1 and v(S\{i}) =1, then S € W and S ¢ MW.

Case 2. If v(S) = 0 and v(S\{i}) =0, then S ¢ W.

Finally, we obtain S ¢ MW for all S C N when ¢ € S, i.e., player i is a dummy.

The theorem is proven. O

Remark 5. Note that the collection of all winning coalitions, the collection of all
minimal winning coalitions and the power indices of players in the weighted voting
game [q; w1, ws,...,w,| are the same as the collection of all winning coalitions, the
collection of all minimal winning coalitions and the power indices in the weighted vot-
ing game [Ag; AMwy, Awa, . .., A\wy,] for every positive integer number A, respectively. As
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a result we obtain that the game [12;4,4,4,2,2,1] can be equivalently represented as
[12:4,4,4,2,2,0] and [6:2,2,2,1,1,0].

Remark 6. From Theorem 2 it follows that ¢ = 0 and 75 = 0 in the weighted
voting game [12;4,4,4,2, 2, 1], i.e., the Shapley-Shubik and the normalized Banzhaf power
indices for Luxembourg are zero. It is easy to calculate that the Shapley-Shubik power
index equals to (0.233,0.233,0.233,0.150,0.150,0) and the normalized Banzhaf power
index equals to (0.238,0.238,0.238,0.143,0.143,0) [2].

Theorem 3. Ifw,—1 > 2,0 < w, < wp—1, ¢ =0 modulo w,—1 and w; = 0 modulo
Wp_1 foralli=1,2,...n—2, then player n is a dummy.

Proof. Let p be a positive integer number between ¢ and 7, and denote W(p) = {S €

W Zwi =p} and MW (p) = MW NW (p). Tt is easy to show that W = U W (p) and
i€s p=q

MW = U MW (p). Since W is nonempty it follows that there exists p € [¢, 7] such that
p=q
W (p) is nonempty, too.
Of course, if W (p) is nonempty, then p = 0 modulo w,_1 or p = w, modulo wy,_1.
Let W (p) be nonempty. Here there are two cases.
Case 1. Let p = 0 modulo w,,_1.
In this case there exists S € W(p) such that Zwi = p. From Zwl = 0 modulo
= =
wp—1 it follows that n ¢ S. As a result we obtain that S € W(p) implies n ¢ S. Let us
denote A={p€q,7]:n¢ S € W(p)}. Obviously, n ¢ S for all S € U W (p).
pEA
Case 2. Let p = w, modulo w,_1.
In this case we have p > ¢. Let us assume that there exists S € W(p), i.e. Z w; =P
€S
and p > ¢q. From Zwl = w, modulo w,_ it follows that n € S and p > ¢ + w,.
€S
Consider a coalition T' = S\{n}. It is easy to see that T € W(p — w,); therefore,
S ¢ MW. As a result we get S ¢ MW (p), i.e. MW (p) is empty.

Finally, we have that n ¢ S for all S € U W(p) and MW = U MW (p) =
p=q

peEA
U MW(p) C U W(p). As a result we obtain n ¢ S for all S € U MW (p) and
peEA peEA peEA
MW C U W(p). It is easy to show that n ¢ S for all S € MW, i.e., player n is a
pEA
dummy.
The theorem is proved. (]

Remark 7. From Theorem 3 it follows that player 6 is a dummy in the weighted
voting game [12;4,4,4,2,2 1], i.e., Luxembourg is a dummy. Note that player 6 also is
a dummy in the weighted voting games [15;9,9,6,3,3,1] and [15;9,9,6, 3, 3,2].

Remark 8. We showed that player 6 is a dummy in the weighted voting game
[12;4,4,4,2,2,1]. Now consider an extension by a small new player, who receives the
same weight as player 6. We have two cases on the quota in the new game.
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Case 1. Let ¢ = 12, i.e., consider the weighted voting game [12;4,4,4,2,2,1,1]. Tt is
easy to show that {1,2,4,6,7} is a minimal winning coalition. As a result in this game
players 6 and 7 are not dummies.

Case 2. Let ¢ = 13, i.e., consider the weighted voting game [13;4,4,4,2,2,1,1]. It
is easy to show that {1,2,3,6} and {1,2,3,7} are two minimal winning coalitions. As a
result in this game players 6 and 7 are not dummies.

Finally, the two new games have no dummy player.

Remark 9. Consider Case 1 of Remark 8, i.e., the weighted voting game [12; 4, 4,
4,2,2 1, 1]. Let us assume that players 4 and 5 be hard partners, i.e., for each S € W,
4 € S if and only if 5 € S. In this case the minimal winning coalitions are {1,2,3},
{1,2,4,5}, {1,3,4,5} and {2,3,4,5}. As a result we find that players 6 and 7 are dummies.
See also Theorem 3.
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BBbPXY ITAPAJOKCA C I'VNTACYBAHETO HA JIIOKCEMBYPI' 1
NMHAEKCHU HA BJIMAHUE BbPXY PEIITEHUETO

3apasko /. CaaBoB, Xpuctuna C. EBanc

B rasu craTus Hue pasriexkjiame CBOCTBATA HA TEIJIOBHHU UIPH C TJIACYyBaHe, MMAIIT
bUKTUBEH UTpaY U J[Ba OCHOBHU MHJEKCA HA BJIMsAHUE BbPXY pernenuero. [1o npuHimn
Ha, €JIMH UI'Pad MOXKe Ja MMa MPUCHIEHO TErJIO HyJ/Ia, HO HAa MPAKTUKA TO3U UTPAd IIe
obae duxkTuBeH. Hue pasriexjame Wrpu, B KOUTO €JIWH UIpad UMa ITOJIOYKUTETHO
TErJI0 U ChINO MOXKe Ja Objie dpukTuBeH. Haii-u3BecTHUAT IpUMEpP 32 TOBa JOHSIKbIE
apa/oKcaJjHo siBjIeHne ce Brxkia npu Jlrokcembypr B CbBera Ha munucrpure Ha EC
mexkay 1958 u 1973. JlrokcemOypr nmpuTezKaBa TErJIO €IHO, HO Oerte DUKTUBEH U HUE
HapuyaMe TO3U CJIydail mapajioKca C IrjIacyBaHeTo Ha JIrokceMOypr.

KuarouoBu gymm: TersioBHE UTPH C TyiacyBaHe, (DPUKTUBEH UTPad, MapaoKC, MHIEKC
Ha BJIMSIHUE, [T€YEJTUBIINA KOAJIUIHUS.
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