ONE SUFFICIENT CONDITION FOR THINNESS OF SEQUENCES*

Abstract

Dimcho K. Stankov It is known that every interpolating sequence of type 1 for H^{∞} is a thin sequence, which satisfies an additional topological condition by R. Mortini. In this paper, we present another proof of this fact. More precisely, we prove that if there exists a thin radial sequence in the open unit disk such that the interpolation problem admits a solution with norm 1, then this condition is fulfilled.

1. Introduction. Let H^{∞} be the Banach algebra of all bounded analytic functions in the open unit disk $D=\{z \in \mathbb{C}:|z|<1\}$ with the supremum norm. Its spectrum, or maximal ideal space, is the space $M\left(H^{\infty}\right)$ of all nonzero multiplicative linear functionals on H^{∞} endowed with the weak*-topology. Then $M\left(H^{\infty}\right)$ is a compact Hausdorff space and Carleson's corona theorem says that D is dense in $M\left(H^{\infty}\right)$. As usual we identify a function $f \in H^{\infty}$ with its Gelfand transform \hat{f}, defined by $\hat{f}(x)=x(f)$ for $x \in M\left(H^{\infty}\right)$. Taking the boundary values of the functions on $\partial D=\{z \in \mathbb{C}:|z|=1\}$, we can consider $H^{\infty}=H^{\infty}(\partial D)$ as an essentially supremum-norm closed subalgebra of $L^{\infty}=L^{\infty}(\partial D)$. The maximal ideal space $M\left(L^{\infty}\right)$ of L^{∞} can be identified with the Shilov boundary of H^{∞}.

To proceed, we need to present a few definitions. For points x and y in $M\left(H^{\infty}\right)$ the pseudohyperbolic distance is defined by

$$
\rho(x, y)=\sup \left\{|h(x)|: h \in \operatorname{ball}\left(H^{\infty}\right), h(y)=0\right\}
$$

where ball $\left(H^{\infty}\right)$ stands for the closed unit ball of H^{∞}. By Schwarz-Pick's lemma $\rho(z, w)=|z-w| /|1-\bar{z} w|$ for z and w in D. It is well known that the relation defined on $M\left(H^{\infty}\right)$ by $x \sim y \Longleftrightarrow \rho(x, y)<1$ defines an equivalence relation on $M\left(H^{\infty}\right)$. The equivalence class containing a point $x \in M\left(H^{\infty}\right)$ is called the Gleason part of x and is denoted by $P(x)$. If $P(x)$ consists of a single point, we call the part (or point) trivial. If the part consists of more than one point, the part (or point) is called nontrivial ([1]) .

A sequence $\left\{x_{n}\right\}_{n}$ in $M\left(H^{\infty}\right)$ is called interpolating if for every bounded sequence $\left\{a_{n}\right\}_{n}$ of complex numbers there is a function $f \in H^{\infty}$ such that $f\left(x_{n}\right)=a_{n}$ for all n. A sequence $\left\{x_{n}\right\}_{n}$ in $M\left(H^{\infty}\right)$ is said to be discrete if there exists a sequence of open sets $\left\{U_{n}\right\}_{n}$ with $x_{n} \in U_{n}$ for every n, whose closures are pairwise disjoint. Every interpolating sequence is discrete.

[^0]An interpolating sequence $\left\{z_{n}\right\}_{n}$ in D is characterized by Carleson ([2]) as follows:

$$
\inf _{j} \prod_{n: n \neq j}^{\infty}\left|\frac{z_{j}-z_{n}}{1-\bar{z}_{n} z_{j}}\right|>0
$$

For a sequence $\left\{z_{n}\right\}_{n}$ in D with $\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$, the function:

$$
B(z)=\prod_{n=1}^{\infty} \frac{-\bar{z}_{n}}{\left|z_{n}\right|} \frac{z-z_{n}}{1-\bar{z}_{n} z}, z \in D
$$

is called the Blaschke product with zeroes $\left\{z_{n}\right\}_{n}$. If $\left\{z_{n}\right\}_{n}$ is an interpolating sequence, then $B(z)$ is also called interpolating.

The study of interpolating sequences is useful in many areas of function theory and operator theory. In [1] K. Hoffman proved that $P(x) \neq\{x\}$ if and only if x belongs to the closure of some interpolating sequence. Most of the results for interpolating sequences in $M\left(H^{\infty}\right)$ have been obtained by P. Gorkin, H.-M. Lingenberg, R. Mortini [3], S. Axler and P. Gorkin [4] and K. Izuchi [5].

An interpolating sequence $\left\{x_{n}\right\}_{n} \subset M\left(H^{\infty}\right)$ is said to be thin if it satisfies the following condition:

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \prod_{n: n \neq j}^{\infty} \rho\left(x_{j}, x_{n}\right)=1 \tag{T}
\end{equation*}
$$

A Blaschke product is called thin Blaschke product if its zero set $\left\{z_{n}\right\}_{n} \subset D$ is a thin sequence. Some results for thin sequences in different subsets of $M\left(H^{\infty}\right)$ can be found in $[6],[7],[8]$.

In [9] R. Mortini introduces another, more topological sufficient condition for a sequence of nontrivial points to be interpolating.

Theorem $1.1([9])$. Let $\left\{x_{n}\right\}_{n}$ be a discrete sequence of nontrivial points in $M\left(H^{\infty}\right)$. Suppose that there exist pairwise disjoint open sets $\left\{U_{n}\right\}_{n}$ in $M\left(H^{\infty}\right), x_{n} \in U_{n}$ such that

$$
\delta=\inf _{j} \prod_{n: n \neq j}^{\infty} \rho\left(U_{j}, U_{n}\right)>0
$$

Then $\left\{x_{n}\right\}_{n}$ is an interpolating sequence.
Here we shall consider the following condition:

$$
\begin{equation*}
\text { such that } \lim _{j \rightarrow \infty} \prod_{n: n \neq j}^{\infty} \rho\left(U_{j}, U_{n}\right)=1 \tag{M}
\end{equation*}
$$

From the inequality $\prod_{n: n \neq j}^{\infty} \rho\left(U_{j}, U_{n}\right) \leqslant \prod_{n: n \neq j}^{\infty} \rho\left(x_{j}, x_{n}\right)$ we obtain that condition (M) implies condition (T) for a sequence $\left\{x_{n}\right\}_{n} \subset M\left(H^{\infty}\right)$.

A sequence $\left\{x_{n}\right\}_{n}$ in $M\left(H^{\infty}\right)$ is called an interpolating sequence of type 1 (or an isometric interpolating sequence) if for every sequence $\left\{a_{n}\right\}_{n} \subset l^{\infty}$, $\sup _{n}\left|a_{n}\right| \leq 1$, there exists a function $f \in H^{\infty},\|f\|=1$, such that $f\left(x_{n}\right)=a_{n}$ for all n. The maximum principle for holomorphic functions shows that any interpolating sequence of type 1 is necessarily contained in the corona $M\left(H^{\infty}\right) \backslash D$ of H^{∞}. In [8] it is shown that every 146
interpolating sequence of type 1 for H^{∞} satisfies condition (M).
In this paper, we present another proof of this fact. More precisely, we prove that if there exist a thin radial sequence $\left\{a_{n}\right\}_{n} \subset D$ and a function $f \in H^{\infty},\|f\| \leq 1$, such that $f\left(x_{n}\right)=a_{n}$ for all n, then $\left\{x_{n}\right\}_{n} \subset M\left(H^{\infty}\right)$ satisfies condition (M).
2. Sequences satisfying the condition (M). First, let us show that there are sequences $\left\{x_{n}\right\}_{n} \subset M\left(H^{\infty}\right)$ with the following property: there exist a thin radial sequence $\left\{a_{n}\right\}_{n} \subset D$ and a function $f \in H^{\infty},\|f\| \leq 1$, such that $f\left(x_{n}\right)=a_{n}$ for all n. This follows from the following well-known facts:

1. In [6] P. Gorkin and R. Mortini proved that every discrete sequence in the Shilov boundary of H^{∞} is an interpolating sequence of type 1.
2. In [7] R. Mortini proved the following theorem:

Theorem $2.1([7])$. Let $E=\left\{x_{n}: n \in \mathbb{N}\right\}$ be a discrete sequence of points in $M\left(H^{\infty}\right)$. Then, for every sequence $\left\{a_{n}\right\}_{n} \subset l^{\infty}$ with $\sup \left|a_{n}\right| \leq 1$ the interpolation problem $f\left(x_{n}\right)=a_{n},\|f\| \leq 1$, admits a thin Blaschke product as a solution if and only if E is contained in the zero set of a thin Blaschke product b on the corona of H^{∞}.

Lemma 2.2 ([10]). Let $\left\{z_{n}\right\}_{n}$ be a thin sequence in D. Then there exist sequences $\left\{\tau_{n}\right\}_{n} \subset(0,1)$ and $\left\{\gamma_{n}\right\}_{n} \subset(0,1)$ with $\lim _{n \rightarrow \infty} \tau_{n}=\lim _{n \rightarrow \infty} \gamma_{n}=1$ such that whenever $\left\{\xi_{n}\right\}_{n}$ is a sequence in D satisfying $\rho\left(z_{n}, \xi_{n}\right) \leq \tau_{n}, n \in \mathbb{N}$, it follows that $\prod_{k: k \neq j}^{\infty} \rho\left(\xi_{j}, \xi_{k}\right) \geq$ $\gamma_{j}, j \in \mathbb{N}$. In particular, $\left\{\xi_{n}\right\}_{n}$ is a thin sequence again.

Theorem 2.3. Let $\left\{x_{n}\right\}_{n}$ be a sequence in $M\left(H^{\infty}\right)$. Let there exist a thin radial sequence $\left\{a_{n}\right\}_{n} \subset D,\left|a_{n}\right|<\left|a_{k}\right|$ for $n<k$, and a function $f \in H^{\infty},\|f\| \leq 1$, such that $f\left(x_{n}\right)=a_{n}$ for all n. Then $\left\{x_{n}\right\}_{n}$ satisfies condition (M).

Proof. We need some properties of the pseudohyperbolic distance in the open unit disk D. It is well known $([2])$ that $\rho(z, w)=\frac{1}{2} \tanh \psi(z, w)$, whenever $\psi(z, w)$ is the hyperbolic distance in D from z to w, i.e., the length of the arc on the circle via the points z and w, which is orthogonal to the unit circle $\partial D=\{z \in \mathbb{C}:|z|=1\}$. If z and w are on a diameter of D, then the hyperbolic distance $\psi(z, w)$ coincides with the Euclidian distance between z and w. As is well known the pseudohyperbolic disk $K\left(z_{0}, r\right)$ is an Euclidean disk with center $c=\frac{z_{0}\left(1-r^{2}\right)}{\left(1-r^{2}\left|z_{0}\right|^{2}\right)}$ and radius $R=\frac{r\left(1-\left|z_{0}\right|^{2}\right)}{\left(1-r^{2}\left|z_{0}\right|^{2}\right)}$. We note that if z_{0} is a real number, then c is a real number and $|c|<1$.

Since $\left\{a_{n}\right\}_{n} \subset D$ is a radial sequence, i.e., we have $\arg a_{n}=\arg a_{k}$ for $n \neq k$, and $\left|a_{n}\right|<\left|a_{k}\right|$ for $n<k$, there exists $\theta \in[0,2 \pi)$ such that if $g(z)=z e^{-i \theta}$, then:

$$
v_{n}=g\left(a_{n}\right) \subset[0,1) \text { for every } n \text { and } v_{n}<v_{k} \text { for } n<k .
$$

But the distance $\rho(z, w)$ for z and w in D is invariant under Möbius transformations ([2]). Therefore,

$$
\rho\left(a_{n}, a_{k}\right)=\rho\left(g\left(a_{n}\right), g\left(a_{k}\right)\right)=\rho\left(v_{n}, v_{k}\right)
$$

for all $n \in \mathbb{N}, k \in \mathbb{N}$, and we obtain that the sequence $\left\{v_{n}\right\}_{n}$ is interpolating and thin. Moreover, the function $F=g \circ f$ belongs to $H^{\infty},\|F\| \leq 1$ and $f\left(x_{n}\right)=v_{n}$ for all n.

Since $\left\{v_{n}\right\}_{n}$ is an interpolating sequence, then $\left\{v_{n}\right\}_{n}$ is discrete, i.e., there exists is a sequence $\left\{V_{n}\right\}_{n}$ of open sets in the open unit disk D, such that $v_{n} \in V_{n}$ and $\bar{V}_{n} \cap \bar{V}_{k}=\varnothing$ for $n \neq k$. By Lemma 2.2 there exist two sequences $\left\{\tau_{n}\right\}_{n} \subset(0,1)$ and $\left\{\gamma_{n}\right\}_{n} \subset(0,1)$
with $\lim _{n \rightarrow \infty} \tau_{n}=\lim _{n \rightarrow \infty} \gamma_{n}=1$ such that whenever $\left\{\xi_{n}\right\}_{n}$ is a sequence in the open unit disk D satisfying $\rho\left(v_{n}, \xi_{n}\right) \leq \tau_{n}$ for every n, it follows that $\prod_{k: k \neq j}^{\infty} \rho\left(\xi_{j}, \xi_{k}\right) \geq \gamma_{j}$, for every j. Let $W_{n}, n \in \mathbb{N}$, be the open pseudohyperbolic disk with centre v_{n} and radius τ_{n}. Then W_{n} is an open Euclidean disk with centre $[0,1)$. We obtain that $U_{n}=V_{n} \cap W_{n}$ is an open set (intersection of two open Euclidean disks), $v_{n} \in U_{n}$ for every n and $\bar{U}_{n} \cap \bar{U}_{k}=\varnothing$ for $n \neq k$. If $\left[\eta_{n}, t_{n}\right]=\bar{U}_{n} \cap \operatorname{Re} z$ then $\eta_{n}<t_{n}$ for every n, and the increasing sequences $\left\{\eta_{n}\right\}_{n}$ and $\left\{t_{n}\right\}_{n}$ tend to 1 , because the sequence $\left\{v_{n}\right\}_{n}$ is an increasing and $\lim _{n \rightarrow \infty} v_{n}=1$.

Now fix $j \in N, j>1$.
Let $A_{n} \in \bar{U}_{n}, A_{j} \in \bar{U}_{j}$ for $n<j$ are arbitrary points. Write $\alpha_{n, j}=\psi\left(A_{n}, A_{j}\right)$ and $p_{n, j}=\left|A_{n}-A_{j}\right|$. Since A_{n} and A_{j} are points of Euclidean disks, then $\alpha_{n, j} \geq p_{n, j} \geq$ $\eta_{j}-t_{n}$. For the pseudohyperbolic distance between \bar{U}_{n} and \bar{U}_{j} we obtain:

$$
\begin{aligned}
\rho\left(\bar{U}_{n}, \bar{U}_{j}\right)=\frac{1}{2} \tanh \psi\left(\bar{U}_{n}, \bar{U}_{j}\right)=\frac{1}{2} & \tanh \left(\inf \alpha_{n, j}\right) \\
& =\frac{1}{2} \tanh \left(\eta_{j}-t_{n}\right)=\frac{1}{2} \tanh \psi\left(t_{n}, \eta_{j}\right)=\rho\left(t_{n}, \eta_{j}\right) .
\end{aligned}
$$

because t_{n} and η_{j} lie on a diameter of D.
Let $A_{n} \in \bar{U}_{n}, A_{j} \in \bar{U}_{j}$ for $n>j$ are an arbitrary points. Write $\alpha_{n, j}=\psi\left(A_{n}, A_{j}\right)$ and $p_{n, j}=\left|A_{n}-A_{j}\right|$. Analogously, since A_{n} and A_{j} are points of Euclidean disks, then $\alpha_{n, j} \geq p_{n, j} \geq \eta_{n}-t_{j}$. For the pseudohyperbolic distance between \bar{U}_{n} and \bar{U}_{j} we obtain:

$$
\begin{aligned}
\rho\left(\bar{U}_{n}, \bar{U}_{j}\right)=\frac{1}{2} \tanh \psi\left(\bar{U}_{n}, \bar{U}_{j}\right)=\frac{1}{2} & \tanh \left(\inf \alpha_{n, j}\right) \\
& =\frac{1}{2} \tanh \left(\eta_{n}-t_{j}\right)=\frac{1}{2} \tanh \psi\left(t_{j}, \eta_{n}\right)=\rho\left(t_{j}, \eta_{n}\right) .
\end{aligned}
$$

because t_{j} and η_{n} lie on a diameter of D.
Put $\xi_{n}^{\prime}=t_{n}$ for every $n \in \mathbb{N}, n \neq j$, and $\xi_{j}^{\prime}=\eta_{j}$. We get $\xi_{n}^{\prime} \in \bar{U}_{n}=\bar{V}_{n} \cap \bar{W}_{n}$, i.e. $\rho\left(v_{n}, \xi_{n}^{\prime}\right) \leq \tau_{n}$ for every n. By the choice of $\left\{\tau_{n}\right\}_{n}$ and $\left\{\gamma_{n}\right\}_{n}$ we have:

$$
\begin{equation*}
\prod_{n: n<j}^{\infty} \rho\left(t_{n}, \eta_{j}\right)=\prod_{n: n<j}^{\infty} \rho\left(\xi_{n}^{\prime}, \xi_{j}^{\prime}\right) \geq \prod_{n: n \neq j}^{\infty} \rho\left(\xi_{n}^{\prime}, \xi_{j}^{\prime}\right) \geq \gamma_{j} \tag{1}
\end{equation*}
$$

Put $\xi_{n}^{\prime \prime}=\eta_{n}$ for every $n \in \mathbb{N}, n \neq j$, and $\xi_{j}^{\prime \prime}=t_{j}$. We get $\xi_{n}^{\prime \prime} \in \bar{U}_{n}$, for every n and analogously:

$$
\begin{equation*}
\prod_{n: n>j}^{\infty} \rho\left(\eta_{n}, t_{j}\right)=\prod_{n: n>j}^{\infty} \rho\left(\xi_{n}^{\prime \prime}, \xi_{j}^{\prime \prime}\right) \geq \prod_{n: n \neq j}^{\infty} \rho\left(\xi_{n}^{\prime \prime}, \xi_{j}^{\prime \prime}\right) \geq \gamma_{j} \tag{2}
\end{equation*}
$$

Now we apply (1) and (2):

$$
\prod_{n: n \neq j}^{\infty} \rho\left(\bar{U}_{n}, \bar{U}_{j}\right)=\prod_{n: n<j}^{\infty} \rho\left(t_{n}, \eta_{j}\right) \cdot \prod_{n: n>j}^{\infty} \rho\left(\eta_{n}, t_{j}\right) \geq \gamma_{j}^{2}
$$

Since the function $F=g \circ f$ belongs to $H^{\infty},\|F\| \leq 1$, and $f\left(x_{n}\right)=v_{n}$ for all n, then the set $O_{n}=F^{-1}\left(U_{n}\right)$ is open, $x_{n} \in O_{n}$ for every $n \in \mathbb{N}$, and $O_{n} \cap O_{k}=\varnothing$ for $n \neq k$. By the properties of the pseudohyperbolic distance ([2]):

$$
\rho\left(\varphi_{n}, \varphi_{j}\right) \geq \rho\left(F\left(\varphi_{n}\right), F\left(\varphi_{j}\right)\right) \geq \rho\left(U_{n}, U_{j}\right)
$$

where $\varphi_{n} \in O_{n}$ and $\varphi_{j} \in O_{j}$ are arbitrary points. Hence

$$
\prod_{n: n \neq j}^{\infty} \rho\left(O_{n}, O_{j}\right) \geq \prod_{n: n \neq j}^{\infty} \rho\left(\bar{U}_{n}, \bar{U}_{j}\right) \geq \gamma_{j}^{2}
$$

and we obtain $\lim _{j \rightarrow \infty} \prod_{n: n \neq j}^{\infty} \rho\left(O_{n}, O_{j}\right)=1$, since $\lim _{j \rightarrow \infty} \gamma_{j}=1$. The theorem is proved.

REFERENCES

[1] K. Hoffman. Bounded analytic functions and Gleason parts. Ann. of Math., 86, 1 (1967), 74-111.
[2] J. Garnett. Bounded analytic functions. Graduate Texts in Mathematics vol. 236, Springer, New York, 1st revised edition, 2007.
[3] P. Gorkin, H.-M. Lingenberg, R. Mortini. Homeomorphic disks in the spectrum of H^{∞}. Indiana Univ. Math. J., 39, 4 (1990), 961-983.
[4] S. Axler, P. Gorkin. Sequences in the maximal ideal space of H^{∞}. Proc. Amer. Math. Soc., 108, 3 (1990), 731-740.
[5] K. Izuchi. Interpolating sequences in the maximal ideal space of H^{∞}. J. Math. Soc. Japan, 43, 4 (1991), 721-731.
[6] P. Gorkin, R. Mortini. Asymptotic interpolating sequences in uniform algebras. J. London Math. Soc., 67 (2003), 481-498.
[7] R. Mortini. Interpolation problems on the spectrum of H^{∞}. Monatshefte fur Mathematik, 158, 1 (2009), 81-95.
[8] D. Stankov, Tz. Tzonev. Thin sequences in the corona of H^{∞}. Central European Journal of Mathematics, 11, 10 (2013), 1843-1849.
[9] R. Mortini. Interpolating sequences in the spectrum of H^{∞}, I. Proc. Amer. Math. Soc. 128, 6 (2000), 1703-1710.
[10] C. Sundberg, T. Wolff. Interpolating sequences for QAB. Trans. Amer. Math. Soc., 276 (1983), 551-581.

Dimcho K. Stankov
Faculty of Mathematics and Informatics, Shumen University Konstantin Preslavsky
115 Universitetska Str.
9712 Shumen, Bulgaria
e-mail: stankov.d@abv.bg

ЕДНО ДОСТАТЪЧНО УСЛОВИЕ ЗА ТЪНКОСТ НА РЕДИЦИ
 Димчо Костов Станков

Известно е, че всяка интерполационна редица от тип 1 за е тънка редица, която удовлетворява едно допълнително условие на Р. Мортини. В тази работа предлагаме друго доказателство на този факт. По-точно доказваме, че ако съществува тънка радиална редица в отворения единичен кръг, за която интерполационната задача допуска решение с норма 1 , то това условие е изпълнено.

[^0]: *2010 Mathematics Subject Classification: 30H05, 30H50, 46J15.
 Key words: bounded analytic functions, interpolating sequences, thin sequences.
 This research is partially supported by Shumen University under Project No RD-08-252/2013.

