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It is known that every interpolating sequence of type 1 for H
∞ is a thin sequence,

which satisfies an additional topological condition by R. Mortini. In this paper, we
present another proof of this fact. More precisely, we prove that if there exists a thin
radial sequence in the open unit disk such that the interpolation problem admits a
solution with norm 1, then this condition is fulfilled.

1. Introduction. Let H∞ be the Banach algebra of all bounded analytic functions
in the open unit disk D = {z ∈ C : |z| < 1} with the supremum norm. Its spectrum, or
maximal ideal space, is the space M (H∞) of all nonzero multiplicative linear functionals
on H∞ endowed with the weak*-topology. Then M (H∞) is a compact Hausdorff space
and Carleson’s corona theorem says that D is dense in M (H∞). As usual we identify a

function f ∈ H∞ with its Gelfand transform f̂ , defined by f̂ (x) = x (f) for x ∈M (H∞).
Taking the boundary values of the functions on ∂D = {z ∈ C : |z| = 1}, we can consider
H∞ = H∞ (∂D) as an essentially supremum-norm closed subalgebra of L∞ = L∞ (∂D).
The maximal ideal space M (L∞) of L∞ can be identified with the Shilov boundary
of H∞.

To proceed, we need to present a few definitions. For points x and y in M (H∞) the
pseudohyperbolic distance is defined by

ρ(x, y) = sup{|h (x)| : h ∈ ball (H∞) , h (y) = 0}.

where ball (H∞) stands for the closed unit ball of H∞. By Schwarz-Pick’s lemma
ρ(z, w) = |z − w|/|1 − zw| for z and w in D. It is well known that the relation de-
fined on M (H∞) by x ∼ y ⇐⇒ ρ(x, y) < 1 defines an equivalence relation on M (H∞).
The equivalence class containing a point x ∈M (H∞) is called the Gleason part of x and
is denoted by P (x) . If P (x) consists of a single point, we call the part (or point) trivial.
If the part consists of more than one point, the part (or point) is called nontrivial ([1]) .

A sequence {xn}n in M (H∞) is called interpolating if for every bounded sequence
{an}n of complex numbers there is a function f ∈ H∞ such that f (xn) = an for all
n. A sequence {xn}n in M (H∞) is said to be discrete if there exists a sequence of
open sets {Un}n with xn ∈ Un for every n, whose closures are pairwise disjoint. Every
interpolating sequence is discrete.
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An interpolating sequence {zn}n in D is characterized by Carleson ([2]) as follows:
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−zn
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1 − znz
, z ∈ D,

is called the Blaschke product with zeroes {zn}n. If {zn}n is an interpolating sequence,
then B (z) is also called interpolating.

The study of interpolating sequences is useful in many areas of function theory and
operator theory. In [1] K. Hoffman proved that P (x) 6= {x} if and only if x belongs to the
closure of some interpolating sequence. Most of the results for interpolating sequences in
M (H∞) have been obtained by P. Gorkin, H.-M. Lingenberg, R. Mortini [3] , S. Axler
and P. Gorkin [4] and K. Izuchi [5].

An interpolating sequence {xn}n ⊂ M (H∞) is said to be thin if it satisfies the
following condition:

(T) lim
j�∞

∞
∏

n:n6=j

ρ(xj , xn) = 1.

A Blaschke product is called thin Blaschke product if its zero set {zn}n ⊂ D is a thin
sequence. Some results for thin sequences in different subsets of M (H∞) can be found
in [6],[7],[8].

In [9] R. Mortini introduces another, more topological sufficient condition for a se-
quence of nontrivial points to be interpolating.

Theorem 1.1 ([9]). Let {xn}n be a discrete sequence of nontrivial points in M (H∞).
Suppose that there exist pairwise disjoint open sets {Un}n in M (H∞), xn ∈ Un such that

δ = inf
j

∞
∏

n:n6=j

ρ(Uj , Un) > 0,

Then {xn}n is an interpolating sequence.

Here we shall consider the following condition:

(M)

There exist pairwise disjoint open sets {Un}n in M (H∞) , xn ∈ Un

such that lim
j�∞

∞
∏

n:n6=j

ρ(Uj , Un) = 1.

From the inequality
∞
∏

n:n6=j

ρ(Uj, Un) 6
∞
∏

n:n6=j

ρ(xj , xn) we obtain that condition (M)

implies condition (T) for a sequence {xn}n ⊂M (H∞).

A sequence {xn}n in M (H∞) is called an interpolating sequence of type 1 (or an
isometric interpolating sequence) if for every sequence {an}n ⊂ l∞, sup

n

|an| ≤ 1, there

exists a function f ∈ H∞, ‖f‖ = 1, such that f (xn) = an for all n. The maximum
principle for holomorphic functions shows that any interpolating sequence of type 1 is
necessarily contained in the corona M (H∞) \D of H∞. In [8] it is shown that every
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interpolating sequence of type 1 for H∞ satisfies condition (M).

In this paper, we present another proof of this fact. More precisely, we prove that if
there exist a thin radial sequence {an}n ⊂ D and a function f ∈ H∞, ‖f‖ ≤ 1, such that
f (xn) = an for all n, then {xn}n ⊂M (H∞) satisfies condition (M).

2. Sequences satisfying the condition (M). First, let us show that there are
sequences {xn}n ⊂ M (H∞) with the following property: there exist a thin radial se-
quence {an}n ⊂ D and a function f ∈ H∞, ‖f‖ ≤ 1, such that f (xn) = an for all n.
This follows from the following well-known facts:

1. In [6] P. Gorkin and R. Mortini proved that every discrete sequence in the Shilov
boundary of H∞ is an interpolating sequence of type 1.

2. In [7] R. Mortini proved the following theorem:
Theorem 2.1 ([7]). Let E = {xn : n ∈ N} be a discrete sequence of points in M (H∞).

Then, for every sequence {an}n ⊂ l∞ with sup
n

|an| ≤ 1 the interpolation problem

f (xn) = an, ‖f‖ ≤ 1, admits a thin Blaschke product as a solution if and only if E
is contained in the zero set of a thin Blaschke product b on the corona of H∞.

Lemma 2.2 ([10]). Let {zn}n be a thin sequence in D. Then there exist sequences

{τn}n ⊂ (0, 1) and {γn}n ⊂ (0, 1) with limn�∞ τn = limn�∞ γn = 1 such that whenever

{ξn}n is a sequence in D satisfying ρ(zn, ξn) ≤ τn , n ∈ N, it follows that
∞
∏

k:k 6=j

ρ(ξj , ξk) ≥

γj, j ∈ N. In particular, {ξn}n is a thin sequence again.

Theorem 2.3. Let {xn}n be a sequence in M (H∞). Let there exist a thin radial

sequence {an}n ⊂ D , |an| < |ak| for n < k, and a function f ∈ H∞, ‖f‖ ≤ 1, such that

f (xn) = an for all n. Then {xn}n satisfies condition (M).

Proof. We need some properties of the pseudohyperbolic distance in the open unit

disk D. It is well known ([2]) that ρ(z, w) =
1

2
tanhψ(z, w), whenever ψ(z, w) is the

hyperbolic distance in D from z to w, i.e., the length of the arc on the circle via the
points z and w, which is orthogonal to the unit circle ∂D = {z ∈ C : |z| = 1}. If z and w
are on a diameter of D, then the hyperbolic distance ψ(z, w) coincides with the Euclidian
distance between z and w. As is well known the pseudohyperbolic disk K(z0, r) is an

Euclidean disk with center c =
z0(1 − r2)

(1 − r2 |z0|
2
)

and radius R =
r(1 − |z0|

2
)

(1 − r2 |z0|
2
)
. We note

that if z0 is a real number, then c is a real number and |c| < 1.

Since {an}n ⊂ D is a radial sequence, i.e., we have arg an = arg ak for n 6= k, and
|an| < |ak| for n < k, there exists θ ∈ [0, 2π) such that if g (z) = ze−iθ, then:

υn = g (an) ⊂ [0, 1) for every n and υn < υk for n < k.

But the distance ρ(z, w) for z and w in D is invariant under Möbius transformations
([2]). Therefore,

ρ(an, ak) = ρ(g (an) , g (ak)) = ρ(υn, υk)

for all n ∈ N, k ∈ N, and we obtain that the sequence {υn}n is interpolating and thin.
Moreover, the function F = g ◦ f belongs to H∞, ‖F‖ ≤ 1 and f (xn) = υn for all n.

Since {υn}n is an interpolating sequence, then {υn}n is discrete, i.e., there exists is a
sequence {Vn}n of open sets in the open unit disk D, such that υn ∈ Vn and V n∩V k = ∅

for n 6= k. By Lemma 2.2 there exist two sequences {τn}n ⊂ (0, 1) and {γn}n ⊂ (0, 1)
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with limn�∞ τn = limn�∞ γn = 1 such that whenever {ξn}n is a sequence in the open unit

disk D satisfying ρ(υn, ξn) ≤ τn for every n, it follows that
∞
∏

k:k 6=j

ρ(ξj , ξk) ≥ γj , for every

j. Let Wn, n ∈ N, be the open pseudohyperbolic disk with centre υn and radius τn. Then
Wn is an open Euclidean disk with centre [0, 1). We obtain that Un = Vn∩Wn is an open
set (intersection of two open Euclidean disks), υn ∈ Un for every n and Un ∩Uk = ∅ for
n 6= k. If [ηn, tn] = Un∩Re z then ηn < tn for every n, and the increasing sequences {ηn}n

and {tn}n tend to 1, because the sequence {υn}n is an increasing and limn�∞ υn = 1.

Now fix j ∈ N , j > 1.

Let An ∈ Un, Aj ∈ U j for n < j are arbitrary points. Write αn,j = ψ (An, Aj) and
pn,j = |An −Aj |. Since An and Aj are points of Euclidean disks, then αn,j ≥ pn,j ≥
ηj − tn. For the pseudohyperbolic distance between Un and U j we obtain:

ρ(Un, U j) =
1

2
tanhψ(Un, U j) =

1

2
tanh(inf αn,j)

=
1

2
tanh(ηj − tn) =

1

2
tanhψ(tn, ηj) = ρ(tn, ηj).

because tn and ηj lie on a diameter of D.

Let An ∈ Un, Aj ∈ U j for n > j are an arbitrary points. Write αn,j = ψ (An, Aj)
and pn,j = |An −Aj |. Analogously, since An and Aj are points of Euclidean disks, then
αn,j ≥ pn,j ≥ ηn − tj . For the pseudohyperbolic distance between Un and U j we obtain:

ρ(Un, U j) =
1

2
tanhψ(Un, U j) =

1

2
tanh(inf αn,j)

=
1

2
tanh(ηn − tj) =

1

2
tanhψ(tj , ηn) = ρ(tj , ηn).

because tj and ηn lie on a diameter of D.

Put ξ′n = tn for every n ∈ N, n 6= j, and ξ′j = ηj . We get ξ′n ∈ Un = V n ∩Wn, i.e.
ρ(υn, ξ

′
n) ≤ τn for every n. By the choice of {τn}n and {γn}n we have:

(1)

∞
∏

n:n<j

ρ(tn, ηj) =

∞
∏

n:n<j

ρ(ξ′n, ξ
′
j) ≥

∞
∏

n:n6=j

ρ(ξ′n, ξ
′
j) ≥ γj .

Put ξ′′n = ηn for every n ∈ N, n 6= j, and ξ′′j = tj . We get ξ′′n ∈ Un, for every n and
analogously:

(2)

∞
∏

n:n>j

ρ(ηn, tj) =

∞
∏

n:n>j

ρ(ξ′′n, ξ
′′
j ) ≥

∞
∏

n:n6=j

ρ(ξ′′n, ξ
′′
j ) ≥ γj .

Now we apply (1) and (2):
∞
∏

n:n6=j

ρ(Un, U j) =

∞
∏

n:n<j

ρ(tn, ηj).

∞
∏

n:n>j

ρ(ηn, tj) ≥ γ2
j .

Since the function F = g ◦ f belongs to H∞, ‖F‖ ≤ 1, and f (xn) = υn for all n, then
the set On = F−1 (Un) is open, xn ∈ On for every n ∈ N, and On ∩ Ok = ∅ for n 6= k.
By the properties of the pseudohyperbolic distance ([2]):

ρ(ϕn, ϕj) ≥ ρ(F (ϕn) , F (ϕj)) ≥ ρ(Un, Uj),
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where ϕn ∈ On and ϕj ∈ Oj are arbitrary points. Hence
∞
∏

n:n6=j

ρ(On, Oj) ≥
∞
∏

n:n6=j

ρ(Un, U j) ≥ γ2
j

and we obtain lim
j�∞

∞
∏

n:n6=j

ρ(On, Oj) = 1, since lim
j�∞

γj = 1. The theorem is proved. �
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ЕДНО ДОСТАТЪЧНО УСЛОВИЕ ЗА ТЪНКОСТ НА РЕДИЦИ

Димчо Костов Станков

Известно е, че всяка интерполационна редица от тип 1 за е тънка редица, която

удовлетворява едно допълнително условие на Р. Мортини. В тази работа предла-

гаме друго доказателство на този факт. По-точно доказваме, че ако съществува

тънка радиална редица в отворения единичен кръг, за която интерполационната

задача допуска решение с норма 1, то това условие е изпълнено.
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