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The Bulgarian solitaire is a mathematical card game played by one person. A
pack of n cards is divided into several decks (or “piles”). Each move consists of the
removing of one card from each deck and collecting the removed cards to form a
new deck. The game ends when the same position occurs twice. It has turned out
that when n = k(k + 1)/2 is a triangular number, the game reaches the same stable
configuration with size of the piles 1,2, ..., k. The purpose of the paper is to tell the
(quite amusing) story of the game and to discuss mathematical problems related with
the Bulgarian solitaire.

Dedicated to the memory of Borislav Bojanov (1944-2009),
a great mathematician, person, and friend.

1. The story. The popularity of the Bulgarian solitaire started around 1980. Below
we present the version of Borislav Bojanov [6] who is one of the main protagonists in the
story.

The problem was brought to Bulgaria by the famous number theorist Anatolii Karat-
suba from the Steklov Mathematical Institute in Moscow. In May 1980 he visited the
Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences in Sofia.
Once, after his lecture at the Seminar of Approximation Theory, he told his Bulgarian
colleagues the story of the problem.

Konstantin Oskolkov, in that time professor at the Steklov Institute, was traveling
from Moscow to Leningrad (now Saint Petersburg) in the night, by the fastest train in the
Soviet Union, the so called “Red Arrow”. There was another man in his compartment
and they started a conversation. When the other man learned that Konstantin Oskolkov
is a mathematician, he showed him the following game.

A pack of n =142+ --+k cards is divided in an arbitrary way in several packs. Each
move consists of the removing of one card from each deck and collecting the removed cards
to form a new deck. Surprisingly, it turns out that after several moves one reaches the
stable position of k piles consisting of 1,2, ...,k cards, respectively. (The legend claims
that the game was illustrated with several experiments with 15 cards.)

For example, starting with a deck of 10 cards divided in three packs of size 4, 3, 3,
as in Fig. 1, we obtain a new pack of 3 cards and the number of cards in the old packs
decreases to 3, 2, 2, respectively.
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Fig. 1. A deck of 10 cards is divided in three packs of size 4, 3, 3

It is more convenient to denote only the size of the packs, ordering the sizes in
nonincreasing order. For example, starting from the position (4,3, 3), we have marked
the new size of the new pack in bold and have consecutively

(47 3’ 3) :> (37 3’ 27 2) :> (4’ 27 2’ 17 ]‘) :> (57 3’ 17 ]‘)
(In the last step the two packs consisting of a single card disappear.) Then we continue
(5,3,1,1) = (4,4,2) = (3,3,3,1) = (4,2,2,2)
= (4,3,1,1,1) = (5,3,2) = (4,3,2,1) = (4,3,2,1).
In this way we obtain the stable position (4,3,2,1).

Returning back to Moscow, Konstantin Oskolkov told the problem to the people of the
Department of Number Theory at the Steklov Institute. Anatolii Karatsuba described
this moment in the following way. “When Genadii Arkhipov (professor in Number Theory
who liked very much nice problems) learned about the problem, his face took a Satanic
expression, he ran to his office, closed the door and did not came out until he solved the
problem.”

Borislav Bojanov also liked very much nice problems. He went home, waited until
the children went to the bed and then started to think about it. Around midnight he
found a solution and was very happy. The next day he shared the solution with some
of his colleagues. Pencho Petrushev said that he also had a solution. Milko Petkov
who was an editor of the Bulgarian high school mathematical journal “Obuchenieto
po matematika” (“Education in Mathematics”) published the problem in the section
“Competition Problems” in the issue 5 of 1980. Since no student submitted a solution,
in 1981 the Editorial Board of the journal decided to publish the solution of Borislav
Bojanov [5].

Approximately in the same time the problem was published by S. Limanov and A. L.
Toom in the issue 11 of 1980 of the Russian mathematical journal “Kvant”. The solution
of Toom [38] appeared also in 1981. It contains also some analysis of the general case of
an arbitrary number of cards. It seems that [5] and [38] are the first published solutions
of the Bulgarian solitaire.

In that time the Swedish mathematician Gert Almkvist from the University of Lund
visited the Department of Algebra at the Institute of Mathematics and Informatics in
Sofia. When he learned the problem he brought it to Sweden and told it to his colleagues
including his friend Henrik Eriksson from the Royal Institute of Technology in Stockholm.
In 1981 Eriksson wrote the paper [13] where he also presented a solution for the puzzle and
gave it the name Bulgarian solitaire (Bulgarisk patiens in Swedish). Later he visited the
USA and spread the puzzle there. Jorgen Brandt from the Aarhus University, Denmark,
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also learnt about the problem but without its name, and in 1982 published another
solution [9], where he also analyzed the general case. (Brandt starts his paper with
“The problem to be discussed in the following has been circulating for some time.”) In
1982 Donald Knuth used the Bulgarian solitaire to start his Programming and Problem-
Solving Seminar in Stanford [22]. Finally, with the help of Ron Graham the problem
reached Martin Gardner who included it in his paper [18]. The paper by Gardner was
the starting point of the popularity of the Bulgarian solitaire among mathematicians
all over the world and was the main source of references for many years. For already
35 years the Bulgarian solitaire and its generalizations continue to inspire new research
in combinatorics, game theory, probability, computer science, and to be an object of
intensive study in research and teaching literature. Due to the efforts of Henrik Eriksson
in 2005 and the paper by Brian Hopkins [23] in 2012, recently the real story of the
Bulgarian solitaire finally reached the large audience.

2. The solution. In the first publications on the Bulgarian solitaire [5, 38, 13] the
main problem is stated in three different ways. In the Bulgarian version [5] there are k(k-+
1)/2 balls grouped in m piles. In the Russian version [38] a clerk from the Circumlocution
Office! rearranges piles of volumes of Encyclopaedia Britannica. The Swedish text [13]
handles packs of cards. Nevertheless the three solutions use similar ideas. An exposition
of Toom’s proof [38] with more details can be found in [21].

As we already mentioned, instead of considering packs of cards, we may consider the
sequence of the number of cards in each pack. Since we are not interested in the order
of the packs, we may order the integers in the sequence in nonincreasing way. A finite
sequence of nonnegative integers

A:(Ala"'aAc)a >\122>\5207 )\1+"'+>\c:na
is called a partition of n. (The standard notation is A - n.) The partition A = (A1,...,Ac)
is visualized by its Young diagram [\ (also called Ferrers diagram when represented using
dots) consisting of boxes arranged in left-justified rows, with \; boxes in the i-th row.
For example, the Young diagram of the partition A = (4,3,3) - 10 is in Fig. 2.

Fig. 2. [\ = [4,3, 3]

For our purposes it is more convenient to rotate the Young diagram on 90°, when the
height of each row is equal to the number of cards in the corresponding pack, see Fig. 3.

Fig. 3

IThe Circumlocution Office is a place of endless confusion in Little Dorrit by Charles Dickens.
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Then the move in the Bulgarian solitaire consists of removing the bottom row of the
(rotated) Young diagram and adding it as a column, as shown in Fig. 4. In the language

Fig. 4

of partitions, we start with a partition A = (A1,...,A.) with A, > 0 and obtain the
partition B(A) = (¢,\y — 1,...,A. —1). Clearly, if \; — 1 > ¢ > A\;y1 — 1, as in Fig. 5,
then we assume that B(A\) = (A —1,..., 0 — L, A1 — 1,0 ., A — 1).

x| - - x
x| - X
= =
x| x| x] x| - %
Fig. 5

This is a typical example of a discrete dynamical system. We consider the set P(n) of all
partitions of n and the operator B : P(n) — P(n) which in a period of time changes the
state of the system, the partition A, to the new state, the partition B(\). Hence B plays
the role of the updating function of the system. The main problem is, starting with the
initial state A(?) to determine the state of the system A(*) = B(A#=1)) which it will reach
after some interval of time ¢. Since we have a finite number of states P(n) only, we may
associate to the discrete dynamical system its oriented graph with vertices the partitions
A of n and oriented edges (A, B())). In Fig. 6 we give the graph for n =6 and n = 7.

We shall present the solution of the Bulgarian solitaire from [38] modified in the spirit
of the exposition in [9] and the solution proposed by Anders Bjorner, according to the
student essays [33, 19]. There are also several other solutions, using different arguments,
see, e.g., the inductive proof of Mestrovié¢ [31].

Theorem 1. When the total number n = k(k + 1)/2 of cards is triangular, the
Bulgarian solitaire will converge into piles of size 1,2,... k.

Proof. We use the brilliant visualization of the Bulgarian solitaire, the cradle model,
suggested by Bjorner. Let A = (A\1,...,A:) F n, A > 0, be the partition corresponding
to the given collection of card packs. We turn the Young diagram [A] counter-clockwise
by 45°, see Fig. 7, and further consider this 45°-turn interpretation of [A].

Assuming that the boxes of [A] are material points with the same mass m, we consider
the potential energy of the system

U()\) =mg Z h,‘j,

where g ~ 9,8 m/ s? is the free fall acceleration on Earth, the sum runs on all boxes of
[A], and h;; is the height of the center of the box with coordinates (Z,5) corresponding to
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(11,1,1,1,1,1)
(2,21,1)

(2:1,1,1,1,1)

y]

(41,1)

1
(2.3)

(111111)

Fig. 6. The graph for the Bulgarian solitaire for n =6 and n =7

Fig. 7. A= (4,3,3)

the j-th card of the i-th pack. Clearly, h;; is proportional to 7 + j and we may assume
that it is equal to 7+ j units. As we discussed above, the move of the Bulgarian solitaire
removes the ¢ boxes of the bottom row of [\] and adds them as the first column, as shown
in Fig. 4. In this way, the box (j,1) € [A\] becomes the box (1,7) € [B(\)]. Obviously, in
the 45°-turn interpretation the potential energy of these ¢ boxes of [\] does not change.
The other n — ¢ boxes of [A\] move one step to the right, from the position (4, j), j > 1, to
the position (i + 1,5 — 1). Hence they also preserve their potential energy. Therefore, if
¢ > A1 —1, asin Fig. 8, the move of the Bulgarian solitaire forces the boxes to cycle on the
same level and preserves the potential energy of the Young diagram. If ¢ < A\; — 1, as in
Fig. 9, then by the gravity the excessive boxes of the second pile will fall down southwest
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Fig. 8. B(4,3,3) = (3,3,2,2)

and the potential energy of the Young diagram will decrease. Since the partitions of

NN

Fig. 9. B(6,3,1) = (3,5,2) = (5,3,2)

n are a finite number, we shall reach the position when the moves do not decrease the
height of the boxes and the potential energy of the system. In this moment, let » be the
maximal integer with the property that the first r levels of the Young diagram consisting
of boxes (i,7) of height i + 5 = 2,3,...,7 4+ 1, do not have empty places. Hence these r
levels contain 1+2+---+7r = r(r+1)/2 boxes. If r = k, then we have reached the stable
position (k,k—1,...,2,1). Otherwise, n —r(r+1)/2=k(k+1)/2—r(r+1)/2 >k > r.
Hence, the (r + 1)-th level has an empty place and the (r + 2)-nd level contains at least
one box. Each move pushes this box one place to the right and, when it reaches the most
right position, it starts again from the most left position. The period of the repetition of
the positions is 7+2. Hence after several moves this box will be in position (2,741). Now
we follow the position of one of the empty places in level r 4 1. It also moves to the right
with period 7+ 1. Since the integers r + 1 and r + 2 are relatively prime, in the moments
0,(r+2),2(r +2),...,7(r +2) the empty place with be in pairwise different places. In
some moment it will be in the most left position (1,7+1), as in Fig. 9. Therefore the box
in position (2,7 4+ 1) will move to the empty position (1,7 + 1), decreasing the potential
energy of the system, which is a contradiction. Hence the minimal potential energy is
reached in the stable position (k,k —1,...,2,1) only. O

Now we shall consider the general case of any n. The first considerations are in [38],
the detailed study was done in [9]. Consider the oriented graph associated with the
set P(n) of all partitions of n with vertices the partitions A € P(n) and oriented edges
(A, B()N)). Clearly, the graph consists of several components and, starting from any vertex
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of a given component, the multiple application of the operator B defines a cycle which is

unique for the component. In Fig. 6 the cycle of the unique component of the graph of
P(7) is

A=4,21)53,31)5 3,22 5 3,2,1,1) 3B\ == (4,21).
Theorem 2. Let n have the formn = (k—1)k/24+7r, 0 <r <k, and let A € P(n).
Then in the interpretation of the cradle model the solitaire will converge with a cycle of
partitions which consists of the triangular partition as bottom and r surplus blocks cycling
above. The number of the components of the oriented graph associated with the partitions
of n is equal to the number of necklaces consisting of r black beads and k —r white beads,
where the symmetry group of the necklace is the cyclic group of order k. It is

1 k/d
ci=¢ ¥ (17
d|(r,k)
where (r, k) is the greatest common divisor of r and k and o(d) is the Euler ¢-function,
i.e., the number of positive integers < d and relatively prime to d.

Proof. As in the proof of Theorem 1, we shall follow the potential energy U(B*()))
of the partitions B*(\), s = 0,1,2.... The minimum of the potential energy will be
reached when the first £ — 1 levels in the cradle interpretation of the diagram [B*()\)]
are filled in with boxes, and there are no boxes in the k + 1-st level. We shall identify
such a partition [B*(A)] of minimal potential energy with the necklace with & beads,
where the i-th bead is black if there is a box in the i-th place of the k-th level of the
diagram, and is white if the i-th place is empty, see Fig. 10. Since the application of

Fig. 10. The cycle generated by (5,3,3,1) and the corresponding necklace

the operator B moves to the right with period k& the boxes of the k-th level, we obtain
that this corresponds to the clockwise rotation of the necklace by 360°/k. The number
of necklaces with r black and k£ — r white beads can be obtained as in [9] and [1] as an
easy application of the Pélya enumeration theorem, see [4, 12]. O
In the case of triangular n = k(k + 1)/2, already Toom [38] raised the problem
to determine the longest path in the graph of P(n) to reach the stable partition o =
(k,k—1,...,2,1). He showed that, starting from the partition 7 = (k—1,k—1,k—2,k—
3,k—4,...,3,2,1,1), the minimal s with the property o = B*(7) is s = k(k — 1). Knuth
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[22] checked the equality
o=(kk—1,...,2,1) = B**=D(\), XePkk+1)/2),

for £ < 5. He asked his students to write a computer program to check it for k <
10 and conjectured that this holds for any k. The conjecture of Knuth was proved by
Igusa [28] and Bentz [3]. Bentz also established the following interesting property of the
partition 7 considered by Toom: The partitions B () and B**=1D==1() are conjugate
fori=0,1,2,..., k(k—1)—1. This means that the related Young diagrams are obtained
by reflection with respect to the bisectrix from the origin of the first quadrant of the
coordinate plane, i.e., the lengths of the columns of one diagram are equal to the lengths
of the rows of the other. The general case of an arbitrary n was studied by Etienne [16].

In the theory of cellular automata, a Garden of Eden configuration is a configura-
tion that cannot appear on the lattice after one time step, no matter what the initial
configuration. In other words, these are the configurations with no predecessors. The
terminology comes from the foundational paper [32] by analogy with the concept of the
Garden of Eden which, following Semitic religions, was created out of nowhere. Hop-
kins and Jones [25] studied the Garden of Eden partitions (GE-partitions) defined by
the property that they do not belong to the image B(P(n)). It has turned out that each
cycle in the oriented graph of P(n) can be reached from a GE-partition. We shall mention
only the following easy property and refer to [25, 26, 24, 27] for more details and further
developments.

Proposition 3. A partition A = (A1,...,As) b n, Ay > 0, is a GE-partition if and
only if Ay < s —1.

3. Generalizations. Before the paper by Hopkins [23], only pieces of the history of
the Bulgarian solitaire were known by the large mathematical community. A couple of
times the solitaire was rediscovered or called with other names. The case for triangular
n is known also as the Karatsuba solitaire. (Since Karatsuba brought it to Bulgaria some
people claimed that he invented the puzzle.) We shall discuss several generalizations of
the Bulgarian solitaire which have been studied in the literature.

3.1. Real life interpretation of the Bulgarian solitaire. Discrete dynamical
systems often have economic or biological interpretations. The Bulgarian solitaire reflects
the following situation from the real life. Consider a company consisting of a number
of departments. The Board of Directors decides to create a new department, but does
not want to increase the total number of employees. So, the Board takes a member from
the existing departments and move the person to the new department. If we assume that
the number of cards in the piles is equal to the number of persons in the departments,
the Bulgarian solitaire corresponds to the “greediest” case, when the new department is
formed by taking a person from each department of the company.

3.2. Austrian solitaire. Inspired by a discussion on the so-called Austrian school
of capital theory, Akin and Davis [1] introduced the Austrian solitaire which has the
following economic interpretation. A company has several machines. Each machine has,
when new, a life of exactly L years. FEach year for each machine on line the company
deposits 1/L of its cost into the bank as a sinking fund. Then it buys as many new
machines as it can afford, and the remaining funds are left in the bank until next year.
Now, take a pack of cards and divide it in piles in such a way that each pack contains
not more than L cards. Think of the piles as machines. The number of the cards is
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equal to the number of productive years left for a particular machine. One of the piles
is specific. It is the bank and does not correspond to a machine. FEach move of the
solitaire consists of two steps. In the first step we remove one card from each of the
ordinary piles (the machines have one year less to live) and add the cards to the pile of
the bank. In the second step we take L cards from the bank and form a new ordinary pile
of size L (we buy a new machine) and continue this process until the bank contains < L
cards. The problem is to describe the cycles of the corresponding dynamical system. For
enumeration problems related with the Austrian solitaire see the Baccalaureate Degree
Thesis of Bastola [2].

3.3. Carolina solitaire. When visiting the University of South Carolina, Columbia,
Andrey Andreev from the Institute of Mathematics and Informatics at the Bulgarian
Academy of Sciences introduced a new ordered variation of the Bulgarian solitaire called
the Carolina solitaire. The game begins with n cards divided into a row of piles of sizes
Qpy.eeyQe, 1 + -+ a. =n, a; > 0. Hence we work with compositions, i.e., ordered
systems of positive integers, (aq, . .., a.) rather than with partitions A = (A1,...,A.) b n.
The move consists of removing one card from each pile, and then placing these ¢ cards in
a pile ahead of the others. Any exhausted pile (of size 0) is ignored and only nonempty
piles are considered. In other words, if C is the operator of the Carolina solitaire, then,
up to the ignored empty piles (obtained for o; = 1), the action is defined by

Clag,...,ac) =(c,an —1,...,a.—1), «a; >0.
For a triangular number n = k(k 4+ 1)/2 this new game also appears to arrive at a stable
division, with piles of sizes k,k—1,...,2,1. Griggs and Ho [20] derived upper and lower
bounds for the mazimum number of moves required to reach a cycle of the graph of the
compositions of n. See also the Master Thesis of Tambellini [37] for other properties of
the Carolina solitaire.

3.4. Montreal solitaire. It is suggested by Cannings and Haigh [11]. The positions

are compositions o = (ayq, ..., a.) of nonnegative integers. Identifying the compositions
(a1,...,a¢), (0,a1,...,a0), and (aq,...,a.,0), we may consider only the case when ay
and «, are positive. The successor rule M of the Montreal solitaire is defined in the
following way. If all ; in @ = (a1, ..., @) are positive, then

M(a) = (a1 —1,...,a.—1,¢).
Then we extend the action of M inductively. If
o = (6)07"'5077) = (ﬁ70r77)5 6: (61)"')60)7Bi > 0;7: (717---7’7d)7
——

T times

then
M(a) = (M(B,0""H, M(v)),
keeping the 0’s in the beginning of M (7). For example,
M(1,0,2) = (0,1,1,1) = (0,1,1,1)(= (1,1,1))
and
M(1,2,0,1,0,2) =(1,2,0,1,1,1).
Another example is
(3,2,2) 2 (2,1,1,3) 2 (1,0,0,2,4) 24 (1,0,1,3,2) 2 (1,0,2,1,3) 24 (1,1,0,2,3)
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and one can check that M18(3,2,2) = (3,2,2). In contrast to the Bulgarian solitaire, in
the Montreal solitaire each position a has a unique predecessor M~*(a)) and there exists
a positive integer p such that MP(a) = a. Hence the set of compositions (aq,...,a.)
of n with positive a1 and a. is a union of disjoint cycles. We refer to [11] for more
properties of the game.

3.5. Other discrete generalizations. There are also several other games motivated
by the Bulgarian solitaire. As in the case of the regular Bulgarian solitaire, the problems
studied concern the type and the number of cycles, the Garden of Eden positions, etc.
We shall list a couple of generalizations.

Locke [30] invented the Red-green Bulgarian solitaire where the cards are colored in
two colors, red and green, and the moves depend on the existence of green cards in each
pile.

Grensjo [19] studied the Three-dimensional Bulgarian solitaire. The idea is to define
the game on plane partitions, which can be visualized using three-dimensional Young
diagrams.

Ohman [33] considered two generalizations: the Dual Bulgarian solitaire and the
Multiplayer Bulgarian solitaire. In the dual game the piles are ordered in nonincreasing
order. In each move the largest pile is removed and its cards are distributed to the
remaining piles one by one, from larger to smaller, with any excessive blocks forming
piles of size 1. For example, the partition (4,4,3,2,2,1,1) goes to (5,4,3,3,1,1) =
(44+1,3+1,2+1,24+1,1+0,140), and (6,6,3,2,1) goes to (7,4,3,2,1,1) = (6 +
1,34+ 1,241,14+1,04+ 1,0+ 1). In the regular Bulgarian solitaire we may assume
that each part of a partition corresponds to the income of a citizen or a company. Then
the Government collects the same tazes from each person and each company and uses
the collected money to make a new company. In the dual game, see the comments in
[19], one applies the principles of Robin Hood: taking from the rich and giving to the
poor. It can be shown that if Robin Hood continues to take from the rich and give to the
poor, then the distribution of fortune in his community will become close to triangular.
The explanation is simple. If one translates the game in the cradle model, it is easy
to see that the dual Bulgarian solitaire is equivalent to the regular one. Bouchet [7, 8],
see also Bruhn [10], established that the dual Bulgarian solitaire corresponds to the old
African game OQwari which consists of cyclically ordered pits that are filled with pebbles.
In a sowing move all the pebbles are taken out of one pit and distributed one by one in
subsequent pits. Repeated sowing will give rise to recurrent states of the owari.

One can interpret the multiplayer game in the following way. Several players sitting
around a circular table play the Bulgarian solitaire. All players remove one card from
each of their piles at the same time and then pass this new pile to the player on their
right. In other words, if we have a collection of partitions

AD = AW AWy, A = (A Ae)), A0 > o,

the move sends A?) to (¢;_1, )\gi) —-1,..., )\g) — 1), where by convention ¢y = ¢,, and the
parts of the image of A(*) are rearranged in nonincreasing order if necessary.

Servedio and Yeh [36] suggested a game which can be interpreted in the following way.
There are ¢ players sitting around a circular table. The i-th player has o; cards. (We
consider circular compositions on n, identifying o = (aq, ..., a¢) and (e, a1, ..., Qc—1).)
The move consists of the following simultaneous actions of the players. The i-th one
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takes one’s cards and distributes them clockwise, to oneself and to the following a; — 1
players.

Janetzko in his Ph. D. Thesis [29] considered a similar game with ¢ players around a
circular table and with total number of n cards. A pointer points one of the persons (e.g.,
the i-th one) who takes all cards from his or her pile and distributes them to all players
on the right, giving one card to the (i + 1)-th player, one card to the (i + 2)-th player,
etc. (the addition is modulo ¢). At the end the pointer points at the player that receives
the last card. Repeating this procedure gives a periodic sequence of pointer positions.
The thesis studies the question which periodic sequences can be realized as such pointer
sequences. It is interesting to mention that the problem is reduced to the investigation
of an inhomogeneous linear system of equations. Then the author applies the Perron-
Frobenius theorem, [34] and [17], which asserts that a real square matriz with positive
entries has a unique largest real eigenvalue and that the corresponding eigenvector has
strictly positive components, and also asserts a similar statement for certain classes of
nonnegative matrices.

3.6. Stochastic Bulgarian solitaires. There are many possible ways to formu-
late stochastic versions of the Bulgarian solitaire. Popov [35] introduced his Random
Bulgarian solitaire. As in the regular Bulgarian solitaire, a deck of n cards is divided
into several piles. Then one fixes a number p € (0,1] and, for each pile, one leaves it
intact with probability 1 — p and removes one card from the pile with probability p,
independently of the other piles. The cards that are removed are collected to form a
new pile. For p = 1 this is the regular, or deterministic, Bulgarian solitaire. The model
with parameter 0 < p < 1 is a discrete-time irreducible and aperiodic Markov chain on
the space of unordered partitions of n. For the stationary measure of the game Popov
proves that most of its mass is concentrated on (roughly) triangular configurations of a
certain type. Eriksson and Sjostrand [15] showed that the random Bulgarian solitaire can
be interpreted as a birth-and-death process on Young diagrams.

Recently Eriksson, Jonsson, and Sjostrand [14] introduced another Stochastic Bulgar-
tan solitaire. They assume that the selection acts on the cards rather than on the piles:
When forming a new pile by picking cards from the old piles, every card is picked with a
fixed probability 0 < p < 1, independently of all other cards. They establish a surprising
fact. The solitaire is not drawn to triangular configurations but to an exponential shape.
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B'BJITAPCKUAT ITACUAHC
n MATEMATUKATA OKOJIO HET'O

Becenun CrosinoB lpeHcku

BoirapckuaT nacmanc € MareMaTHYecKa WIpa ¢ KapTH, KOATO Ce UIPAe OT eJIuH
qoBek. Kosoa oT n kapTH e pasjiesieHa Ha HIKOJIKO KYITYUHKHU. Beekn X011 ce cheron
OT B3eMaHe Ha €JIHA KapTa OT BCsKa KYITYMHKA W OOpa3yBaHe Ha HOBA KyITYMHKA OT
B3eruTe KapTu. rpara 3apbpiisa, KOraTo efna nosunus ce nosropu. Oxassa ce, de
korato n = k(k + 1)/2 e TpUbI'bJIHO YKCIIO, UTPATA CBBPIIBA C €/{HA U CbIIA CTaONUII-
Ha KOH(UTypanys ¢ pasMep Ha Kymauakure ot 1,2, ..., k kapru. Ilenra na ctatusta
€ Jla pa3Kake MCTOPUATA HA MI'DATa U JIa JUCKYyTUPA MATEMATHIECKHTE TPOGIEMH,
cBbp3anu ¢ Bbjarapckust macuanc.
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