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We prove that the group PSL8(q) is (2, 3)-generated for any q. Actually, we find
out explicit generators x and y of respective orders 2 and 3, for the group SL8(q).

1. Introduction. A group G is said to be (2, 3)-generated if it can be generated
by an involution and an element of order 3. It is well known that the famous modular
group PSL2(Z) is isomorphic to the free product of a cyclic group of order 2 and a cyclic
group of order 3. Thus, a group (of order at least 6) appears as an epimorphic image of
PSL2(Z) if and only if it is a (2, 3)-generated group. Many series of finite simple groups
have been investigated with respect to this generation property. Almost all of them are
(2, 3)-generated. The most powerful (probabilistic) result in this direction is the theorem
of Liebeck-Shalev and Lübeck-Malle (see Theorem 2 in [14]). This theorem states that
all finite simple groups, except the symplectic groups PSp4(2

k), PSp4(3
k), the Suzuki

groups Sz(22l+1) (which have no elements of order 3), and finitely many other groups,
are (2, 3)-generated. All these so far known exceptions, for groups of Lie type, occur
in small dimensions over small fields. In more recent works ([12],[11],[10]) the authors
have dealt with the classification of the finite classical simple groups of dimension up to
6 which are (2, 3)-generated. They use uniform arguments to treat these groups. As far
as it concerns the projective special linear groups PSLn(q), (2, 3)-generation has been
proved in the cases n = 2, q 6= 9 [8], n = 3, q 6= 4 [5],[2], n = 4, q 6= 2 [16], [15], [9],
[12], n = 5, any q [19], [11], n = 6, any q [18], n = 7, any q [17], n ≥ 5, odd q 6= 9 [3],
[4], and n ≥ 13, any q [13]. The present paper continues the investigation of the finite
simple linear groups in small dimensions. We prove the following:

Theorem.The group PSL8(q) is (2, 3)-generated for any q.

Thus, we have covered the missing in [4] cases q = 9 and q even which is our contri-
bution to the problem.

To prove the theorem, we shall employ the same technique developed by Kerope
Bartev Tchakerian who passed away in 2012. This technique, which has been used in [9],
[19], [18] and [17], relies on the known list of maximal subgroups of PSL8(q) and is quite
different from that of the authors of [4]. Their approach is based on the classification of
finite irreducible linear groups generated by root subgroups.

The paper is dedicated to the bright memory of our great teacher and friend Prof.
Tchakerian.
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2. Proof of the Theorem. Let G = SL8(q) and G = G/Z(G) = PSL8(q), where
q = pm and p is a prime number. Set d = (8, q − 1). The group G acts naturally on
the left on the eight-dimensional column vector space V = F 8 over the field F = GF (q)
and G acts on the corresponding projective space P (V ). We denote by v1, . . . , v8 the
standard base of the space V , i.e., vi is a column which has 1 as its i-th coordinate, while
all other coordinates are zeros.

We shall make use of the known list of maximal subgroups of G given in [1]. In
Aschbaher’s notation any maximal subgroup of G belongs to one of the following families
C1, C2, C3, C4, C5, C6, C8, and S. Roughly speaking, they are:

• C1: stabilizers of subspaces of P (V ),

• C2: stabilizers of direct sum decompositions of P (V ),

• C3: stabilizers of extension fields of F of prime degree,

• C4: stabilizers of tensor product decompositions of P (V ),

• C5: stabilizers of subfields of F of prime index,

• C6: normalizers of extraspecial groups in absolutely irreducible representations,

• C8: classical subgroups,

• S: almost simple subgroups, absolutely irreducible on P (V ), and their simple base
cannot be realized over a proper subfield of F ; not continued in members of C8.

In [1] all maximal subgroups of G are given in detail with their exact structure.
For instance, the stabilizers of 1-subspaces or hyperplanes of P (V ) (in the family C1

of reducible subgroups of G) are isomorphic to the group [q7] : GL7(q)/Zd which is a
homomorphic image of a split extension of a group of order q7 by the general linear group
GL7(q). This type of maximal subgroups play a key role in our considerations. (Here we
use the notation [l] as an indication for an arbitrary group of order l.)

In order to prove the theorem we have accepted the following well working (at least for
linear groups of dimension ≤ 12) strategy. Firs we are looking for a maximal subgroup of
G containing an element of unique order—no one of the other types maximal subgroups
of G can contain elements of such an order. In the second step we find out two elements
of respective orders 2 and 3 in G such that their product has got this unique order.
Finally, we prove that the group generated by these two elements is not contained in
the corresponding type maximal subgroup of G. In our case it is not difficult to choose
such an order (with small specific correction, so that to cover almost all values of q in
the final stage). Namely, let us put Q = q7 − 1 if q 6= 7 and Q = (q7 − 1)/2 if q = 7.
Obviously the above-mentioned stabilizers contain elements of order Q/(d,Q). Now it
can be easily checked, for example using the well-known Zsigmondy’s theorem, that no
one of the other types of maximal subgroups of G has order divisible by Q/(d,Q). Indeed,
let us take a primitive prime divisor of p7m − 1, i.e., a prime r which divides p7m − 1
but does not divide pi − 1 for 0 < i < 7m. We have r ≥ 29 (as r − 1 is a multiple of
7m) and hence r divides Q/(d,Q). A quick inspection of the orders of other reducible
subgroups, all the groups of the remaining families C2, C3, C4, C5, C6, C8 of irreducible
geometric subgroups of G, also in the S-family leads to the following conclusion. The
only one subgroup of order divisible by r belongs to the C8-family and it is isomorphic
to PSU8(q0).[

c
d
.(8, q0 +1)] if m is even, q = q20 and c = q− 1/[ q−1

d
, q0 +1] (in fact,this is

done in [7], Section 2.5). From the given structure of this subgroup (by simple arithmetic
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computations) one can deduce that its order is equal to

q280 (q20 − 1)(q30 + 1)(q40 − 1)(q50 + 1)(q60 − 1)(q70 + 1)(q80 − 1)/s,

where s = 1, 2 or 4, and it is not difficult to see that this order is not divisible by Q/(d,Q).
In this way we have proved the following:

Lemma 1.For any maximal subgroup of the group G either it stabilizes 1-subspace
or hyperplane of P (V ) or it has no element of order Q/(d,Q).

Now we are ready to proceed with the next steps in our strategy.
2.1. We first suppose that q > 3. Let us choose an element ω of order Q in the

multiplicative group of the field GF (q7) and let

f(t) = (t− ω)(t− ωq)(t− ωq2)(t− ωq3)(t− ωq4)(t− ωq5)(t− ωq6)

= t7 − at6 + bt5 − ct4 + dt3 − et2 + ht− g.

Then f(t) ∈ F [t] and the polynomial f(t) is irreducible over the field F . Note that

g = ω
q
7
−1

q−1 has order q − 1 if q 6= 7, and g3 = 1 6= g if q = 7.
Now let

x =

























0 0 −1 0 0 dg−1 0 e
0 0 0 0 0 ag−1 −1 h

−1 0 0 0 0 eg−1 0 d
0 0 0 0 −1 cg−1 0 b
0 0 0 −1 0 bg−1 0 c
0 0 0 0 0 0 0 g
0 −1 0 0 0 hg−1 0 a
0 0 0 0 0 g−1 0 0

























, y =

























1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

























.

Then x and y are elements of G of orders 2 and 3, respectively. Denote

z = xy =

























0 −1 0 0 0 0 e dg−1

0 0 0 0 0 −1 h ag−1

−1 0 0 0 0 0 d eg−1

0 0 0 0 −1 0 b cg−1

0 0 −1 0 0 0 c bg−1

0 0 0 0 0 0 g 0
0 0 0 −1 0 0 a hg−1

0 0 0 0 0 0 0 g−1

























.

The characteristic polynomial of z is fz(t) = (t − g−1)f(t) and the characteristic roots

g−1, ω, ωq, ωq2 , ωq3 , ωq4 , ωq5 , and ωq6 of z are pairwise distinct. Then, in GL8(q
7),

z is conjugate to the matrix diag (g−1, ω, ωq, ωq2 , ωq3 , ωq4 , ωq5 , ωq6) and hence z is an
element of G of order Q.

Let H be the subgroup of G generated by the above elements x and y.

Lemma 2.The group H can not stabilize 1-subspaces or hyperplanes of the space V
or equivalently H acts irreducible on V .

Proof. Assume that W is an H-invariant subspace of V and k = dim W , k = 1 or 7.
Let first k = 1 and 0 6= w ∈ W . Then y(w) = λw, where λ ∈ F and λ3 = 1. This

yields

w = µ1v1 + µ2(λ
2v2 + λv3 + v4) + µ3v5 + µ4(λ

2v6 + λv7 + v8) (µ1, µ2, µ3, µ4 ∈ F ),
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where µ1 = µ3 = 0 if λ 6= 1. Now x(w) = νw, where ν = ±1. This yields consecutively
µ4 6= 0, λ = νg−1, and

(1) µ2 = µ4(hg
−1 + aλ− νλ2),

(2) νµ1 + λµ2 = (dν + e)µ4,

(3) µ2 + νµ3 = (bν + c)µ4.

In particular, we have g3 = ν and g6 = 1. This is impossible if q = 5 or q > 7 since
then g has order q − 1. Thus (as q > 3) q = 4 or q = 7 and, in both cases, g3 = 1 6= g.
So ν = 1, λ = g2 6= 1 and it follows that µ1 = µ3 = 0. Then (1), (2), (3) produce
a = (d + e + 1)g2 − h and b = (d + e)g − c. Now f(−1) = −(d+ e + 1)(1 + g + g2) = 0
both for q = 4 and q = 7, a contradiction as f(t) is irreducible over the field F .

Now let k = 7. The subspace U of V which is generated by the vectors v1, v2, v3,
v4, v5, v6, and v7 is 〈z〉-invariant. If W 6= U then U ∩ W is 〈z〉-invariant and dim
(U ∩W ) = 6. This means that the characteristic polynomial of z|U∩W has degree 6 and
must divide fz(t) which is impossible as f(t) is irreducible over F . Thus W = U but
obviously U is not 〈y〉-invariant, a contradiction.

The lemma is proved. (Note that the statement is false for q = 2 or 3.) �

Now, in G, the elements x and y have orders 2 and 3, respectively, and (as easily
seen by the above-mentioned diagonal matrix) z = x · y has order Q/(d,Q). So the
group H = 〈x, y〉 has an element of order Q/(d,Q) and H is irreducible on P (V ) as H
is irreducible on V by Lemma 2. Then Lemma 1 implies that H cannot be contained in
any maximal subgroup of G. Thus H = G and G = 〈x, y〉 is a (2, 3)-generated group.

2.2. Lastly we suppose that q = 2 or 3. We treat both cases simultaneously. Let us
denote by xq and yq possible generators of SL8(q) of respective orders 2 and 3. Now we
shall prove that the projective images of the matrices xq and yq below can really generate
PSL8(q) in these cases. Let us choose the involutions x2 and x3, also the elements y2
and y3 of order 3 to be as follows.

x2 =

























0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 1 1 0 0
1 0 0 0 1 0 1 0
1 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0

























, y2 =

























0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0

























,
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x3 =

























0 −1 −1 1 −1 1 0 1
−1 0 −1 1 −1 1 0 1
0 −1 −1 0 −1 0 1 −1
0 1 0 −1 1 0 −1 1
0 1 −1 0 0 −1 −1 −1
0 0 1 1 −1 −1 0 −1

−1 −1 0 −1 −1 1 1 1
0 −1 −1 1 1 1 1 −1

























, y3 =

























1 0 1 0 −1 1 −1 0
1 1 1 0 −1 0 0 1
1 0 1 −1 0 1 −1 −1
0 0 −1 1 1 −1 1 0
1 0 0 1 0 −1 −1 1

−1 0 1 0 −1 0 1 −1
0 1 1 −1 1 1 −1 1
1 0 −1 −1 −1 1 1 −1

























.

Now

z2 = x2y2 =

























1 0 0 1 1 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
1 0 0 1 1 0 1 0
0 0 0 1 1 1 1 0
1 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1

























, z3 = x3y3 =

























0 −1 0 0 0 0 −1 0
0 0 0 0 0 −1 0 1

−1 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 −1 0 0 −1 0
0 0 0 0 0 0 0 −1

























.

The characteristic polynomial of zq is fzq(t) = (t + 1)gq(t), where g2(t) = t7 + t + 1
and g3(t) = t7 + t6 + t2 +1. In any case the polynomial gq(t) is irreducible over the field
GF (q) and all its roots have order q7 − 1 in GF (q7)∗ (see [6], Table C). It follows that
the element zq of SL8(q) has order q

7 − 1 = Q.
As in the proof of Lemma 2, it can be checked that the group Hq = 〈xq, yq〉 acts

irreducibly on the space V . Indeed, let W = 〈w〉 be a 1-subspace of V which is stabilized
by Hq. Then yq(w) = w yields to w = µ1v1 + µ2(v2 + v3) + µ1(v6 + v7) + µ2v8 (if q = 2)
and w = (−µ5 + µ7)v1 + (µ5 − µ6 − µ7)v2 + (µ5 − µ6 + µ7)v3 + (µ5 − µ7)v4 + µ5v5 +
µ6v6 +µ7v7 +(µ5+µ6+µ7)v8 (if q = 3), where µ1, µ2 ∈ GF (2), and µ5, µ6, µ7 ∈ GF (3).
Now x2(w) = w and x3(w) = νw (ν = ±1) force to µ1 = µ2 = 0, and ν = −1,
µ5 = µ6 = µ7 = 0, respectively, an impossibility as w 6= 0. If W is a hyperplane of V
(i.e., dim(W )=7) which is invariant under the action of Hq we can obtain a contradiction
(taking into account the exact form of zq) just as in the proof of Lemma 2.

Now, to finalize our considerations it is enough to see that, in PSL8(q), the elements
xq, yq, and zq have orders 2, 3, and Q/d, respectively. So the group Hq = 〈xq, yq〉
contains an element of order Q/d and acts irreducibly on P (V ). According to Lemma
1 this means that Hq = PSL8(q) and PSL8(q) = 〈xq, yq〉 is a (2, 3)-generated group in
these cases.

The theorem is proved. �

Acknowledgement. The authors are very grateful to Prof. Marco Antonio Pellegrini
who provided them with generators of the groups SL8(2) and SL8(3).
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(2, 3)-ПОРОДЕНОСТ НА ГРУПИТЕ PSL8(q)

Ц. Генчев, E. Генчева

В настоящата работа разглеждаме крайните прости линейни групи от размер-
ност 8 и доказваме, че те са епиморфни образи на добре известната модулярна
група PSL2(Z). Последното означава, че групата PSL8(q) се поражда от един
свой елемент от ред 2 (инволюция) и още един елемент от ред 3. Предложеното
доказателство е в сила за произволно крайно поле GF (q), над което е дефинира-
на тази група. Всъщност ние посочваме в явен вид две матрици, от редове две и
три съответно, които пораждат групата SL8(q).
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