BOURGAIN ALGEBRAS OF SOME SUBALGEBRAS OF THE DISK ALGEBRA*

Miroslav K. Hristov

Abstract

Let ψ be a finite Blaschke product and $A(\bar{D})$ be the disk algebra. In this paper we prove that the Bourgain algebra of $\psi A(\bar{D})$ relative to $H^{\infty}(D)$ coincides with the algebra generated by the Blaschke products having only a finite number of singularities in the unit circle.

1. Introduction. Let Y be a commutative Banach algebra with an identity and let X be a linear subspace of Y. J. Cima and R. Timoney [1] introduced the notion of the Bourgain algebra based on ideas of J. Bourgain [2]. The Bourgain algebra $X_{b}=(X, Y)_{b}$ of X relative to Y is defined to the set of all $f \in Y$ such that:

$$
\text { if } f_{n} \rightarrow 0 \text { weakly in } X \text {, then dist }\left(f \cdot f_{n}, X\right) \rightarrow 0
$$

The distance, $\operatorname{dist}\left(f . f_{n}, X\right)$ between $f . f_{n}$ and X is the quotient norm of the coset $f . f_{n}+X$ in the space Y / X. The proof in [1] shows that X_{b} is a closed subalgebra of Y and contains the constant functions.

Let $H^{\infty}(D)$ be the Banach algebra of all bounded analytic functions on the open unit disk $D=\{z \in \mathrm{C}:|z|<1\}$ with the supremum norm. The spectrum of $H^{\infty}(D)$ is the space $M\left(H^{\infty}(D)\right)$ of all nonzero multiplicative linear functionals on endowed with weak-* topology. Then $M\left(H^{\infty}(D)\right)$ is a compact Hausdorf space and Carleson's corona theorem says that D is dense in $M\left(H^{\infty}(D)\right)[3]$. By considering boundary functions on $T=\partial D$, we can consider that $H^{\infty}(D)=H^{\infty}(T)$ is an essentially supremum-norm closed subalgebra of $L^{\infty}=L^{\infty}(T)$.

Let $C(\bar{D})$ be the space of all continuous functions on the closed unit disk \bar{D} and let $A(\bar{D})=H^{\infty}(D) \cap C(\bar{D})$ denote the disk algebra, i.e. the algebra of all continuous functions on \bar{D} which are analytic on D. There are various alternative descriptions of $A(\bar{D})$. For example, $A(\bar{D})$ is the uniform closure in $C(\bar{D})$ of the polynomials, also consists of the continuouse functions on the unit circle whose Fourier coefficients vanish on the negative integers. Every $\lambda \in \bar{D}$ determines the evaluation homomorphism $\phi_{\lambda} \in M(A(\bar{D}))$ defined by

$$
\phi_{\lambda}(f)=f(\lambda), \text { for every } f \in A(\bar{D})
$$

[^0]The correspondence $\lambda \rightarrow \phi_{\lambda}$ embeds the closed unit disk \bar{D} as a closed subset of $M(A(\bar{D}))$. Suppose $\phi \in M(A(\bar{D}))$ is arbitrary and $\lambda=\phi(z)$, where z is the coordinate function. Then ϕ coincides with ϕ_{λ}. Consequently the spectrum of $A(\bar{D})$ coincides whit $\bar{D}[3]$.

We denote the space of continuous functions on the unit circle T by $C=C(T)$. In [4] J. Cima, Sv. Janson and K. Yale showed that the Bourgain algebra H_{b}^{∞} of $H^{\infty}(T)$ relative to $L^{\infty}=L^{\infty}(T)$ is $H^{\infty}(T)+C$. K. Izuchi [5] proved that the Bourgain algebra of a closed subalgebra between disk algebra $A(T)=H^{\infty}(T) \cap C$ and H^{∞} relative L^{∞} is always contained in $H^{\infty}(T)+C$. Some results for Bourgain algebras of subalgebras at $H^{\infty}(D)$ are proven in $[6,7]$.

In [8] Cima, Stroethoff and Yale show that $\left(A(\bar{D}), H^{\infty}(D)\right)_{b}$ contains every Blaschke product whose zeros cluster only at a finite number of points, i.e. which have only a finite number of singularities. J. Cima and R. Mortini prove that $\left(A(\bar{D}), H^{\infty}(D)\right)_{b}$ is the algebra B generated by the Blaschke products having only a finite number of singularities [9].

In this paper we prove that this is true and for the Bourgain algebra of $\psi A(D)$ where ψ is a finite Blaschke product. If ψ have only a finite number of singularities we prove that $\left(\psi A(\bar{D}), H^{\infty}(D)\right)_{b} \subset B$.
2. Preliminaries. A sequence $\left\{z_{n}\right\}_{n}$ in D is called interpolating if for every bounded sequence $\left\{a_{n}\right\}_{n}$ of complex numbers, there is a function $f \in H^{\infty}(D)$ such that $f\left(z_{n}\right)=a_{n}$ for all n. For a sequence $\left\{z_{n}\right\}_{n}$ in D with $\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$, the function:

$$
B(z)=\prod_{n=1}^{\infty} \frac{-\bar{z}_{n}}{\left|z_{n}\right|} \frac{z-z_{n}}{1-\bar{z}_{n} z}, \quad z \in D
$$

is called a Blaschke product with zeros $\left\{z_{n}\right\}_{n}$. If $\left\{z_{n}\right\}_{n}$ is an interpolating sequence, then $B(z)$ is also called interpolating. More information about the interpolating Blaschke product can be found in $[10,11,12]$.

Lemma 2.1 [3]. If $\left\{z_{n}\right\}_{n} \subset D$ is interpolating sequence, then there exist functions $\left\{f_{n}\right\}_{n} \subset H^{\infty}(D)$ and positive number M such that $f_{n}\left(z_{n}\right)=1$ for all $n, f_{n}\left(z_{k}\right)=0$ for $n \neq k$ and $\sum_{n=1}^{\infty}\left|f_{n}(z)\right| \leq M$ for $z \in D$.

Lemma 2.2 [4]. Suppose that $\left\{f_{n}\right\}_{n}$ is a sequence in $H^{\infty}(D)$ such that $\sum_{n=1}^{\infty}\left|f_{n}(z)\right| \leq$ M for $z \in D$. Then $f_{n} \rightarrow 0$ weakly in $H^{\infty}(D)$.

Let ψ be an inner function, i.e. $\psi \in H^{\infty}(D)$ such that $\left|\psi\left(e^{i \theta}\right)\right|=1$ almost everywhere on T. Then ψ has the form: $\psi(z)=B(z) . S(z), z \in D$ where $B(z)$ is a Blaschke product

$$
B(z)=\prod_{n=1}^{\infty} \frac{-\bar{a}_{n}}{\left|a_{n}\right|} \frac{z-a_{n}}{1-\bar{a}_{n} z}
$$

with zeros $\left\{a_{n}\right\}_{n} \subset D$, and

$$
S(z)=\exp \left[-\int_{T} \frac{\lambda+z}{\lambda-z} d \mu(\lambda)\right]
$$

where μ is a finite, nonnegative measure on T, singular with respect to Lebesgue measure.
The support of ψ is the set of points $\lambda \in T$ for which there is a sequence $\left\{z_{n}\right\}_{n} \subset D$ of points such that $z_{n} \rightarrow \lambda$ and $\psi\left(z_{n}\right) \rightarrow 0$. This set, denoted by supp ψ, is known to be the union of the support of the measure μ and the cluster set of the sequence $\left\{a_{n}\right\}_{n}$ [3]. Note that if ψ is a Blaschke product, then $\operatorname{supp} \psi$ coincides with the cluster set of $\left\{a_{n}\right\}_{n}$. If $\operatorname{supp} \psi$ is a finite set, then ψ is called a Blaschke product with a finite number of singularities.

As usual, the cluster set $\mathrm{Cl}(f, \xi)$ of a function $f \in H^{\infty}(D)$ at a point $\xi \in T$ is defined to be the set of all points $\omega \in \mathrm{C}$ for which there exists a sequence $\left\{z_{n}\right\}$ in D converging to ξ such that $f\left(z_{n}\right) \rightarrow \omega$. Let \mathcal{A} denote the set:

$$
\mathcal{A}=\left\{f \in H^{\infty}: \text { for every } \varepsilon>0 \text { the set }\{\xi \in T: \operatorname{diamCl}(f, \xi) \geq \varepsilon\} \text { is finite }\right\}
$$

where, as usual, $\operatorname{diam} E=\sup \{|a-b|: a, b \in E\}$ is the diameter of a bounded subset E of C. Let B be the algebra generated by the set of Blaschke products which have a finite number of singularities. In [9] it is shown that \mathcal{A} is a closed sualgebra of $H^{\infty}(D)$ and that $\mathcal{A}=B$.
3. The main result.

Lemma 3.1. If $f \in H^{\infty}(D)$ and $\xi \in T$, then:

1) $\operatorname{diamCl}(f, \xi) \leq 2\|f\|$;
2) $\operatorname{diamCl}(f, \xi)=\operatorname{diamCl}(f-g, \xi)$, where $g \in H^{\infty}(D)$ and $\lim _{z \rightarrow \xi} g(z)=\alpha \in \mathrm{C}$;
3) $\operatorname{diamCl}(f g, \xi)=\operatorname{diamCl}(f, \xi)$, where $g \in H^{\infty}(D)$ and $\lim _{z \rightarrow \xi} g(z)=\beta,|\beta|=1$.

Proof. 1) Let ω_{1} and ω_{2} belong to $\mathrm{Cl}(f, \xi)$ and $\varepsilon>0$. There exist two sequences $\left\{z_{n}^{\prime}\right\}_{n},\left\{z_{n}^{\prime \prime}\right\}_{n}$ in D such that $z_{n}^{\prime} \rightarrow \xi, z_{n}^{\prime \prime} \rightarrow \xi$ and $f\left(z_{n}^{\prime}\right) \rightarrow \omega_{1}, f\left(z_{n}^{\prime \prime}\right) \rightarrow \omega_{2}$. Therefore we can find n_{0} such that for $n>n_{0}$ is fulfilled $\left|f\left(z_{n}^{\prime}\right)-\omega_{1}\right|<\varepsilon$ and $\left|f\left(z_{n}^{\prime \prime}\right)-\omega_{2}\right|<\varepsilon$. Then for every $n>n_{0}$ we have:

$$
\begin{gathered}
\left|\omega_{1}-\omega_{2}\right| \leq\left|\omega_{1}-f\left(z_{n}^{\prime}\right)\right|+\left|\omega_{2}-f\left(z_{n}^{\prime \prime}\right)\right| "+\left|f\left(z_{n}^{\prime}\right)\right|+\left|f\left(z_{n}^{\prime \prime}\right)\right|<2 \varepsilon+2\|f\|, \\
\text { i.e. } \operatorname{diamCl}(f, \xi)=\sup \left\{\left|\omega_{1}-\omega_{2}\right|: \omega_{1}, \omega_{2} \in \operatorname{Cl}(f, \xi)\right\} \leq 2\|f\| .
\end{gathered}
$$

2) We have the following equivalences:
$\omega \in \mathrm{Cl}(f, \xi) \Leftrightarrow$ there exists a sequence $\left\{z_{n}\right\}_{n}, z_{n} \rightarrow \xi$ such that $f\left(z_{n}\right) \rightarrow \omega \quad \Leftrightarrow$ there exists a sequence $\left\{z_{n}\right\}_{n}, z_{n} \rightarrow \xi$ such that $(f-g)\left(z_{n}\right) \rightarrow \omega-\alpha \quad \Leftrightarrow \omega-\alpha \in \operatorname{Cl}(f-g, \xi)$.
3) Therefore $\operatorname{diamCl}(f, \xi)=\operatorname{diamCl}(f-g, \xi)$, because $\mathrm{Cl}(f-g, \xi)$ is the translation of $\mathrm{Cl}(f, \xi)$ determined by the vector α.

We have the following equivalences:
$\omega \in \mathrm{Cl}(f, \xi) \Leftrightarrow$ there exists a sequence $\left\{z_{n}\right\}_{n}, z_{n} \rightarrow \xi$ such that $f\left(z_{n}\right) \rightarrow \omega \Leftrightarrow$ there exists a sequence $\left\{z_{n}\right\}_{n}, z_{n} \rightarrow \xi$ such that $(f . g)\left(z_{n}\right) \rightarrow \beta . \omega \quad \Leftrightarrow \beta \cdot \omega \in \mathrm{Cl}(f . g, \xi)$.

Therefore $\operatorname{diamCl}(f, \xi)=\operatorname{diamCl}(f . g, \xi)$, because $\operatorname{Cl}(f . g, \xi)$ is the rotation of the set $\mathrm{Cl}(f, \xi)$ determined by $\arg \beta$.

Theorem 3.2. If ψ is a finite Blaschke product, then

$$
\left(\psi \cdot A(\bar{D}), H^{\infty}(D)\right)_{b}=B=\mathcal{A}
$$

i.e. the Bourgain of the algebra $\psi \cdot A(\bar{D})$ with respect to $H^{\infty}(D)$ is generated by the set of Blaschke products which have a finite number of singularities.

Proof. If $f \notin \mathcal{A}$, then there exist $\varepsilon>0$ and a sequence $\left\{\xi_{n}\right\}_{n} \subset T$ such that $\mathrm{Cl}\left(f, \xi_{n}\right) \geq \varepsilon$ for all n. Without loss of generality we can consider that $\xi_{n} \rightarrow \xi \in T$
and $\xi_{n} \neq \xi$ for every n. As in [3] and [8] there exist functions $f_{n} \in A(\bar{D})$ such that $f_{n}\left(\xi_{n}\right)=1$ and $\sum_{n=1}^{\infty}\left|f_{n}(z)\right| \leq 2$ for all $z \in D$. By Lemma 2.2 we obtain that $f_{n} \rightarrow 0$ weakly in $A(D)$.

Therefore for the sequence $\left\{\psi f_{n}\right\}_{n} \subset \psi A(\bar{D})$ we have $\left(\psi f_{n}\right)\left(\xi_{n}\right)=\psi\left(\xi_{n}\right)$ for all n, and $\sum_{n=1}^{\infty}\left|\left(\psi f_{n}\right)(z)\right| \leq 2$ for every $z \in D$. By Lemma 2.2 (with $\psi A(\bar{D})$ instead of $H^{\infty}(D)$) it follows that $\psi f_{n} \rightarrow 0$ weakly in $\psi A(\bar{D})$. Let $\left\{\psi g_{n}\right\}_{n} \subset \psi A(\bar{D})$. Then by Lemma 3.1. we have that for every n :
$2\left\|f . \psi f_{n}-\psi g_{n}\right\| \geq \operatorname{diamCl}\left(f . \psi f_{n}-\psi g_{n}, \xi_{n}\right)=\operatorname{diamCl}\left(f \cdot \psi f_{n}, \xi_{n}\right)=\operatorname{diamCl}\left(f, \xi_{n}\right) \geq \varepsilon$, because $\lim _{z \rightarrow \xi_{n}}\left(\psi f_{n}\right)(z)=\psi\left(\xi_{n}\right) f_{n}\left(\xi_{n}\right)=\psi\left(\xi_{n}\right)$ and $\left|\psi\left(\xi_{n}\right)\right|=1$ for every n. Thus $f \notin\left(\psi A(\bar{D}), H^{\infty}(D)\right)_{b}$ and we obtain $\left(\psi A(\bar{D}), H^{\infty}(D)\right)_{b} \subset \mathcal{A}$.

Let f be a Blaschke product with a finite number of singularities $\xi_{1}, \xi_{2}, \ldots, \xi_{k}$ on T. Without loss of generality we can consider that $k=1, \xi_{1}=1$ and $\|f\| \leq 1$. If $\psi f_{n} \rightarrow 0$ weakly in $\psi A(\bar{D})$ then $\psi f_{n} \rightarrow 0$ weakly in $A(\bar{D})$, because $\psi A(\bar{D}) \subset A(\bar{D})$. Since $M(A(\bar{D}))=\bar{D}$ we obtain that $\psi(1) \cdot f_{n}(1)=\phi_{1}\left(\psi \cdot f_{n}\right) \rightarrow 0$, where $\phi_{1} \in M(A(\bar{D}))$ is the point evaluation $\phi_{1}(g)=g(1)$ for every $g \in A(\bar{D})$. But $\psi(1) \neq 0$ and we have $f_{n}(1) \rightarrow 0$. Let $\varepsilon>0$. Then by exactly the same arguments as in [8] there exists a sequence $\left\{h_{n}\right\}_{n} \subset A(\bar{D})$ such that $\left\|f . f_{n}-h_{n}\right\| \leq \varepsilon$ for large enough n. Since $|\psi(z)|<1$ for every $z \in D$ we see that
$\operatorname{dist}\left(f . \psi f_{n}, \psi A(\bar{D})\right) \leq\left\|f . \psi f_{n}-\psi g_{n}\right\| \leq\left\|f . f_{n}-g_{n}\right\| \leq \varepsilon$, i.e. $f \in\left(\psi \cdot A(\bar{D}), H^{\infty}(D)\right)_{b}$. Since $\left(\psi A(\bar{D}), H^{\infty}(D)\right)_{b}$ is a closed algebra, we obtain that $B \subset\left(\psi A(\bar{D}), H^{\infty}(D)\right)_{b}$.

The theorem is proved.
Remark. Let ψ be a Blaschke product, with a finite number of singularities $E=$ $\left\{\eta_{1}, \eta_{2}, \ldots, \eta_{k}\right\}$ on T. If $f \notin \mathcal{A}$, then there exist $\varepsilon>0$ and a sequence $\left\{\xi_{n}\right\}_{n} \subset T$ such that $\operatorname{Cl}\left(f, \xi_{n}\right) \geq \varepsilon$ for all n. Without loss of generality we can consider that $E \cap\left\{\xi_{n}\right\}_{n}=\emptyset$, $\xi_{n} \rightarrow \xi \in T$ and $\xi_{n} \neq \xi$ for every n. Note that then ψ extends to be continuous on $\bar{D} \backslash E$ and therefore in ξ_{n} with $\left|\psi\left(\xi_{n}\right)\right|=1$ for every n. As in Theorem 3.2. there exists a sequence of functions $\left\{f_{n}\right\}_{n} \subset A(\bar{D})$ such that $f_{n}\left(\xi_{n}\right)=1, \psi f_{n} \rightarrow 0$ weakly in $\psi A(\bar{D})$ and
$2\left\|f \cdot \psi f_{n}-\psi g_{n}\right\| \geq \operatorname{diamCl}\left(f . \psi f_{n}-\psi g_{n}, \xi_{n}\right)=\operatorname{diamCl}\left(f \cdot \psi f_{n}, \xi_{n}\right)=\operatorname{diamCl}\left(f, \xi_{n}\right) \geq \varepsilon$ for every n, where $\left\{\psi g_{n}\right\}_{n} \subset \psi A(\bar{D})$. Consequently $\left(\psi \cdot A(\bar{D}), H^{\infty}(D)\right)_{b} \subset \mathcal{A}$ and when ψ is a Blaschke product, with a finite number of singularities.

REFERENCES

[1] J. Cima, R. Timoney. The Dunford-Pettis property for certain planar uniform algebra. Michigan Math. J., 34 (1987), 99-104.
[2] J. Bourgain. The Dunford-Pettis property for the ball-algebras, the polydisc-algebras and the Sobolevs paces. Studia Math., 77 (1984), 245-253.
[3] J. Garnett. Bounded analytic functions. Graduate Texts in Mathematics vol. 236, Springer, New York, 2007.
[4] J. Cima, Sv. Janson, K. Yale. Completely continuous Hankel operators on H^{∞} and Bourgain algebras. Proc. Amer. Math. Soc., 105 (1989), 121-125.
[5] K. Izuchi. Bourgain algebras of the disk, polydisk and ball algebras. Duke Math. J., 66, No 3, (1992), 503-519.
[6] D. Stankov. Bourgain algebras of closed subalgebras between A and H^{∞}. C. R. Acad. Bulgare Sci., 67, No 1 (2014), 5-12.
[7] M. Hristov. On Bourgain algebras of backward shift invariant algebras and their subalgebras. C. R. Acad. Bulgare Sci., 67, No 4 (2014), 449-458.
[8] J. Cima, K. Stroethoff, K. Yale. Bourgain algebras on the unit disk. Pacific J. Math., 160 (19893), 27-41.
[9] J. Cima, R. Mortini. Bourgain algebras of the disk algebra $A(D)$ and the algebra $Q A$. Studia Math., 113, No 3 (1995), 211-221.
[10] P. Gorkin, R. Mortini. Interpolating Blaschke products and factorization in Douglas algebras. Mich. J. Math., 38 (1991), 147-160.
[11] K. Izuchi. Interpolating Blaschke products and factorization theorems. J. London Math. Soc., 50 (1994), 547-567.
[12] D. Stankov. Interpolating hyper-Blaschke products and structure of $M\left(H_{G}^{\infty}\right)$. C. R. Acad. Bulgare Sci., 67, No 10 (2014), 1327-1336.

Miroslav Kolev Hristov
Faculty of Mathematics and Informatics
University of Shumen
115, Universitetska Str.
9700 Shumen, Bulgaria
e-mail: miroslav.hristov@shu-bg.net

АЛГЕБРИ НА БУРГЕН НА НЯКОИ ПОДАЛГЕБРИ НА ДИСК АЛГЕБРАТА

Мирослав Колев Христов

Нека ψ е крайно произведение на Блашке и $A(\bar{D})$ е диск алгебрата. В тази работа ние доказваме, че алгебрата на Бурген на $\psi A(D)$ относно $H^{\infty}(D)$ съвпада с алгебрата, породена от произведенията на Блашке, които имат само краен брой особени точки върху единичната окръжност.

[^0]: *2010 Mathematics Subject Classification: 30H05, 30 H 50.
 Key words: Bounded analytic functions, Bourgain algebras.
 The author would like to thank Shumen University for support through Scientific Research Grant RD-08-237/2014.

