МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2015 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2015 Proceedings of the Forty Fourth Spring Conference of the Union of Bulgarian Mathematicians SOK "Kamchia", April 2–6, 2015

BOURGAIN ALGEBRAS OF SOME SUBALGEBRAS OF THE DISK ALGEBRA^{*}

Miroslav K. Hristov

Let ψ be a finite Blaschke product and $A(\bar{D})$ be the disk algebra. In this paper we prove that the Bourgain algebra of $\psi A(\bar{D})$ relative to $H^{\infty}(D)$ coincides with the algebra generated by the Blaschke products having only a finite number of singularities in the unit circle.

1. Introduction. Let Y be a commutative Banach algebra with an identity and let X be a linear subspace of Y. J. Cima and R. Timoney [1] introduced the notion of the Bourgain algebra based on ideas of J. Bourgain [2]. The Bourgain algebra $X_b = (X, Y)_b$ of X relative to Y is defined to the set of all $f \in Y$ such that:

if $f_n \to 0$ weakly in X, then dist $(f_n, X) \to 0$.

The distance, dist $(f.f_n, X)$ between $f.f_n$ and X is the quotient norm of the coset $f.f_n + X$ in the space Y/X. The proof in [1] shows that X_b is a closed subalgebra of Y and contains the constant functions.

Let $H^{\infty}(D)$ be the Banach algebra of all bounded analytic functions on the open unit disk $D = \{z \in \mathbb{C} : |z| < 1\}$ with the supremum norm. The spectrum of $H^{\infty}(D)$ is the space $M(H^{\infty}(D))$ of all nonzero multiplicative linear functionals on endowed with weak-* topology. Then $M(H^{\infty}(D))$ is a compact Hausdorf space and Carleson's corona theorem says that D is dense in $M(H^{\infty}(D))$ [3]. By considering boundary functions on $T = \partial D$, we can consider that $H^{\infty}(D) = H^{\infty}(T)$ is an essentially supremum-norm closed subalgebra of $L^{\infty} = L^{\infty}(T)$.

Let $C(\bar{D})$ be the space of all continuous functions on the closed unit disk \bar{D} and let $A(\bar{D}) = H^{\infty}(D) \cap C(\bar{D})$ denote the disk algebra, i.e. the algebra of all continuous functions on \bar{D} which are analytic on D. There are various alternative descriptions of $A(\bar{D})$. For example, $A(\bar{D})$ is the uniform closure in $C(\bar{D})$ of the polynomials, also consists of the continuous functions on the unit circle whose Fourier coefficients vanish on the negative integers. Every $\lambda \in \bar{D}$ determines the evaluation homomorphism $\phi_{\lambda} \in M(A(\bar{D}))$ defined by

$$\phi_{\lambda}(f) = f(\lambda)$$
, for every $f \in A(\overline{D})$.

^{*}2010 Mathematics Subject Classification: 30H05, 30H50.

Key words: Bounded analytic functions, Bourgain algebras.

The author would like to thank Shumen University for support through Scientific Research Grant RD-08-237/2014.

The correspondence $\lambda \to \phi_{\lambda}$ embeds the closed unit disk \bar{D} as a closed subset of $M(A(\bar{D}))$. Suppose $\phi \in M(A(\bar{D}))$ is arbitrary and $\lambda = \phi(z)$, where z is the coordinate function. Then ϕ coincides with ϕ_{λ} . Consequently the spectrum of $A(\bar{D})$ coincides whit D[3].

We denote the space of continuous functions on the unit circle T by C = C(T). In [4] J. Cima, Sv. Janson and K. Yale showed that the Bourgain algebra H_{h}^{∞} of $H^{\infty}(T)$ relative to $L^{\infty} = L^{\infty}(T)$ is $H^{\infty}(T) + C$. K. Izuchi [5] proved that the Bourgain algebra of a closed subalgebra between disk algebra $A(T) = H^{\infty}(T) \cap C$ and H^{∞} relative L^{∞} is always contained in $H^{\infty}(T) + C$. Some results for Bourgain algebras of subalgebras at $H^{\infty}(D)$ are proven in [6, 7].

In [8] Cima, Stroethoff and Yale show that $(A(\bar{D}), H^{\infty}(D))_{b}$ contains every Blaschke product whose zeros cluster only at a finite number of points, i.e. which have only a finite number of singularities. J. Cima and R. Mortini prove that $(A(D), H^{\infty}(D))_{b}$ is the algebra B generated by the Blaschke products having only a finite number of singularities [9].

In this paper we prove that this is true and for the Bourgain algebra of $\psi A(D)$ where ψ is a finite Blaschke product. If ψ have only a finite number of singularities we prove that $\left(\psi A\left(\overline{D}\right), H^{\infty}\left(D\right)\right)_{b} \subset B.$

2. Preliminaries. A sequence $\{z_n\}_n$ in D is called interpolating if for every bounded sequence $\{a_n\}_n$ of complex numbers, there is a function $f \in H^{\infty}(D)$ such that $f(z_n) = a_n$ for all n. For a sequence $\{z_n\}_n$ in D with $\sum_{n=1}^{\infty} (1-|z_n|) < \infty$, the function:

$$B(z) = \prod_{n=1}^{\infty} \frac{-\overline{z}_n}{|z_n|} \frac{z - z_n}{1 - \overline{z}_n z}, \quad z \in D,$$

is called a Blaschke product with zeros $\{z_n\}_n$. If $\{z_n\}_n$ is an interpolating sequence, then B(z) is also called interpolating. More information about the interpolating Blaschke product can be found in [10, 11, 12].

Lemma 2.1 [3]. If $\{z_n\}_n \subset D$ is interpolating sequence, then there exist functions $\{f_n\}_n \subset H^{\infty}(D)$ and positive number M such that $f_n(z_n) = 1$ for all n, $f_n(z_k) = 0$ for $n \neq k$ and $\sum_{n=1}^{\infty} |f_n(z)| \leq M$ for $z \in D$.

Lemma 2.2 [4]. Suppose that $\{f_n\}_n$ is a sequence in $H^{\infty}(D)$ such that $\sum_{n=1}^{\infty} |f_n(z)| \leq 1$ $M \text{ for } z \in D.$ Then $f_n \to 0$ weakly in $H^{\infty}(D)$.

Let ψ be an inner function, i.e. $\psi \in H^{\infty}(D)$ such that $|\psi(e^{i\theta})| = 1$ almost everywhere on T. Then ψ has the form: $\psi(z) = B(z) \cdot S(z), z \in D$ where B(z) is a Blaschke product

$$B(z) = \prod_{n=1}^{\infty} \frac{-\bar{a}_n}{|a_n|} \frac{z - a_n}{1 - \bar{a}_n z}$$

with zeros $\{a_n\}_n \subset D$, and

$$S(z) = \exp\left[-\int_{T} \frac{\lambda + z}{\lambda - z} d\mu(\lambda)\right],$$
175

where μ is a finite, nonnegative measure on T, singular with respect to Lebesgue measure.

The support of ψ is the set of points $\lambda \in T$ for which there is a sequence $\{z_n\}_n \subset D$ of points such that $z_n \to \lambda$ and $\psi(z_n) \to 0$. This set, denoted by $\operatorname{supp} \psi$, is known to be the union of the support of the measure μ and the cluster set of the sequence $\{a_n\}_n$ [3]. Note that if ψ is a Blaschke product, then $\operatorname{supp} \psi$ coincides with the cluster set of $\{a_n\}_n$. If supp ψ is a finite set, then ψ is called a Blaschke product with a finite number of singularities.

As usual, the cluster set $\operatorname{Cl}(f,\xi)$ of a function $f \in H^{\infty}(D)$ at a point $\xi \in T$ is defined to be the set of all points $\omega \in \mathbb{C}$ for which there exists a sequence $\{z_n\}$ in D converging to ξ such that $f(z_n) \to \omega$. Let \mathcal{A} denote the set:

 $\mathcal{A} = \{ f \in H^{\infty} : \text{ for every } \varepsilon > 0 \text{ the set } \{ \xi \in T : \operatorname{diamCl}(f, \xi) \ge \varepsilon \} \text{ is finite} \},\$

where, as usual, diam $E = \sup \{ |a - b| : a, b \in E \}$ is the diameter of a bounded subset E of C. Let B be the algebra generated by the set of Blaschke products which have a finite number of singularities. In [9] it is shown that \mathcal{A} is a closed sualgebra of $H^{\infty}(D)$ and that $\mathcal{A} = B$.

3. The main result.

Lemma 3.1. If $f \in H^{\infty}(D)$ and $\xi \in T$, then:

- 1) diamCl $(f,\xi) \leq 2 ||f||;$

1) diamCl $(f,\xi) \ge 2 ||f||$, 2) diamCl $(f,\xi) =$ diamCl $(f-g,\xi)$, where $g \in H^{\infty}(D)$ and $\lim_{z \to \xi} g(z) = \alpha \in C$; 3) diamCl $(fg,\xi) =$ diamCl (f,ξ) , where $g \in H^{\infty}(D)$ and $\lim_{z \to \xi} g(z) = \beta$, $|\beta| = 1$.

Proof. 1) Let ω_1 and ω_2 belong to $\operatorname{Cl}(f,\xi)$ and $\varepsilon > 0$. There exist two sequences $\{z'_n\}_n, \{z''_n\}_n$ in D such that $z'_n \to \xi, z''_n \to \xi$ and $f(z'_n) \to \omega_1, f(z''_n) \to \omega_2$. Therefore we can find n_0 such that for $n > n_0$ is fulfilled $|f(z'_n) - \omega_1| < \varepsilon$ and $|f(z''_n) - \omega_2| < \varepsilon$. Then for every $n > n_0$ we have:

$$|\omega_1 - \omega_2| \le |\omega_1 - f(z'_n)| + |\omega_2 - f(z''_n)| + |f(z'_n)| + |f(z''_n)| < 2\varepsilon + 2 ||f||,$$

i.e. diamCl $(f,\xi) = \sup \{ |\omega_1 - \omega_2| : \omega_1, \omega_2 \in Cl(f,\xi) \} \le 2 ||f||.$

2) We have the following equivalences:

 $\omega \in \operatorname{Cl}(f,\xi) \Leftrightarrow \text{there exists a sequence } \{z_n\}_n, z_n \to \xi \text{ such that } f(z_n) \to \omega \quad \Leftrightarrow \text{there}$ exists a sequence $\{z_n\}_n, z_n \to \xi$ such that $(f - g)(z_n) \to \omega - \alpha \quad \Leftrightarrow \omega - \alpha \in \operatorname{Cl}(f - g, \xi).$

3) Therefore diamCl (f,ξ) = diamCl $(f-g,\xi)$, because Cl $(f-g,\xi)$ is the translation of $\operatorname{Cl}(f,\xi)$ determined by the vector α .

We have the following equivalences:

 $\omega \in \operatorname{Cl}(f,\xi) \Leftrightarrow \text{there exists a sequence } \{z_n\}_n, z_n \to \xi \text{ such that } f(z_n) \to \omega \quad \Leftrightarrow$ there exists a sequence $\{z_n\}_n, z_n \to \xi$ such that $(f.g)(z_n) \to \beta.\omega \quad \Leftrightarrow \beta.\omega \in \mathrm{Cl}(f.g,\xi).$

Therefore diamCl (f,ξ) = diamCl $(f.g,\xi)$, because Cl $(f.g,\xi)$ is the rotation of the set $\operatorname{Cl}(f,\xi)$ determined by $\arg\beta$. \Box

Theorem 3.2. If ψ is a finite Blaschke product, then

$$\left(\psi.A\left(\bar{D}\right),H^{\infty}\left(D\right)\right)_{b}=B=\mathcal{A},$$

i.e. the Bourgain of the algebra $\psi A(\overline{D})$ with respect to $H^{\infty}(D)$ is generated by the set of Blaschke products which have a finite number of singularities.

Proof. If $f \notin A$, then there exist $\varepsilon > 0$ and a sequence $\{\xi_n\}_n \subset T$ such that $\operatorname{Cl}(f,\xi_n) \geq \varepsilon$ for all n. Without loss of generality we can consider that $\xi_n \to \xi \in T$ 176

and $\xi_n \neq \xi$ for every *n*. As in [3] and [8] there exist functions $f_n \in A(\overline{D})$ such that $f_n(\xi_n) = 1$ and $\sum_{n=1}^{\infty} |f_n(z)| \leq 2$ for all $z \in D$. By Lemma 2.2 we obtain that $f_n \to 0$ weakly in A(D).

Therefore for the sequence $\{\psi f_n\}_n \subset \psi A(\bar{D})$ we have $(\psi f_n)(\xi_n) = \psi(\xi_n)$ for all n, and $\sum_{n=1}^{\infty} |(\psi f_n)(z)| \leq 2$ for every $z \in D$. By Lemma 2.2 (with $\psi A(\bar{D})$ instead of $H^{\infty}(D)$) it follows that $\psi f_n \to 0$ weakly in $\psi A(\bar{D})$. Let $\{\psi g_n\}_n \subset \psi A(\bar{D})$. Then by Lemma 3.1. we have that for every n:

 $2 \| f.\psi f_n - \psi g_n \| \ge \operatorname{diamCl}(f.\psi f_n - \psi g_n, \xi_n) = \operatorname{diamCl}(f.\psi f_n, \xi_n) = \operatorname{diamCl}(f, \xi_n) \ge \varepsilon,$ because $\lim_{z \to \xi_n} (\psi f_n)(z) = \psi(\xi_n) f_n(\xi_n) = \psi(\xi_n)$ and $|\psi(\xi_n)| = 1$ for every *n*. Thus $f \notin (\psi A(\overline{D}), H^{\infty}(D)), \text{ and we obtain } (\psi A(\overline{D}), H^{\infty}(D)), \subset \mathcal{A}.$

$$\begin{split} &f \notin \left(\psi A\left(\bar{D}\right), H^{\infty}\left(D\right)\right)_{b} \text{ and we obtain } \left(\psi A\left(\bar{D}\right), H^{\infty}\left(D\right)\right)_{b} \subset \mathcal{A}.\\ &\text{Let } f \text{ be a Blaschke product with a finite number of singularities } \xi_{1}, \xi_{2}, \ldots, \xi_{k} \text{ on } T.\\ &\text{Without loss of generality we can consider that } k = 1, \xi_{1} = 1 \text{ and } \|f\| \leq 1. \text{ If } \psi f_{n} \to 0\\ &\text{weakly in } \psi A\left(\bar{D}\right) \text{ then } \psi f_{n} \to 0 \text{ weakly in } A\left(\bar{D}\right), \text{ because } \psi A\left(\bar{D}\right) \subset A\left(\bar{D}\right). \text{ Since } \\ &M\left(A\left(\bar{D}\right)\right) = \bar{D} \text{ we obtain that } \psi\left(1\right).f_{n}\left(1\right) = \phi_{1}\left(\psi.f_{n}\right) \to 0, \text{ where } \phi_{1} \in M\left(A\left(\bar{D}\right)\right)\\ &\text{ is the point evaluation } \phi_{1}\left(g\right) = g\left(1\right) \text{ for every } g \in A\left(\bar{D}\right). \text{ But } \psi\left(1\right) \neq 0 \text{ and we have } \\ &f_{n}\left(1\right) \to 0. \text{ Let } \varepsilon > 0. \text{ Then by exactly the same arguments as in [8] there exists a sequence } \{h_{n}\}_{n} \subset A\left(\bar{D}\right) \text{ such that } \|f.f_{n} - h_{n}\| \leq \varepsilon \text{ for large enough } n. \text{ Since } |\psi\left(z\right)| < 1\\ &\text{ for every } z \in D \text{ we see that } \end{split}$$

 $\operatorname{dist}\left(f.\psi f_{n},\psi A\left(\bar{D}\right)\right) \leq \|f.\psi f_{n}-\psi g_{n}\| \leq \|f.f_{n}-g_{n}\| \leq \varepsilon, \text{ i.e. } f \in \left(\psi.A\left(\bar{D}\right),H^{\infty}\left(D\right)\right)_{b}.$ Since $\left(\psi A\left(\bar{D}\right),H^{\infty}\left(D\right)\right)_{b}$ is a closed algebra, we obtain that $B \subset \left(\psi A\left(\bar{D}\right),H^{\infty}\left(D\right)\right)_{b}.$ The theorem is proved. \Box

Remark. Let ψ be a Blaschke product, with a finite number of singularities $E = \{\eta_1, \eta_2, \ldots, \eta_k\}$ on T. If $f \notin A$, then there exist $\varepsilon > 0$ and a sequence $\{\xi_n\}_n \subset T$ such that $\operatorname{Cl}(f, \xi_n) \ge \varepsilon$ for all n. Without loss of generality we can consider that $E \cap \{\xi_n\}_n = \emptyset$, $\xi_n \to \xi \in T$ and $\xi_n \neq \xi$ for every n. Note that then ψ extends to be continuous on $\overline{D} \setminus E$ and therefore in ξ_n with $|\psi(\xi_n)| = 1$ for every n. As in Theorem 3.2. there exists a sequence of functions $\{f_n\}_n \subset A(\overline{D})$ such that $f_n(\xi_n) = 1$, $\psi f_n \to 0$ weakly in $\psi A(\overline{D})$ and

$$\begin{split} & 2 \left\| f.\psi f_n - \psi g_n \right\| \geq \mathrm{diamCl}(f.\psi f_n - \psi g_n, \xi_n) = \mathrm{diamCl}(f.\psi f_n, \xi_n) = \mathrm{diamCl}(f, \xi_n) \geq \varepsilon \\ & \text{for every } n, \, \text{where } \left\{ \psi g_n \right\}_n \subset \psi A\left(\bar{D}\right). \, \text{Consequently } \left(\psi.A\left(\bar{D}\right), H^\infty\left(D\right) \right)_b \subset \mathcal{A} \text{ and when } \\ & \psi \text{ is a Blaschke product, with a finite number of singularities.} \end{split}$$

REFERENCES

- J. CIMA, R. TIMONEY. The Dunford-Pettis property for certain planar uniform algebra. Michigan Math. J., 34 (1987), 99–104.
- [2] J. BOURGAIN. The Dunford-Pettis property for the ball-algebras, the polydisc-algebras and the Sobolevs paces. *Studia Math.*, 77 (1984), 245–253.
- [3] J. GARNETT. Bounded analytic functions. Graduate Texts in Mathematics vol. 236, Springer, New York, 2007.

- [4] J. CIMA, SV. JANSON, K. YALE. Completely continuous Hankel operators on H^{∞} and Bourgain algebras. *Proc. Amer. Math. Soc.*, **105** (1989), 121–125.
- [5] K. IZUCHI. Bourgain algebras of the disk, polydisk and ball algebras. Duke Math. J., 66, No 3, (1992), 503-519.
- [6] D. STANKOV. Bourgain algebras of closed subalgebras between A and H[∞]. C. R. Acad. Bulgare Sci., 67, No 1 (2014), 5–12.
- [7] M. Hristov. On Bourgain algebras of backward shift invariant algebras and their subalgebras. C. R. Acad. Bulgare Sci., 67, No 4 (2014), 449–458.
- [8] J. CIMA, K. STROETHOFF, K. YALE. Bourgain algebras on the unit disk. *Pacific J. Math.*, 160 (19893), 27–41.
- [9] J. CIMA, R. MORTINI. Bourgain algebras of the disk algebra A(D) and the algebra QA. Studia Math., 113, No 3 (1995), 211–221.
- [10] P. GORKIN, R. MORTINI. Interpolating Blaschke products and factorization in Douglas algebras. Mich. J. Math., 38 (1991), 147–160.
- [11] K. IZUCHI. Interpolating Blaschke products and factorization theorems. J. London Math. Soc., 50 (1994), 547–567.
- [12] D. STANKOV. Interpolating hyper-Blaschke products and structure of $M(H_G^{\infty})$. C. R. Acad. Bulgare Sci., 67, No 10 (2014), 1327–1336.

Miroslav Kolev Hristov

Faculty of Mathematics and Informatics

University of Shumen

115, Universitetska Str.

9700 Shumen, Bulgaria

e-mail: miroslav.hristov@shu-bg.net

АЛГЕБРИ НА БУРГЕН НА НЯКОИ ПОДАЛГЕБРИ НА ДИСК АЛГЕБРАТА

Мирослав Колев Христов

Нека ψ е крайно произведение на Блашке и $A(\bar{D})$ е диск алгебрата. В тази работа ние доказваме, че алгебрата на Бурген на $\psi A(D)$ относно $H^{\infty}(D)$ съвпада с алгебрата, породена от произведенията на Блашке, които имат само краен брой особени точки върху единичната окръжност.