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OF THE DISK ALGEBRA*

Miroslav K. Hristov

Let ψ be a finite Blaschke product and A
(

D̄
)

be the disk algebra. In this paper we
prove that the Bourgain algebra of ψA

(

D̄
)

relative to H∞ (D) coincides with the al-
gebra generated by the Blaschke products having only a finite number of singularities
in the unit circle.

1. Introduction. Let Y be a commutative Banach algebra with an identity and let
X be a linear subspace of Y . J. Cima and R. Timoney [1] introduced the notion of the
Bourgain algebra based on ideas of J. Bourgain [2]. The Bourgain algebra Xb = (X,Y )b
of X relative to Y is defined to the set of all f ∈ Y such that:

if fn → 0 weakly in X , then dist (f.fn, X) → 0.

The distance, dist (f.fn, X) between f.fn and X is the quotient norm of the coset
f.fn + X in the space Y/X . The proof in [1] shows that Xb is a closed subalgebra of
Y and contains the constant functions.

Let H∞ (D) be the Banach algebra of all bounded analytic functions on the open
unit disk D = {z ∈ C : |z| < 1} with the supremum norm. The spectrum of H∞ (D) is
the space M (H∞(D)) of all nonzero multiplicative linear functionals on endowed with
weak-* topology. Then M (H∞(D)) is a compact Hausdorf space and Carleson’s corona
theorem says that D is dense in M (H∞(D)) [3]. By considering boundary functions
on T = ∂D, we can consider that H∞ (D) = H∞ (T ) is an essentially supremum-norm
closed subalgebra of L∞ = L∞ (T ).

Let C
(

D̄
)

be the space of all continuous functions on the closed unit disk D̄ and

let A
(

D̄
)

= H∞(D) ∩ C
(

D̄
)

denote the disk algebra, i.e. the algebra of all continuous
functions on D̄ which are analytic on D. There are various alternative descriptions
of A

(

D̄
)

. For example, A
(

D̄
)

is the uniform closure in C
(

D̄
)

of the polynomials,
also consists of the continuouse functions on the unit circle whose Fourier coefficients
vanish on the negative integers. Every λ ∈ D̄ determines the evaluation homomorphism
φλ ∈M

(

A
(

D̄
))

defined by

φλ (f) = f (λ) , for every f ∈ A
(

D̄
)

.
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The correspondence λ → φλ embeds the closed unit disk D̄ as a closed subset of
M

(

A
(

D̄
))

. Suppose φ ∈M
(

A
(

D̄
))

is arbitrary and λ = φ (z), where z is the coordinate

function. Then φ coincides with φλ. Consequently the spectrum of A
(

D̄
)

coincides whit
D̄ [3].

We denote the space of continuous functions on the unit circle T by C = C (T ). In
[4] J. Cima, Sv. Janson and K. Yale showed that the Bourgain algebra H∞

b of H∞ (T )
relative to L∞ = L∞ (T ) is H∞ (T ) +C. K. Izuchi [5] proved that the Bourgain algebra
of a closed subalgebra between disk algebra A (T ) = H∞ (T ) ∩ C and H∞ relative L∞

is always contained in H∞ (T ) + C. Some results for Bourgain algebras of subalgebras
at H∞(D) are proven in [6, 7].

In [8] Cima, Stroethoff and Yale show that
(

A
(

D̄
)

, H∞ (D)
)

b
contains every Blaschke

product whose zeros cluster only at a finite number of points, i.e. which have only a
finite number of singularities. J. Cima and R. Mortini prove that

(

A
(

D̄
)

, H∞ (D)
)

b

is the algebra B generated by the Blaschke products having only a finite number of
singularities [9].

In this paper we prove that this is true and for the Bourgain algebra of ψA (D) where
ψ is a finite Blaschke product. If ψ have only a finite number of singularities we prove
that

(

ψA
(

D̄
)

, H∞ (D)
)

b
⊂ B.

2. Preliminaries. A sequence {zn}n in D is called interpolating if for every bounded
sequence {an}n of complex numbers, there is a function f ∈ H∞(D) such that f (zn) = an

for all n. For a sequence {zn}n in D with
∞
∑

n=1

(1− |zn|) <∞, the function:

B (z) =

∞
∏

n=1

−z̄n
|zn|

z − zn
1− z̄nz

, z ∈ D,

is called a Blaschke product with zeros {zn}n. If {zn}n is an interpolating sequence, then
B (z) is also called interpolating. More information about the interpolating Blaschke
product can be found in [10, 11, 12].

Lemma 2.1 [3]. If {zn}n ⊂ D is interpolating sequence, then there exist functions

{fn}n ⊂ H∞ (D) and positive number M such that fn (zn) = 1 for all n, fn (zk) = 0 for

n 6= k and
∞
∑

n=1

|fn (z)| ≤M for z ∈ D.

Lemma 2.2 [4]. Suppose that {fn}n is a sequence in H∞ (D) such that
∞
∑

n=1

|fn (z)| ≤

M for z ∈ D. Then fn → 0 weakly in H∞ (D).

Let ψ be an inner function, i.e. ψ ∈ H∞ (D) such that
∣

∣ψ
(

eiθ
)∣

∣ = 1 almost everywhere
on T . Then ψ has the form: ψ (z) = B (z) .S (z), z ∈ D where B (z) is a Blaschke product

B (z) =

∞
∏

n=1

−ān
|an|

z − an
1− ānz

with zeros {an}n ⊂ D, and

S (z) = exp



−

∫

T

λ+ z

λ− z
dµ (λ)



 ,
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where µ is a finite, nonnegative measure on T , singular with respect to Lebesgue measure.
The support of ψ is the set of points λ ∈ T for which there is a sequence {zn}n ⊂ D

of points such that zn → λ and ψ (zn) → 0. This set, denoted by suppψ, is known to
be the union of the support of the measure µ and the cluster set of the sequence {an}n
[3]. Note that if ψ is a Blaschke product, then suppψ coincides with the cluster set of
{an}n. If suppψ is a finite set, then ψ is called a Blaschke product with a finite number
of singularities.

As usual, the cluster set Cl(f, ξ) of a function f ∈ H∞(D) at a point ξ ∈ T is defined
to be the set of all points ω ∈ C for which there exists a sequence {zn} in D converging
to ξ such that f (zn) → ω. Let A denote the set:

A = {f ∈ H∞: for every ε > 0 the set {ξ ∈ T : diamCl(f, ξ) ≥ ε} is finite} ,

where, as usual, diamE = sup {|a− b| : a, b ∈ E} is the diameter of a bounded subset E
of C. Let B be the algebra generated by the set of Blaschke products which have a finite
number of singularities. In [9] it is shown that A is a closed sualgebra of H∞(D) and
that A = B.

3. The main result.

Lemma 3.1. If f ∈ H∞(D) and ξ ∈ T , then:
1) diamCl(f, ξ) ≤ 2 ‖f‖;
2) diamCl(f, ξ) = diamCl(f − g, ξ), where g ∈ H∞(D) and lim

z→ξ
g (z) = α ∈ C;

3) diamCl(fg, ξ) = diamCl(f, ξ), where g ∈ H∞(D) and lim
z→ξ

g (z) = β, |β| = 1.

Proof. 1) Let ω1 and ω2 belong to Cl(f, ξ) and ε > 0. There exist two sequences
{z′n}n, {z

′′

n}n in D such that z′n → ξ, z′′n → ξ and f (z′n) → ω1, f (z
′′

n) → ω2. Therefore
we can find n0 such that for n > n0 is fulfilled |f(z′n)− ω1| < ε and |f(z′′n)− ω2| < ε.
Then for every n > n0 we have:

|ω1 − ω2| ≤ |ω1 − f(z′n)|+ |ω2 − f(z′′n)| ” + |f(z′n)|+ |f(z′′n)| < 2ε+ 2 ‖f‖ ,

i.e. diamCl(f, ξ) = sup {|ω1 − ω2| : ω1, ω2 ∈ Cl(f, ξ)} ≤ 2 ‖f‖.

2) We have the following equivalences:
ω ∈ Cl(f, ξ) ⇔ there exists a sequence {zn}n, zn → ξ such that f (zn) → ω ⇔ there

exists a sequence {zn}n, zn → ξ such that (f − g) (zn) → ω−α ⇔ ω−α ∈ Cl(f−g, ξ).
3) Therefore diamCl(f, ξ) = diamCl(f − g, ξ), because Cl(f − g, ξ) is the translation

of Cl(f, ξ) determined by the vector α.
We have the following equivalences:
ω ∈ Cl(f, ξ) ⇔ there exists a sequence {zn}n, zn → ξ such that f (zn) → ω ⇔

there exists a sequence {zn}n, zn → ξ such that (f.g) (zn) → β.ω ⇔ β.ω ∈ Cl(f.g, ξ).
Therefore diamCl(f, ξ) = diamCl(f.g, ξ), because Cl(f.g, ξ) is the rotation of the set

Cl(f, ξ) determined by arg β. �

Theorem 3.2. If ψ is a finite Blaschke product, then
(

ψ.A
(

D̄
)

, H∞ (D)
)

b
= B = A,

i.e. the Bourgain of the algebra ψ.A
(

D̄
)

with respect to H∞(D) is generated by the set

of Blaschke products which have a finite number of singularities.

Proof. If f /∈ A, then there exist ε > 0 and a sequence {ξn}n ⊂ T such that
Cl(f, ξn) ≥ ε for all n. Without loss of generality we can consider that ξn → ξ ∈ T
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and ξn 6= ξ for every n. As in [3] and [8] there exist functions fn ∈ A
(

D̄
)

such that

fn (ξn) = 1 and
∞
∑

n=1

|fn (z)| ≤ 2 for all z ∈ D. By Lemma 2.2 we obtain that fn → 0

weakly in A (D).
Therefore for the sequence {ψfn}n ⊂ ψA

(

D̄
)

we have (ψfn) (ξn) = ψ (ξn) for all n,

and
∞
∑

n=1

|(ψfn) (z)| ≤ 2 for every z ∈ D. By Lemma 2.2 (with ψA
(

D̄
)

instead ofH∞(D))

it follows that ψfn → 0 weakly in ψA
(

D̄
)

. Let {ψgn}n ⊂ ψA
(

D̄
)

. Then by Lemma 3.1.
we have that for every n:

2 ‖f.ψfn − ψgn‖ ≥ diamCl(f.ψfn − ψgn, ξn) = diamCl(f.ψfn, ξn) = diamCl(f, ξn) ≥ ε,

because lim
z→ξn

(ψfn) (z) = ψ (ξn) fn (ξn) = ψ (ξn) and |ψ (ξn)| = 1 for every n. Thus

f /∈
(

ψA
(

D̄
)

, H∞ (D)
)

b
and we obtain

(

ψA
(

D̄
)

, H∞ (D)
)

b
⊂ A.

Let f be a Blaschke product with a finite number of singularities ξ1, ξ2, . . . , ξk on T .
Without loss of generality we can consider that k = 1, ξ1 = 1 and ‖f‖ ≤ 1. If ψfn → 0
weakly in ψA

(

D̄
)

then ψfn → 0 weakly in A
(

D̄
)

, because ψA
(

D̄
)

⊂ A
(

D̄
)

. Since

M
(

A
(

D̄
))

= D̄ we obtain that ψ (1) .fn (1) = φ1 (ψ.fn) → 0, where φ1 ∈ M
(

A
(

D̄
))

is the point evaluation φ1 (g) = g (1) for every g ∈ A
(

D̄
)

. But ψ (1) 6= 0 and we have
fn (1) → 0. Let ε > 0. Then by exactly the same arguments as in [8] there exists a
sequence {hn}n ⊂ A

(

D̄
)

such that ‖f.fn − hn‖ ≤ ε for large enough n. Since |ψ (z)| < 1
for every z ∈ D we see that
dist

(

f.ψfn, ψA
(

D̄
))

≤ ‖f.ψfn − ψgn‖ ≤ ‖f.fn − gn‖ ≤ ε, i.e. f ∈
(

ψ.A
(

D̄
)

, H∞ (D)
)

b
.

Since
(

ψA
(

D̄
)

, H∞ (D)
)

b
is a closed algebra, we obtain that B ⊂

(

ψA
(

D̄
)

, H∞ (D)
)

b
.

The theorem is proved. �

Remark. Let ψ be a Blaschke product, with a finite number of singularities E =
{η1, η2, . . . , ηk} on T . If f /∈ A, then there exist ε > 0 and a sequence {ξn}n ⊂ T such
that Cl(f, ξn) ≥ ε for all n. Without loss of generality we can consider that E∩{ξn}n = ∅,
ξn → ξ ∈ T and ξn 6= ξ for every n. Note that then ψ extends to be continuous on D̄\E
and therefore in ξn with |ψ (ξn)| = 1 for every n. As in Theorem 3.2. there exists a
sequence of functions {fn}n ⊂ A

(

D̄
)

such that fn (ξn) = 1, ψfn → 0 weakly in ψA
(

D̄
)

and

2 ‖f.ψfn − ψgn‖ ≥ diamCl(f.ψfn − ψgn, ξn) = diamCl(f.ψfn, ξn) = diamCl(f, ξn) ≥ ε

for every n, where {ψgn}n ⊂ ψA
(

D̄
)

. Consequently
(

ψ.A
(

D̄
)

, H∞ (D)
)

b
⊂ A and when

ψ is a Blaschke product, with a finite number of singularities.
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АЛГЕБРИ НА БУРГЕН НА НЯКОИ ПОДАЛГЕБРИ НА ДИСК

АЛГЕБРАТА

Мирослав Колев Христов

Нека ψ е крайно произведение на Блашке и A
(

D̄
)

е диск алгебрата. В тази

работа ние доказваме, че алгебрата на Бурген на ψA (D) относноH∞ (D) съвпада

с алгебрата, породена от произведенията на Блашке, които имат само краен брой

особени точки върху единичната окръжност.
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