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PARAMETER ESTIMATION FOR THE DISCRETE

KOLMOGOROV POPULATION DYNAMICS SYSTEM*

Dimiter P. Tsvetkov, Lyubomir Ya. Hristov, Ralitsa L. Angelova-Slavova

In this paper a discrete modification of the population dynamics Kolmogorov system
(n-competing species problem) is considered. An exact formula about statistical
estimate for the parameters of the system by means of the least squares method is
presented.

Introduction. The differential system of logistic type for collaboration or concur-
rence among n species (or among n resources) is given by the equations (e.g. [1], [2],
[3])

(1)

ẋ1 = x1 (α1 + β11x1 + β12x2 + · · ·+ β1nxn)
ẋ2 = x2 (α2 + β21x1 + β22x2 + · · ·+ β2nxn)
· · ·
ẋn = xn (αn + βn1x1 + βn2x2 + · · ·+ βnnxn)

where the positive variables xk, k = 1, 2, . . . , n, describe the amount of the corresponding
species, the parameters αk and βkk are connected with the self-growth and the inner
interaction, and the parameters βij , i 6= j, describe the state of the interaction among
the species. Usually we have αk > 0 and βkk < 0 which defines a logistic type dynamic
for the separate species with missing external effects. If βij > 0 (βij < 0), i 6= j, then
the particular species j effects positively (negatively) on the growth of the particular
species i. In the typical case system (1) has a stable limit behavior.

System (1) has a discrete analogue
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where x
(t)
k defines the amount of the species k at the moment t. Assume that we are

given the data with observations at the moments t = 1, 2, . . . , N . Then we have an
opportunity to check out the model validity of (2). The parameters αk and βij will be
estimated according to the data by means of the least squares method.
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Parameter estimation . Introduce the notations
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Then the system (2) can be written in the concise form

(3) xt = xt−1 + Lt−1 (α+Bxt−1)

and after the setting
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the system (3) accepts the form

(4) xt = xt−1 + Lt−1Byt−1.

The least squares estimation is connected with the minimization of the following cost
function
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which after the setting
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accepts the form

(5) ϕ =

N
∑

t=2

(rett −Byt−1)
T
St−1 (rett −Byt−1).

Before going further let us solve the following auxiliary task. Suppose we are given
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the vectors a(k) ∈ Rp, b(k) ∈ Rq and the symmetric positively defined (p× p) matrices
Dk, k = 1, 2, . . . ,K. We are looking for a (p× q) matrix A which minimizes the function
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.

Using straightforward calculations one can find that the matrix derivative ∂ψ
∂A

is given
by the formula
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To find A we shall annul the gradient by solving the matrix equation ∂ψ
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= 0 which
leads to
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One can transform the last by means of the vectorization vec (·) and the Kronecker
product ⊗ (e.g. [4], [5]). Then it turns into the form
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which has a solution
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Now we are able to apply the result of (6) immediately to the cost function defined
in (5) and in this way to prove the validity of the following theorem.

Theorem.Let we are given the data
(

x(t)
)

. Then the least squares estimate for the

parameters

B =











α1 β11 β12 · · · β1n
α2 β21 β22 · · · β2n
...

...
...

. . .
...

αn βn1 βn2 · · · βnn











of the system (2) is obtained from the formula
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, rett = L−1
t−1 (xt − xt−1) .

and E is the corresponding identity matrix.
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Example. Obviously the model (2) can be applied to the dynamics of items with
various background (different from biological species).

Fig. 1. Data vs model values plots about four currencies (500 days period)

We apply our model to financial data – four currencies: USD (United States Dollar),
JPY (Japan Yen), RUB (Russian Ruble) and CHY (China Yuan). Initially we shall use
data from the Central European Bank for 500 working days (approximately 2 years)
starting from 1 April 2005 and ending in 14 March 2007. This period is characterized by
a relatively stable USD, robust global economy without intensive military conflicts. In
this case the model looks adequate to the data (see Figure 1). The estimated parameters
are given below.

Table 1. The values of the estimated parameters (500 days period)
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The signs say that the RUB rivals to all the rest while the JPY cooperate with them.
Also the CHY shows a positive inner push (β44 = 0.001) which is a possible indicator to
an instable growth.

Now we shall increase the data period until the model looks to fit the data well enough
(see Figure 2).

Fig. 2. Data vs model values plots about four currencies (800 days period)

It includes 800 working days starting again from 1 April 2005 and ending in 20 May
2008. This period ends around the beginning of another crisis. The estimated parameters
are given below.

The USD now shows a positive inner push (β11 = 0.0138) and meets the rival of the
RUB and CHY. The impact of the JPY is minor.

Finally let us include two another currencies: GBP (Great Brittan Pound) and CHF
(Swiss Franc) for the same 800 days period.

The USD confirms either the positive inner push (β11 = 0.0183) and the rivalry almost
of all the rest but the CHF, which cooperates with all.

The next period faces with a very poor model data fit. More detailed explanation of
the results stays beyond of the scope of the economical skills of the authors.

Conclusions. The model applicability depends essentially on the relative stability
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Table 2. The values of the estimated parameters (800 days period)

Table 3. The values of the estimated parameters (800 days period, six currencies)

of the macro environment. The important model information is hidden in the signs and
the magnitudes of the estimated parameters. One additional option of the model is the
existence of limit amount values for the species, which are obtained from the formula
xlim = −B−1α. Conceivably these values may be used for prediction purposes but our
experiments show that they appear non-realistic.

Perhaps usual environment along with a positive USD inner push and total rivalry of
the rest may serve as a specific indicator for the soon upcoming ”up-down” trend change.

The model described permits generalization by adding another autoregressive terms

xt = xt−1 + Lt−1 (α+B1xt−1 +B2xt−2 + · · ·+Bpxt−p)

but probably it does not lead to the efficient improvement of the basic model (3).
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ОЦЕНКА НА ПАРАМЕТРИТЕ ЗА ДИСКРЕТНА СИСТЕМА НА

КОЛМОГОРОВ ОТ ПОПУЛАЦИОННАТА ДИНАМИКА

Димитър П. Цветков, Любомир Я. Христов,

Ралица Л. Ангелова-Славова

В тази статия се разглежда дискретна модификация на система на Колмого-
ров от популационната динамика (система за състезание между n-вида). Пред-
ставена е точна формула за статистическа оценка на параметрите на системата
посредством метода на най-малките квадрати.
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