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In this survey we review some old and new results on the problem for local
and global existence of holomorphic functions on almost complex manifolds. The
following topics are considered: Existence of holomorphic functions and IJ-bundles,
Hypersurfaces in R

7, Nearly Kähler manifolds, Homogeneous almost complex spaces,
Partial integrability on twistor spaces.

1. Introduction. An almost complex structure on a smooth manifold M is an
endomorphism J of the tangent bundle of M with J2 = −Id. These structures have been
introduced by C. Ehresmann and H. Hopf in the forties of the last century in the course
of their study of the problem for existence of complex structures on smooth manifolds.
The almost complex structures arise as a real interpretation of the multiplication by i
(i2 = −1) in the holomorphic tangent bundle of a complex manifold and provide a general
framework for studying complex geometric structures as well as holomorphic objects like
functions, maps, curves, vector and tensor fields etc. This more general point of view
allows one to apply important ideas and techniques from complex analysis and complex
geometry to other branches of mathematics like differential and symplectic geometry,
algebraic topology and other. The increasing interest to almost complex manifolds in the
last forty years has been also motivated by the fact that they are on the basis of several
new theories with important applications in mathematics and mathematical physics-
the twistor theory [42, 2], the theory of J-holomorphic curves [18, 32], the theory of
generalized complex structures [24, 19] etc.

The study of almost complex manifolds from analytic point of view has been initiated
by Spencer [45] and Kodaira-Spencer [28] who analyzed the possibilities to develop the
classical potential theory on almost complex manifolds. An important result in this
direction was the solution of the problem for integrability of almost complex structures
given by Newlander and Nirenberg [41] in 1954. It shows in particular the main difficulty
for direct applications of techniques from complex analysis to non-integrable almost
complex manifolds- the lack of local holomorphic coordinates.

Given an almost complex manifold (M,J) one can define the operator ∂ which maps
the space of (p, q) forms on (M,J) into the space of (p, q+ 1) forms [7]. It is well-known
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that the almost complex structure J is integrable if and only if ∂
2
= 0. So in the general

case ∂
2
6= 0 and this makes difficult even the local study of the ∂-equation on non-

integrable almost complex manifolds. The first step in this direction is to consider the
problem for local existence of functions f satisfying the equation ∂f = 0. Note that this
is an overdetermined system of PDEs which generalizes the classical Cauchy-Riemann
equations. Following [45] and [20] we call these functions holomorphic on (M,J). The
theory of holomorphic functions on almost complex manifolds is not as well developed as
in the complex case (for some initial results see [34, 11]). One of the main reasons for this
is the fact that not much is known even for the local existence of holomorphic functions on
almost complex manifolds. The most important result in this direction is the Newlander-
Nirenberg theorem [41] which states that near each point of M there exist 1/2 dimM
functionally independent holomorphic functions iff the Nijenhuis tensor of the almost
complex structure J vanishes. In sharp contrast to complex manifolds, there exist almost
complex manifolds which even locally have no holomorphic functions except constants.
The first example of such a manifold is the 6-sphere S6 with the almost complex structure
defined via octonionic multiplication [46] (unpublished result of Ehresmann). Latter we
shall discuss some more general examples of almost complex manifolds without local
holomorphic functions constructed by Hermann [20] and Calabi [6].

In the present survey we review some old and new results on local and global existence
of holomorphic functions on almost complex manifolds with emphasis on some important
classes of such manifolds which have been previously studied from other points of view.

It is a pleasure to thank the Program Committee of the Forty Fifth Spring Conference
of the Union of Bulgarian Mathematicians for the kind invitation to deliver a lecture on
partial integrability of almost complex structures.

2. Existence of holomorphic functions and IJ-bundles. Given an almost com-
plex manifold (M,J) of real dimension 2n and a point x ∈ M denote by m(x) the maximal
number of functionally independent holomorphic functions at x. For every integer 0 ≤
k ≤ n set

Fk(J) = {x ∈ M |m(x) = k}.

Then M is the disjoint union of its subsets Fk(J) for k = 0, 1, . . . , n. In these terms the
Newlander-Nirenberg theorem [41] says that the almost complex structure J is integrable
if and on1y if M = Fn(J). On the other hand M = F0(J) if and only if there are no
non-constant local holomorphic functions on (M,J). If M = Fk(J) for some k then we
say that the almost complex structure J is partially integrable and has type k [21].

Denote by N the Nijenhuis tensor of J defined by

N(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]

for arbitrary vector fields X,Y on M . For any point x ∈ M we define the Nijenhuis space
LN (x) by

LN (x) = Span{Nx(a, b)|a, b ∈ Tx(M)}

and denote by rankx N its real dimension. Notice that rankx N is an even integer since
LN (x) is a J-invariant subspace of Tx(M). If rankN is a constant function then we
denote by LN the subbundle of the tangent bundle TM with fibres LN (x) and call it
the Nijenhuis bundle of (M,J).

DefinitionA vector subbundle V of TM is called an IJ-bundle if:
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(i) V is J-invariant;
(ii) LN (x) j V(x) for all x ∈ M ;
(iii) V is involutive;
(iv) [A,X ] + J [JA,X ] is a section of V for all sections A of V and vector fields X on
M .

The following theorem gives a geometric criterion for local existence of holomorphic
functions on an arbitrary almost complex manifold.

Theorem 1 ([35]). Let (M, J) be an almost complex manifold. Then in a neighbourhood
of a point x ∈ M there exist k independent holomorphic functions if and only if on a
neighbourhood of x there exists an IJ-bundle of rank dimM − 2k.

Note that Han and Kim [21] developed a dual approach to the problem for local
existence of holomorphic functions on almost complex manifolds based on the Cartan-
Gardner theory [14] of first integrals.

As consequences of Theorem 1, we obtain the following geometric conditions for an
almost complex manifold to be of constant type.

Corollary 2. Let (M,J) be an almost complex manifold with Nijenhuis tensor N
and let rankN = dimM − 2k be a constant function. Then (M,J) is of type k if and
only if the Nijenhuis bundle LN has the following properties:
(i) LN is involutive;
(ii) [A,X ] + J [A, JX ] is a section of LN whenever A is a section of LN and X is a
vector field on M .

Corollary 3. Let (M,J) be an almost complex manifold such that {x ∈ M | rankx N =
dimM} is a dense subset of M . Then (M,J) is of type 0.

In the next sections we consider the problem for partial integrability on some important
classes of almost complex manifolds which have been intensively studied from a differential
geometric point of view.

3. Hypersurfaces in R
7. In 1958, Calabi [6] showed that any orientable hypersurface

M of R7 has a natural almost complex structure J defined by means of the octonions. For
any point p ∈ M denote by Kp the symmetric Hermitian transformation of the tangent
space TpM defined by Kp = −Ap + JpApJp, where Ap is the Weingarten map of M at p
[27]. Let k be the following function on M :

k(p) =
1

24
[(TraceKp)

3 − 4TraceK3
p ].

It is shown in [36] that the rank of the Nijenhuis tensor N of J and the function k are
related by

{p ∈ M | rankp N = dimM} = {p ∈ M |k(p) 6= 0}.

This together with Corollary 2 and the principle of analytic continuation implies that
any compact orientable real-analytic hypersurface of R7 with the Calabi almost complex
structure is of type 0. It is interesting to note that there are hypersurfaces of R7 which
are of type 1 but it is still an open problem whether there exist hypersurfaces of type 2
[31]. A related open question is whether there are hypersurfaces of R7 with rankN = 2.

4. Nearly Kähler manifolds. An almost Hermitian manifold (M, g, J) is said to be
nearly Kähler if the covariant derivative of J with respect to the Levi-Civita connection
of g is skew-symmetric [16]. A four dimensional nearly Kähler manifold is automatically
Kähler, and there has been a strong belief that the only examples of compact non-Kähler
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nearly Kähler manifolds in dimension 6 are the 3-symmetric spaces S3×S3 , the complex
projective space CP

3 , the flag manifold F
3 and the sphere S6 . Indeed, J.-B. Butruille [5]

has shown that there are no other homogeneous examples in dimension 6, but L. Foscolo
and M. Haskins[13] have recently proved the existence of (inhomogeneous) cohomogeneity
one nearly Kähler structures on S6 and on S3×S3. Note also the structure result of P.A.
Nagy [40] who has proved that every compact simply connected nearly Kähler manifold
is isometric to a Riemannian product M1×· · ·×Mk, such that each Mi is either a Kähler
manifold, a naturally reductive 3-symmetric space [48], the twistor space of a compact
quaternion-Kähler manifold with positive scalar curvature [3] or a 6-dimensional nearly
Kähler manifold.

Combining results of Kirichenko [26], Gray [16] and Corollary 1 one can prove [35]
that the Nijenhuis tensor N of a connected nearly Kähler manifold has constant rank
(this follows also by the result of P.A. Nagy mentioned above) and the type of (M,J)
is equal to 1/2(dimM − rankN). In low dimensions the type of a non-Kähler nearly
Kähler manifold can be determined completely. Namely, by the results of Gray [25] and
the above formula it follows that if dimM = 6, then (M,J) is of type 0. If dimM = 8,
then (M,J) is of type 1.

5. Homogeneous almost complex spaces. Every homogeneous space with an
invariant almost complex structure is of constant type. Its computation can be reduced
to a purely algebraic problem as follows. Let M = G/K be a homogeneous space on which

the connected Lie group G acts effectively. Fix a direct sum decomposition g = k
⊕

m,

where g and k are the Lie algebras of G and K, respectively and m is a vector subspace of
g which is identified with the tangent space to M at o = {K} ∈ G/K. The G-invariant
almost complex structures on M are identified with ad(k)-invariant endomorphisms J of
m such that J2X = −X for all X ∈ m. Denote by N the Nijenhuis tensor of J and by ln
the subspace LN (o) of m. Then rankN = dimR ln since N is a G-invariant tensor field
on M . For the sake of simplicity we assume that M is reductive in the sense that m is
an ad(k)-invariant subspace of g.

Definition. A vector subspace h of m is called IJ-subspace if:
(i) h is both ad(k)-invariant and J-invariant;
(ii) ln ⊆ h;
(iii) [h, h]m ⊆ h;
(iv) [X,Y ]m + J [X, JY ]m ∈ h for all X ∈ h, Y ∈ m.
(The subscript denotes the component in m.)

Denote by d(M,J) the real dimension of the intersection of al1 IJ-subspaces of m.
Note that the almost complex structure J is integrable iff d(M,J) = 0 [27]. Moreover, it
follows from Theorem 1 that the type of a reductive homogeneous almost complex space
(M,J) is equal to 1/2(dimM − d(M,J)).

Now let M = G/K be an isotropy irreducible homogeneous almost complex space.
Since ln is an invariant subspace of the linear isotropy representation of K at o it follows
that either rankN = 0 or rankN = dimM . Thus by Corollary 2 we obtain the following
result of Hermann [20]:

Theorem 4. Every isotropy irreducible homogeneous almost complex space is either
integrable or of type 0.

A typical example of type 0 is the sphere S6 = G2/SU(3). Other examples of such
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spaces can be found in Wolf [49]. We also refer the reader to [36] and [17] where the
partial integrability of invariant almost complex structures on the generalized Grassmann
manifolds and the Ledger-Obata s-symmetric spaces [29] have been considered.

5.1. Lie groups of type T. In 1976, Thurston [47] constructed the first example of
a compact symplectic manifold W with no Kähler structure. It is well-known [1] that W
is a 4-dimensional nil-manifold and in [37] the author noticed that every left-invariant
almost complex structure on the corresponding nilpotent Lie group has at least one non-
constant local holomorphic function. Motivated by this example he introduced the class
of real Lie groups, called Lie groups of type T , having the above property [38].

A simple algebraic condition for a Lie group to be of type T is given in the following
Theorem 5 ([38]). Let G be a 2n-dimensional Lie group with Lie algebra g and let

a be an ideal of g such that dim a ≤ n− 1 and

[X,Y ] ∈ Span(X,Y ) + a, X, Y ∈ g.

Then G is of type T .
Corollary 6. Every 2n-dimensional Lie group G with dim[g, g] ≤ n− 1 is of type T .
Note that all 4-dimensional Lie groups of type T have been classified in [38]. In

particular it follows that all of them satisfy the algebraic condition of Theorem 5 but it
is still an open problem if the same is true in higher dimensions.

5.2. Nilpotent Lie groups of type T. Simple algebraic arguments show that for
nilpotent Lie groups of type T the conditions of Theorem 5 and Corollary 6 are equivalent.
This raises the question whether the condition dim[g, g] ≤ n − 1 is also necessary for a
nilpotent Lie group to be of type T .

Recall that a Lie group G is said to be 2-step nilpotent, if its Lie algebra g satisfies
the identity [g, [g, g]] = 0. The next result shows that the answer to the question above
is positive for this class of nilpotent Lie groups.

Theorem 7 ([39]). Let G be a 2-step nilpotent Lie group with real dimension 2n and
Lie algebra g. Then G is of type T if and only if dim[g, g] ≤ n− 1.

Using the well-known classification of nilpotent Lie algebras of real dimensions 4 and
6 (see [15] and [44]) one can show that Theorem 7 is also true for nilpotent Lie groups
in these dimensions. Moreover, it leads to the following classification results [39]:

Theorem 8. A 4-dimensional nilpotent Lie group is of type T if and only if its Lie
algebra is isomorphic to one of the following:

k1 : Abelian; k2 : [e1, e2] = e3.
Theorem 9. A 6-dimensional nilpotent Lie group is of type T if and only if its Lie

algebra is isomorphic to one of the following:
l1 : Abelian; l2 : [e1, e2] = e3; l3 : [e1, e2] = e5, [e3, e4] = e5;
l4 : [e1, e2] = e3, [e1, e3] = e4; l5 : [e1, e2] = e4, [e1, e3] = e5;
l6 : [e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e5;
l7 : [e1, e2] = e3, [e1, e3] = e6, [e4, e5] = e6;
l8(ǫ) : [e1, e2] = e5, [e1, e3] = e6, [e2, e4] = ǫe6, [e3, e4] = e5, ǫ = 0,±1.
Finally, let us note that in general the condition dim[g, g] ≤ n− 1 is not necessary for

a Lie group to be of type T . To see this consider the following
Example. Let G be the solvable Lie group whose Lie algebra g has a basis (e1, . . . , e2n),

n > 1 such that

g : [ei, e2n] = ei, 1 ≤ i ≤ 2n− 1.

52



It has been proved in [38] (see also [44]) that these Lie groups can be characterized by
the property that every left-invariant almost complex structure on G is integrable. In
particular, G is of type T and dim[g, g] = 2n− 1 > n− 1.

Remark. J. Milnor [33] has also considered the Lie groups in the above example (of all
dimensions) and characterized them by the property that every left-invariant Riemannian
metric has sectional curvature of constant sign.

6. Partial integrability on twistor spaces. In this section we discuss the problem
for local and global existence of holomorphic functions on the twistor spaces of oriented
4-manifolds endowed with a Riemannian or a neutral metric.

6.1. Twistor spaces of oriented Riemannian 4-manifolds. Let M be an oriented
4-manifold with a Riemannian metric g. Then g induces an inner product on the bundle
Λ2 of tangent bi-vectors by

〈X ∧ Y, Z ∧ T 〉 =
1

2
[g(X,Z)g(Y, T )− g(X,T )g(Y, Z)].

The Hodge star operator ∗ : Λ2 → Λ2 is an involution and we denote by Λ± its
eigenbundles corresponding to the eigenvalues ±1. Let R : Λ2 −→ Λ2 be the curvature
operator of (M, g). It is related to the curvature tensor R by

g(R(X ∧ Y ), Z ∧ T ) = g(R(X,Y )Z, T ); X,Y, Z, T ∈ TM.

The curvature operator R admits an SO(4)-irreducible decomposition

R =
τ

6
I + B +W+ +W−

where τ is the scalar curvature, B represents the traceless Ricci tensor, W = W+ +W−

corresponds to the Weyl conformal tensor, and W± =
1

2
(W ± ∗W). The metric g is

Einstein exactly when B = 0 and is conformally flat when W = 0. It is said to be
self-dual, resp. anti-self-dual, if W− = 0, resp. W+ = 0 [3].

The twistor space Z of (M, g) is the 2-sphere bundle on M consisting of all unit
bivectors in Λ−. It can be identified with the space of all complex structures on the
tangent spaces of M compatible with the metric g and the opposite orientation of M .

The Levi-Civita connection of g gives rise to a splitting TZ = H ⊕ V of the tangent
bundle of Z into horizontal and vertical components. Following [2] and [12] define two
almost complex structures J1 and J2 on Z by

JnV = (−1)nσ × V, V ∈ Vσ,

π∗(JnA) = Jσ(π∗A), A ∈ Hσ,

where × is the usual vector product in the oriented 3-dimensional vector space (Λ−)p
and Jσ is the complex structure on TpM , p ∈ π(σ), defined by σ. Recall [2, 12] that the
almost complex structure J1 is integrable if and only if the metric g is self-dual, whereas
J2 is never integrable. The next theorem generalizes these results.

Theorem 10 ([8]). Let Z be the twistor space of an oriented Riemannian 4-manifold
(M, g). Then

Z = F0(J1) ∪ F3(J1) = F0(J2) ∪ F1(J2).

Moreover

F3(J1) = π−1(Int{p ∈ M : (W−)p = 0}),
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F1(J2) = π−1(Int{p ∈ M : Rp = (W+)p}).

Examples. i) It is well-known that the manifolds S4, S1 × S3 and CP
2 with their

standard metrics are self-dual and with nowhere vanishing Ricci tensor. Hence in these
cases the almost complex structure J1 is integrable, whereas J2 has no local holomorphic
functions except constants.

ii) The equality F1(J2) = Z means that around each point of Z there exists a non-
constant J2-holomorphic function. By Theorem 11 this is equivalent to (M, g) being a
self-dual and Ricci flat manifold. In this case Λ− is a flat vector bundle and the projection
on the fibre is J2-holomorphic. Note that by a result of Hitchin [22] the universal covering
of any compact oriented self-dual Ricci flat manifold is either a K3-surface, or M is flat.

Hitchin [23] has proved that when the almost complex structure J1 is integrable (i.e.
(M, g) is self-dual) there are no non-constant global holomorphic functions on Z. A simple
reasoning yields the following slightly more general result:

Theorem 11 ([9]). Let M be a connected oriented Riemannian 4-manifold. Then
every holomorphic function on the almost complex manifold (Z,Jn), n = 1, 2, is constant.

6.2. Hyperbolic twistor spaces. A pseudo-Riemannian metric on a smooth 4-
manifold M is called neutral if it has signature (+,+,−,−). In contrast to the Riemannian
case the existence of such metrics on compact manifolds imposes topological restrictions
since it is equivalent to the existence of a field of 2-planes [30].

One can construct a twistor space of an oriented 4-manifold M with a neutral metric
g as in the Riemannian case [4]. This time the fiber of the twistor bundle π : Z → M is
the two-sheeted hyperboloid

H = {(y1, y2, y3) ∈ R
3 : −y21 + y22 + y23 = −1}

and we can think of the y1 > 0 branch as one of the standard models of the hyperbolic
plane. Further, we consider the hyperboloid H with the complex structure S determined
by the restriction to H of the metric −dy21 + dy22 + dy23 .

As in the Riemannian case one can define two almost complex structures J1 and J2

on Z and it has been shown in [4] that Theorem 11 holds for the hyperbolic twistor
spaces as well. However, if we consider the problem for global existence of holomorphic
functions, then there is a considerable difference between the hyperbolic and classical
twistor spaces.

Given a neutral almost hyperhermitian 4-manifold (M, g, J1, J2, J3), denote by π :
Z → M its hyperbolic twistor bundle. Then the 2-vectors corresponding to J1, J2, J3
form a global frame of Λ− and we have a natural projection p : Z → H defined by
p(σ) = (y1, y2, y3), where Jσ = y1J1(x) + y2J2(x) + y3J3(x), x = π(σ). Thus Z is
diffeomorphic to M ×H by the map σ → (π(σ), p(σ)) and it is obvious that p maps any
fibre of Z biholomorphically on H with respect to J1 and S.

Theorem 12 ([4]). Let M be a neutral almost hyperhermitian 4-manifold and Z
its hyperbolic twistor space. Then the natural projection p : Z → H is J1-holomorphic
(resp. J2-anti-holomorphic) if and only if M is neutral hyperhermitian (resp. neutral
hyperkähler).

Furthermore we have the following result in the compact case.
Theorem 13 ([4]). Let M be a compact neutral hyperhermitian manifold with hyperbolic

twistor space Z and let p : Z → H be the natural projection. Then any J1-holomorphic
function f on Z has the form f = g ◦p, where g is a holomorphic function on H. If M is
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neutral hyperkähler, any J2-holomorphic function f on Z has the form f = g ◦ p, where
g is an anti-holomorphic function on H.

We show now that in the non-compact case the situation changes drastically. To see
this consider the following neutral metrics on R

4 introduced by J. Petean in [43]:

g = f(dx1 ⊗ dx1 + dx2 ⊗ dx2) + dx1 ⊗ dx3 + dx3 ⊗ dx1 + dx2 ⊗ dx4 + dx4 ⊗ dx2,

where (x1, x2, x3, x4) are the standard coordinates on R
4 and f is a smooth positive

function depending on x1 and x2 only. According to [10] the metrics g are neutral
hyperkähler, i.e. self-dual and Ricci-flat. Hence, the almost complex structure J1 on
the hyperbolic twistor space Z of (R4, g) is integrable. Moreover, we have the following
result [4], which shows that there can be an abundance of global holomorphic functions
on a hyperbolic twistor space.

Theorem 14. The hyperbolic twistor space (Z,J1) of (R4, g) is biholomorphic to
C

2 ×H.
This result suggests the following problem: Characterize the non-compact neutral

hyperkähler 4-manifolds whose hyperbolic twistor spaces (Z,J1) are Stein manifolds.
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homogènes. Ann. Global Anal. Geom., 27 (2005), 201-–225.
[6] E. Calabi. Constructions and properties of some 6-dimensional almost complex manifolds.

Trans. Amer. Math. Soc., 86 (1958), 401–438.
[7] S. S. Chern. Complex manifolds without potential theory. New York: Van Nostrand

Reinhold Company 1967
[8] J. Davidov, O. Mus̆karov. Existence of holomorphic functions on twistor spaces. Bull.

Soc. Math. Belgique Ser. B, 40 (1989), 131–151.
[9] J. Davidov, O. Mus̆karov, G. Grantcharov. Almost complex structures on twistor

spaces. In: Almost Complex Structures, World Scientific, Singapore, 1994, 113–149.
[10] J. Davidov, J. C. Dı́az-Ramos, E. Garcı́a-Rı́o, Y. Matsushita, O. Muškarov,
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ЧАСТИЧНА ИНТЕГРУЕМОСТ НА ПОЧТИ КОМПЛЕКСНИ

СТРУКТУРИ

Олег Мушкаров

В обзора се прави преглед на някоя стари и нови резултати за локално и гло-
бално съществуване на холоморфни функции върху почти комплексни много-
образия. Разгледани са следните теми: Съществуване на холоморфни функции
и IJ-разслоения, Хиперповърхнини в R

7, Приблизително Келерови многообра-
зия, Хомогенни почти комплексни пространства, Частична интегруемост върху
туисторни пространства.
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