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ON THE GEOMETRY OF THE PONTRYAGIN MAXIMUM

PRINCIPLE IN INFINITE DIMENSIONAL SPACES*

Mikhail I. Krastanov, Nadezhda K. Ribarska

Two new concepts of uniform approximating cones are discussed. The main result
is a theorem for nonseparability of two closed sets. As application of this result, an
abstract Lagrange multiplier rule and a necessary optimality condition of Pontryagin
maximum principle type for an optimal control problem in infinite-dimensional state
space are obtained.

1. Introduction. Since the Pontryagin maximum principle was discovered, various
versions of this result have been established under different technical assumptions and
with different proofs. In a series of papers (cf., for example, the bibliography of [14]),
the corresponding proofs are based on separation theorems for sets, which assert that a
necessary condition for two sets A, B containing a point x0 to be locally separated at x0
(in the sense that there exists a neighborhood Ω of x0 so that Ω∩A∩B = {x0}) is that
CA and CB are not strongly transversal ( the cones CA and CB are strongly transversal
iff CA−CB = Rn and CA∩CB 6= {0}, cf. Definition 3.2 from [14]), where CA and CB are
“tangent cones” to A and B, respectively, at the point x0. These separation theorems are
true if “tangent cones” are interpreted to mean “Boltyanskii approximating cones” and also
if they are taken to mean “Clarke tangent cones”. A. Bressan has constructed an example
(cf. [1]) of two four-dimensional separated sets A and B at x0, where (surprisingly) the
approximating cones CA and CB are strongly transversal (CA and CB approximate
the sets A and B in the Boltyanskii, respectively, in the Clarke sense at x0). In the
infinite dimensional setting the things become even worse: there exist convex sets A
and B that are locally separated at a common point x0 such that the corresponding
approximating tangent cones CA and CB of the sets A and B, respectively, at x0 are
strongly transversal. Indeed, let A be the canonical example of a Hilbert cube: a closed
convex bounded set with empty interior whose closed affine hull is the whole space ( set
A := {(xn) ∈ l2 : |xn| ≤ 1/n} ⊂ l2) and let B be a ray whose intersection with A is the
origin, for example take B = {λy : λ ≥ 0}, where y = (1/n3/4)∞n=1). Then the Clarke
tangent cone CA to A at the origin is l2, the Clarke tangent cone CB to B at the origin
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coincides with B, and thus CA and CB are strongly transversal, while the sets A and
B are locally separated. This motivates the search for a smaller approximating cone
than the Clarke one such that the strong transversality of two approximating cones at a
common point of two sets implies local nonseparation of these sets.

The organization of this paper is as follows: In section 2 we introduce and discuss two
definitions of uniform approximating cones. Moreover, a nonseparation result is proved in
Theorem 2.6. In Section 3 we use this theorem to obtain an abstract Lagrange multipliers
rule and a necessary optimality condition of Pontryagin maximum principle type for an
optimal control problem in infinite-dimensional state space.

2. A non-separation property. One of the starting points of our study is the paper
[2], where (among others) it is proved that if x̄ belongs to a closed set S and the Bouligand
tangent cone TS(x) at each point x of the intersection of a small neighborhood of x̄ and
S covers a ball with fixed positive radius, then x̄ belongs to the interior of S. In [5] the
concept of uniform Clarke tangent cone to a set is introduced and a corresponding non
separation result is proved (cf. Definition 3.6 and Corollary 3.8). These results as well as
Examples 2.5 and 4.11 in [5] motivate the importance of “uniformity of approximation”
with respect to all elements of the tangent cone. Definition 2.3 given below extends
Definition 3.6 in [5] and explains what we mean by “uniformity of the approximation”.

Throughout this section X is a Banach space, B (B̄) is its open (closed) unit ball
centered at the origin.

Definition 2.1. Let S be a closed subset of X and x0 belong to S. We say that the
bounded set D is an uniform tangent set to S at the point x0 if for each ε > 0 there
exists δ > 0 such that for each v ∈ D and for each point x ∈ S ∩ (x0 + δB̄) there exists
λ > 0 such that for each t ∈ [0, λ] the set S ∩ (x + t(v + εB̄)) is non empty.

Definition 2.2. Let S be a closed subset of X and x0 belong to S. We say that the
bounded set D is a sequence uniform tangent set to S at the point x0 if for each ε > 0
there exists δ > 0 such that for each v ∈ D and for each point x ∈ S ∩ (x0 + δB̄) there
exists a sequence of positive reals tm −→ 0 such that for each positive integer m the set
S ∩ (x+ tm(v + εB̄)) is non empty.

Definition 2.3. Let S be a closed subset of X and x0 belong to S. We say that the
cone C is an uniform tangent cone to S at the point x0 if C ∩ B̄ is an uniform tangent
set to S at the point x0. We say that the cone C is a sequence uniform tangent cone to
S at the point x0 if C ∩ B̄ is a sequence uniform tangent set to S at the point x0.

Remark 2.4. It is remarkable that in a finite-dimensional space X the two notions
introduced in Definition 2.3 coincide. Moreover, the usual Clarke tangent cone is a
(sequence) uniform cone (cf. Theorem 1 of [12] and Theorem 6.26 on page 217 of [13]).

The next Lemma shows some of the properties of the uniform tangent sets:
Lemma 2.5. The closed hull of an uniform tangent set D to S at x0 is an uniform

tangent set to S at x0. Moreover, the convex hull of an uniform tangent set D is an
uniform tangent set to S at x0. Also, the closed hull of a sequence uniform tangent set
D to S at x0 is a sequence uniform tangent set to S at x0.

The next theorem is the main result in this note. It is based on the same ideas used
in the proof of Theorem 3.3 and Corollary 3.8 in [5]. One of its advantages is that one of
the sets is no longer assumed to be convex.
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Theorem 2.6. Let A and B be closed subsets of X with x0 ∈ A ∩ B. Let CA be
an uniform tangent cone to the set A at the point x0 and CB be a sequence uniform
tangent cone to the set B at the point x0, such that the following conditions hold true:

(A1) There exist M > 1 and ε ∈ (0, 1/(9 + 8M)) such that the set
(

CA ∩ MB̄
)

−
(

CB ∩ MB̄
)

is ε-dense in the unit sphere {w ∈ X : ‖w‖ = 1}, that is for every

v ∈ X with ‖v‖ = 1 there exist v1 ∈ CA ∩ MB̄ and v2 ∈ CB ∩ MB̄ such that
‖v − (v1 − v2)‖ < ε;

(A2) there exists v0 with unit norm which is ε-close to CA and to CB (that is, there are
ṽA0 ∈ CA and ṽB0 ∈ CB of norm one such that ‖ṽA0 − v0‖ < ε and ‖ṽB0 − v0‖ < ε).

Then for each positive integer n there exists x̄ 6= x0 that belongs to the set A∩B and
‖x̄− x0‖ < 1/n.

The next corollary is a well-known result (cf. Proposition 4.2 of [14]), but it is not
easy to find a simple self-contained proof in the literature:

Corollary 2.7. Let X be a finite-dimensional vector space, A and B be closed subsets
of X with x0 ∈ A ∩ B. Let CA and CB be the Clarke tangent cones to A and B,
respectively, at x0. Let CA−CB = X and CA∩CB 6= {0} (i.e. the cones CA and CB are
strongly transversal). Then for each positive integer n there exists x̄ 6= x0 which belongs
to the set A ∩ B and ‖x̄ − x0‖ < 1/n (i.e. the sets A and B are not locally separated at
x0).

3. Applications. We apply the main result (Theorem 2.6) from the previous section
to obtain an abstract Lagrange multiplier rule and a Pontryagin maximum principle for
an infinite-dimensional optimal control problem.

Let Y be a Banach space. We consider further Y ×R equipped with the uniform norm
‖(y, r)‖ := max{‖y‖, |r|}. Throughout this section we denote by B̄ and by B̃ the closed
unit balls in Y and in Y ×R, respectively.

The next definition is well known (cf. [10]):
Definition 3.1. A mapping ϕ : Y → R is said to be strictly Fréchet differentiable at

ȳ ∈ Y if there exists a continuous linear operator ϕ′(ȳ) : Y → R such that for any ε > 0
there exists δ > 0 so that

|ϕ(y) − ϕ(x)− ϕ′(ȳ)(y − x)| ≤ ε‖y − x‖

whenever ‖y − ȳ‖ < δ and ‖x− ȳ‖ < δ.

First we prove three lemmas we need further:

Lemma 3.2. Let A be a closed subset of Y , ȳ ∈ A, ϕ : Y → R be strictly Fréchet

differentiable at ȳ, CA be a closed cone in Y , Ã := {(y, ϕ(y)) : y ∈ A} and CÃ :=

{(v, ϕ′(ȳ)v) : v ∈ CA}. Then CA is a (sequence) uniform tangent cone to A at ȳ iff CÃ

is a (sequence) uniform tangent cone to Ã at (ȳ, ϕ(ȳ)).
Lemma 3.3. Let ȳ ∈ Y and ϕ(y) := ‖y − ȳ‖2 for each y ∈ Y . Then ϕ is strictly

Fréchet differentiable at ȳ with zero derivative.
Proof. It is straightforward. �

Lemma 3.4. Let A be a closed subset of Y , ȳ ∈ A and Ã := A× (−∞, r̄] for r̄ ∈ R.

Then CA is a (sequence) uniform tangent cone to A at ȳ iff CÃ := CA × (−∞, 0] is a
(sequence) uniform tangent cone to Ã at (ȳ, r̄).
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Lemma 3.5. Let Ã := A × (−∞, r0], where r0 ∈ R and A is a closed subset of Y .

Let B̃ be a closed subset of Y ×R with (x0, r0) ∈ Ã ∩ B̃. Let CÃ be an uniform tangent

cone (a sequence uniform tangent cone) to the set Ã at the point (x0, r0) and CB̃ be
a sequence uniform tangent cone (an uniform tangent cone) to the set B̃ at the point
(x0, r0). If there exist M > 1 and εM > 0 such that

D :=
(

CÃ ∩ MB̃
)

−
(

CB̃ ∩ MB̃
)

is εM -dense in the unit sphere Σ̃ in Y × R centered at the origin, then there exists

w0 ∈ Y ×R with unit norm which is 2εM -close to CÃ and to CB̃.

Lemma 3.6. Let A and B be closed subsets of the Banach space X and let x0 ∈ A∩B.
Let CA be an uniform tangent cone or a convex sequence uniform tangent cone to A at
the point x0 and CB be a convex sequence uniform tangent cone or an uniform tangent
cone to the set B at the point x0. Let ρB̃ ⊂ coD for some ρ ∈ (0, 1), where B̃ is the
closed unit ball of X and

D :=
(

CA ∩ B̃
)

−
(

CB ∩ B̃
)

.

Then there exist M > 1, an uniform tangent cone or a convex sequence uniform tangent
cone C̃A to A at x0 and an uniform tangent cone or a convex sequence uniform tangent
cone C̃B to B at x0 such that the set

D̃ :=
(

C̃A ∩ MB̃
)

−
(

C̃B ∩ MB̃
)

is εM -dense in the unit sphere Σ of X centered at the origin, where εM =
1

3(9 + 8M)
.

We are going to use a concept introduced in [4]:
Definition 3.7. Let Y be a Banach space and S be a subset of Y . The set S is said

to be quasisolid if its closed convex hull co S has nonempty interior in its closed affine
hull, i.e. if there exists a point y0 ∈ co S such that co {S− y0} has nonempty interior in
span (S − y0) (the closed subspace spanned by S − y0).

Let us consider the following optimization problem

(1) ϕ(G(x)) → min

subject to:

(2) G(x) ∈ S.

Here X is a complete metric space, Y is a Banach space, S is a closed subset of Y ,
G : X → Y and ϕ : Y → R are maps. We consider again the Banach space Y × R
equipped with the uniform norm ‖(y, r)‖ := max{‖y‖, |r|}.

Theorem 3.8. Let x̄ be the solution of the problem (1)–(2). We set ȳ = G(x̄),
S̃ := S × (−∞, ϕ(ȳ)] and

R̃ := {(G(x), ϕ(G(x)) + ‖G(x)− ȳ‖2) : x ∈ X} ⊂ Y ×R.

Let CS̃ be an uniform tangent cone to S̃ at the point ỹ := (ȳ, ϕ(ȳ)) and CR̃ be an uniform
tangent cone to the set R̃ at the point ỹ. We assume that the set

(

CS̃ ∩ B̃
)

−
(

CR̃ ∩ B̃
)
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is quasisolid, where B̃ is the closed unit ball in Y ×R. Then there exists a nontrivial pair
(ξ, η) ∈ Y ∗ ×R such that

(i) (ξ, η) 6= (0, 0);

(ii) η ∈ {0, 1};

(iii) ξ belongs to the polar cone of the cone CS ;

(iv) −(ξ, η) belongs to the polar cone of the cone CR̃.

Remark 3.9. The assertion of Theorem 3.8 remains true if one of the approximating
cones is a convex sequence uniform tangent cone. The same remark applies also to
Corollary 3.10, Theorem 3.12 and Corollary 3.13.

Corollary 3.10. Let x̄ be a solution of the problem (1)–(2) and let ϕ be strictly
differentiable at ȳ. Let CS be an uniform tangent cone to S at the point ȳ with ȳ = G(x̄)
and CR be an uniform tangent cone to the set R := {G(x) : x ∈ X} at the point ȳ.

Setting CR̃ := {(v, ϕ′(ȳ)v) : v ∈ CR} and CS̃ := {(v, r) : v ∈ CS , r ≤ 0}, we assume
that the set

(

CS̃ ∩ B̃
)

−
(

CR̃ ∩ B̃
)

is quasisolid. Then there exist a nontrivial pair (ξ, η) ∈ Y ∗ ×R such that

(i) (ξ, η) 6= (0, 0);

(ii) η ∈ {0, 1};

(iii) ξ belongs to the polar cone of the cone CS ;

(iv) −ξ − ηϕ′(ȳ) belongs to the polar cone of the cone CR.

Remark 3.11. Another starting point of the present study were the papers [8] and
[9]. Theorem 3.8 is very similar to the abstract result (Theorem 6) in [8]. Unfortunately,
the proof of the latter result contains a lacuna. In fact, the problem is that uniformity
with respect to the direction is not assumed in Definition 2(c) of [8]. Indeed, the example
in the introduction provides a counter example to the multiplier rule in Theorem 6: We
take W to be the Hilbert cube {(xn)

∞
n=1 ∈ l2 : |xn| ≤ 1/n} ⊂ l2, Q := {λy : λ ∈ R}

with y = (1/n3/4)∞n=1, S : l2 → l2 to be the the identity map and J : l2 → R to be
defined as follows: J(x1, x2, . . . ) := x1. Then the solution of the optimization problem

min
S(x)∈Q, x∈W

J(x) is 0 because the origin of l2 is the only point belonging to the intersection

of W and Q. The gradient of J coincides with J itself (because of the linearity of J).
On the other hand-side, every element of the Clarke tangent cone to the set W at the
origin is a sequential strict derivative of S at the same point (because S is the identity
map). Since the Clarke tangent cone to the set W at the origin is the whole space l2,
it is easy to check that (J(z), z) is a sequential strict derivative of (J, S) at the origin
for each z ∈ l2. Then Theorem 6 of [8] would yield the existence of a non trivial pair
(ψ0, ψ) ∈ R× l2 so that

ψ0J(z) + 〈ψ, z〉 ≥ 0 for each z ∈ l2 and 〈ψ, η〉 ≤ 0 for each η ∈ Q.
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The first inequality yields 〈ψ, z〉 = −ψ0J(z) on l2 and ψ0 6= 0. This and the second
inequality (in fact it is an equality) gives 0 = 〈ψ, y〉 = −ψ0J(y) 6= 0, a contradiction.

Nevertheless, we think that the statement of the problem in [8] and [9] is very
interesting and could be used successfully in the future.

Let us consider the following optimal control problem

(3) ϕ(x(T )) → min

subject to the semilinear dynamics:

(4)
ẋ(t) = Ax(t) + f(t, x(t), u(t)) a.e. in [0, T ],
x(0) = x0 ∈ Y, x(T ) ∈ S
u(·) ∈ U := {u(·) : [0, T ] → U | u(·) is strongly measurable}.

Here Y is a Banach space, U is a separable complete metric space, the linear operator
A is the infinitesimal generator of a strongly continuous semigroup {S(t) | t ≥ 0}. The
function f : [0, T ] × Y × U → Y is strongly measurable for any fixed (x, u) ∈ Y × U ,
the function f is Fréchet differentiable in x for any fixed (t, u), the function ϕ is strictly
Fréchet differentiable, the functions f(t, ·, ·) and f ′

x(t, ·, ·) are jointly continuous, f ′
x(t, ·, u)

is a locally uniformly continuous function uniformly with respect to u ∈ U and t ∈ [0, T ].
Moreover, there is M > 0 such that

‖f ′
x(t, x, u)‖ ≤M and ‖f(t, 0, u)‖ ≤M

for each (t, x, u) ∈ [0, T ]× Y × U .
It is standard to consider the set U endowed with the metric

dist (u1(·), u2(·)) := meas {t ∈ [0, T ] : u1(t) 6= u2(t)}.

It turns out that (U , dist) is a complete metric space (cf. Lemma 7.2 in [3]).
Let B̃ denote the unit ball in Y ×R centered at the origin and G(u) denote the mild

solution of the control system (4) corresponding to the control u ∈ U at the moment
t = T . Let us fix ū ∈ U and set x̄ := G(ū).

In the formulation of the next theorem we use a class of popular control variations,
namely the so called diffuse variations, introduced to our knowledge by Xunjing Li and
his co-workers in the early 1980’s (cf., for example [6]). It is proved in [4] that the set
of all diffuse variations is an uniform tangent set to the reachable set. It is important to
note that the cone generated by the set of all diffuse variations is not obliged to be an
uniform tangent cone to the reachable set (cf. Example 2.5 from [5]).

Theorem 3.12. Let us fix ū ∈ U . Let CS be an uniform cone tangent to the target
set S at the point x̄ and CR be an uniform cone tangent to the reachable set R := {G(u) :
u ∈ U} at the point x̄. We set

CR̃ := {(v, ϕ′(x̄)v) : v ∈ CR} and CS̃ := {(v, r) : v ∈ CS , r ≤ 0}.

(i) If there exists ρ > 0 such that the set

co
((

CR̃ ∩ B̃
)

−
(

CS̃ ∩ B̃
))

is dense in ρB̃, then ū is not optimal;

(ii) If the cone co
(

CR̃ − CS̃
)

is not dense in Y × R and CR contains all diffuse

variations at ū, then the following necessary condition of Pontryagin maximum
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principle type holds true: there exist a nontrivial (ψ(·), ψ0) ∈ Cw∗([0, T ], Y ∗) ×
(−∞, 0] such that

ψ(t) = S(t− T )ψ(T ) +

∫ T

t

S(t− s) (f ′
x(s, x̄(s), ū(s)))

∗
ψ(s) ds,

H(t, x̄(t), ū(t), ψ(t)) = max
u∈U

H(t, x̄(t), u, ψ(t)) a.e. in [0, T ],

〈

ψ(T ) + ψ0ϕ′(x̄(T )), v
〉

≥ 0 for each v ∈ CS

and

〈ψ(T ), v〉 ≤ 0 for each v ∈ CR,

where

H(t, y, u, ψ) = 〈ψ, f(t, y, u)〉 .

Corollary 3.13. Let ū ∈ U be a solution of the optimal control problem (3)–(4) and
let x̄ = G(ū). Let CS be an uniform cone tangent to the target set S at the point x̄ and
CR be an uniform cone tangent to the reachable set R := {G(u) : u ∈ U} at the point
x̄. We set

CR̃ := {(v, ϕ′(x̄)v) : v ∈ CR} and CS̃ := {(v, r) : v ∈ CS , r ≤ 0}.

If the set
(

CR̃ ∩ B̃
)

−
(

CS̃ ∩ B̃
)

is quasisolid and CR contains the set of all diffuse variations at ū, then the following
necessary condition of Pontryagin maximum principle type holds true: there exist a
nontrivial (ψ(·), ψ0) ∈ Cw∗([0, T ], Y ∗)× (−∞, 0] such that

ψ(t) = S(t− T )ψ(T ) +

∫ T

t

S(t− s) (f ′
x(s, x̄(s), ū(s)))

∗
ψ(s) ds,

H(t, x̄(t), ū(t), ψ(t)) = max
u∈U

H(t, x̄(t), u, ψ(t)) a.e. in [0, T ],

〈

ψ(T ) + ψ0ϕ′(x̄(T )), v
〉

≥ 0 for each v ∈ CS

and

〈ψ(T ), v〉 ≤ 0 for each v ∈ CR,

where

H(t, y, u, ψ) = 〈ψ, f(t, y, u)〉 .
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ВЪРХУ ГЕОМЕТРИЯТА НА ПРИНЦИПА НА МАКСИМУМ НА
ПОНТРЯГИН В БЕЗКРАЙНОМЕРНИ ПРОСТРАНСТВА

Михаил Кръстанов, Надежда Рибарска

Обсъждат се две нови понятия за апроксимация на множества чрез равно-
мерни конуси.Основният резултат е теорема за неотделимост на две затворени
множества. Като приложение на този резултат са получени правилото на множи-
телите на Лагранж и необходимо условие за оптималност от типа на принципа
на максимума на Понтрягин в безкрайномерни пространства.
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