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We give the classification of constant mean curvature rotational surfaces of elliptic,
hyperbolic, and parabolic type in the four-dimensional pseudo-Euclidean space with
neutral metric.

1. Introduction. In the Minkowski 4-space E
4

1 there exist three types of rotational
surfaces with two-dimensional axis – rotational surfaces of elliptic, hyperbolic or parabolic
type, known also as surfaces invariant under spacelike rotations, hyperbolic rotations or
screw rotations, respectively. A rotational surface of elliptic type is an orbit of a regular
curve under the action of the orthogonal transformations of E

4

1
which leave a timelike

plane point-wise fixed. Similarly, a rotational surface of hyperbolic type is an orbit of a
regular curve under the action of the orthogonal transformations of E

4

1 which leave a
spacelike plane point-wise fixed. A rotational surface of parabolic type is an orbit of a
regular curve under the action of the orthogonal transformations of E

4

1 which leave a
degenerate plane point-wise fixed.

The marginally trapped surfaces in Minkowski 4-space which are invariant under
spacelike rotations (rotational surfaces of elliptic type) were classified by S. Haesen and M.
Ortega in [6]. The classification of marginally trapped surfaces in E

4

1
which are invariant

under boost transformations (rotational surfaces of hyperbolic type) was obtained in [5]
and the classification of marginally trapped surfaces which are invariant under screw
rotations (rotational surfaces of parabolic type) is given in [7].

Motivated by the classification results of S. Haesen and M. Ortega about marginally
trapped rotational surfaces in the Minkowski space, in [4] G. Ganchev and the second
author considered three types of rotational surfaces in the four-dimensional pseudo-
Euclidean space E4

2, namely rotational surfaces of elliptic, hyperbolic, and parabolic type,
which are analogous to the three types of rotational surfaces in E

4

1
. They classified all

quasi-minimal rotational surfaces of elliptic, hyperbolic, and parabolic type.
Constant mean curvature surfaces in arbitrary spacetime are important objects for

the special role they play in the theory of general relativity. The study of constant mean
curvature surfaces (CMC surfaces) involves not only geometric methods but also PDE
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and complex analysis, that is why the theory of CMC surfaces is of great interest not only
for mathematicians but also for physicists and engineers. Surfaces with constant mean
curvature in Minkowski space have been studied intensively in the last years. See for
example [1, 2, 10, 11, 12]. Classification results for rotational surfaces in three-dimensional
space forms satisfying some classical extra conditions have also been obtained. For
example, a classification of all timelike and spacelike hyperbolic rotational surfaces with
non-zero constant mean curvature in the three-dimensional de Sitter space S

3

1
is given

in [8] and a classification of the spacelike and timelike Weingarten rotational surfaces of
the three types in S

3

1
is found in [9]. Chen spacelike rotational surfaces of hyperbolic or

elliptic type are described in [3].

In the present paper we study Lorentz rotational surfaces of elliptic, hyperbolic, and
parabolic type and give the classification of all such surfaces with non-zero constant mean
curvature in E

4

2.

2. Preliminaries. Let E4

2
be the pseudo-Euclidean 4-space endowed with the canoni-

cal pseudo-Euclidean metric of index 2 given by g0 = dx2

1 + dx2

2 − dx2

3 − dx2

4, where
(x1, x2, x3, x4) is a rectangular coordinate system of E4

2. As usual, we denote by 〈 , 〉 the
indefinite inner scalar product with respect to g0. A non-zero vector v is called spacelike

(respectively, timelike) if 〈v, v〉 > 0 (respectively, 〈v, v〉 < 0). A vector v is called lightlike

if it is nonzero and satisfies 〈v, v〉 = 0.

A surface M2

1 in E
4

2 is called Lorentz if the induced metric g on M2

1 is Lorentzian, i.e.
at each point p ∈ M2

1 we have the following decomposition E
4

2 = TpM
2

1 ⊕NpM
2

1 with the
property that the restriction of the metric onto the tangent space TpM

2

1
is of signature

(1, 1), and the restriction of the metric onto the normal space NpM
2

1 is of signature (1, 1).

Denote by ∇ and ∇′ the Levi Civita connections of M2

1
and E

4

2
, respectively. Let x

and y denote vector fields tangent to M2

1
and ξ be a normal vector field. The formulas

of Gauss and Weingarten are given respectively by

∇′

xy = ∇xy + σ(x, y);

∇′

xξ = −Aξx+Dxξ,

where σ is the second fundamental form, D is the normal connection, and Aξ is the shape
operator with respect to ξ. In general, Aξ is not diagonalizable.

The mean curvature vector field H of the surface M2

1 is defined as H =
1

2
trσ. A

surface M2

1 is called minimal if its mean curvature vector vanishes identically, i.e. H = 0.
A surface M2

1
is quasi-minimal if its mean curvature vector is lightlike at each point,

i.e. H 6= 0 and 〈H,H〉 = 0. In this paper we consider Lorentz surfaces in E
4

2 for which
〈H,H〉 = const 6= 0.

3. Lorentz rotational surfaces with constant mean curvature in E
4

2
. Let

Oe1e2e3e4 be a fixed orthonormal coordinate system in the pseudo-Euclidean space E
4

2

such that 〈e1, e1〉 = 〈e2, e2〉 = 1, 〈e3, e3〉 = 〈e4, e4〉 = −1. Lorentz rotational surfaces of
elliptic, hyperbolic, and parabolic type are defined in [4]. Here we shall present shortly
the construction.

First we consider rotational surfaces of elliptic type. Let c : z̃ = z̃(u), u ∈ J be a
smooth spacelike curve lying in the three-dimensional subspace E

3

1 = span{e1, e2, e3}
and parameterized by z̃(u) = (x1(u), x2(u), r(u), 0) ; u ∈ J . Without loss of generality
we assume that c is parameterized by the arc-length, i.e. (x′

1)
2 + (x′

2)
2 − (r′)2 = 1, and
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r(u) > 0, u ∈ J .

Let M′ be the surface in E
4

2
defined by

(1) M′ : z(u, v) = (x1(u), x2(u), r(u) cos v, r(u) sin v) ; u ∈ J, v ∈ [0; 2π).

The surface M′, defined by (1), is a Lorentz surface in E
4

2, obtained by the rotation of
the spacelike curve c about the two-dimensional Euclidean plane Oe1e2. It is called a
rotational surface of elliptic type.

One can also obtain a rotational surface of elliptic type in E
4

2
using rotation of a

timelike curve about the two-dimensional plane Oe3e4 (see [4]).

Next, we consider rotational surfaces of hyperbolic type. Let c : z̃ = z̃(u), u ∈ J be a
smooth spacelike curve, lying in the three-dimensional subspace E

3

1 = span{e1, e2, e4} of
E
4

2
and parameterized by z̃(u) = (r(u), x2(u), 0, x4(u)) ; u ∈ J . Without loss of generality

we assume that c is parameterized by the arc-length, i.e. (r′)2 + (x′

2)
2 − (x′

4)
2 = 1, and

r(u) > 0, u ∈ J .

Let M′′ be the surface in E
4

2 defined by

(2) M′′ : z(u, v) = (r(u) cosh v, x2(u), r(u) sinh v, x4(u)) ; u ∈ J, v ∈ R.

The surface M′′, defined by (2), is a Lorentz surface in E
4

2, obtained by hyperbolic
rotation of the spacelike curve c about the two-dimensional Lorentz plane Oe2e4. M′′ is
called a rotational surface of hyperbolic type.

Similarly, one can obtain a rotational surface of hyperbolic type using hyperbolic
rotation of a timelike curve lying in span{e2, e3, e4} about the two-dimensional Lorentz
plane Oe2e4. Rotational surfaces of hyperbolic type can also be obtained by hyperbolic
rotations of spacelike or timelike curves about the two-dimensional Lorentz planes Oe1e3,
Oe1e4 and Oe2e3.

Now, we shall consider rotational surfaces of parabolic type in E
4

2
. For convenience,

in the parabolic case we use the pseudo-orthonormal base {e1, e4, ξ1, ξ2} of E4

2, such that

ξ1 =
e2 + e3√

2
, ξ2 =

−e2 + e3√
2

. Note that 〈ξ1, ξ1〉 = 0; 〈ξ2, ξ2〉 = 0; 〈ξ1, ξ2〉 = −1.

Let c be a spacelike curve lying in the subspace E
3

1
= span{e1, e2, e3} of E

4

2
and

parameterized by z̃(u) = x1(u) e1 + x2(u) e2 + x3(u) e3; u ∈ J , or equivalently,

z̃(u) = x1(u) e1 +
x2(u) + x3(u)√

2
ξ1 +

−x2(u) + x3(u)√
2

ξ2; u ∈ J.

Denote f(u) =
x2(u) + x3(u)√

2
, g(u) =

−x2(u) + x3(u)√
2

. Then z̃(u) = x1(u) e1+ f(u) ξ1+

g(u) ξ2. Without loss of generality we assume that c is parameterized by the arc-length,
i.e. (x′

1
)2 + (x′

2
)2 − (x′

3
)2 = 1, or equivalently (x′

1
)2 − 2f ′g′ = 1.

A rotational surface of parabolic type is defined in the following way:

(3) M′′′ : z(u, v) = x1(u) e1+f(u) ξ1+(−v2f(u)+g(u)) ξ2+
√
2 vf(u) e4; u ∈ J, v ∈ R.

The rotational axis is the two-dimensional plane spanned by e1 (a spacelike vector field)
and ξ1 (a lightlike vector field).

Similarly, one can obtain a rotational surface of parabolic type using a timelike curve
lying in the subspace span{e2, e3, e4} (see [4]).

In what follows, we find all CMC Lorentz rotational surfaces of elliptic, hyperbolic,
and parabolic type.
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3.1. Constant mean curvature rotational surfaces of elliptic type. Let us
consider the surface M′ in E

4

2, defined by (1). The tangent space of M′ is spanned by
the vector fields zu = (x′

1, x
′

2, r
′ cos v, r′ sin v) ; zv = (0, 0,−r sin v, r cos v). Hence, the

coefficients of the first fundamental form of M′ are E = 〈zu, zu〉 = 1; F = 〈zu, zv〉 =
0; G = 〈zv, zv〉 = −r2(u). Since the generating curve c is a spacelike curve parameterized
by the arc-length, i.e. (x′

1
)2 + (x′

2
)2 − (r′)2 = 1, then (x′

1
)2 + (x′

2
)2 = 1 + (r′)2 and

x′

1
x′′

1
+ x′

2
x′′

2
= r′r′′. We consider the orthonormal tangent frame field X = zu; Y =

zv

r
,

and the normal frame field {n1, n2}, defined by

(4)

n1 =
1√

1 + (r′)2
(−x′

2, x
′

1, 0, 0);

n2 =
1√

1 + (r′)2

(
r′x′

1
, r′x′

2
, (1 + (r′)2) cos v, (1 + (r′)2) sin v

)
.

Note that 〈X,X〉 = 1; 〈X,Y 〉 = 0; 〈Y, Y 〉 = −1; 〈n1, n1〉 = 1; 〈n1, n2〉 = 0; 〈n2, n2〉 =
−1.

Calculating the second partial derivatives of z(u, v) and the components of the second
fundamental form, we obtain the formulas:

σ(X,X) =
x′

1
x′′

2
− x′′

1
x′

2√
1 + (r′)2

n1 +
r′′√

1 + (r′)2
n2,

σ(X,Y ) = 0,

σ(Y, Y ) = −
√
1 + (r′)2

r
n2,

which imply that the normal mean curvature vector field H of M′ is expressed as follows

(5) H =
1

2r
√
1 + (r′)2

(
r(x′

1x
′′

2 − x′′

1x
′

2)n1 + (rr′′ + (r′)2 + 1)n2

)
.

Hence, 〈H,H〉 = r2(x′

1
x′′

2
− x′′

1
x′

2
)2 − (rr′′ + (r′)2 + 1)2

4r2(1 + (r′)2)
. In the present paper we are

interested in rotational surfaces with non-zero constant mean curvature. So, we assume
that r2(x′

1
x′′

2
− x′′

1
x′

2
)2 − (rr′′ + (r′)2 + 1)2 6= 0.

It follows from (4) that

(6)

∇′

Xn1 = −x′

1x
′′

2 − x′′

1x
′

2√
1 + (r′)2

X +
r′

1 + (r′)2
(x′

1
x′′

2
− x′′

1
x′

2
)n2,

∇′

Y n1 = 0,

∇′

Xn2 =
r′′√

1 + (r′)2
X +

r′

1 + (r′)2
(x′

1
x′′

2
− x′′

1
x′

2
)n1,

∇′

Y n2 =

√
1 + (r′)2

r
Y .

If x′

1
x′′

2
− x′′

1
x′

2
= 0, rr′′ + (r′)2 + 1 6= 0, then from (6) we get ∇′

Xn1 = ∇′

Y n1 = 0,
which imply that the normal vector field n1 is constant. Hence, the surface M′ lies in
the hyperplane E

3

2
= span{X,Y, n2}.

So, further we consider rotational surfaces of elliptic type satisfying x′

1
x′′

2
− x′′

1
x′

2
6= 0

in an open interval I ⊂ J .
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In the next theorem we give a local description of all constant mean curvature
rotational surfaces of elliptic type.

Theorem 3.1. Given a smooth positive function r(u) : I ⊂ R → R, define the

functions

ϕ(u) = η

∫ √
(rr′′ + (r′)2 + 1)2 ± 4C2r2(1 + (r′)2)

r(1 + (r′)2)
du, η = ±1, C = const 6= 0

and

x1(u) =

∫ √
1 + (r′)2 cosϕ(u) du,

x2(u) =

∫ √
1 + (r′)2 sinϕ(u) du.

Then the spacelike curve c : z̃(u) = (x1(u), x2(u), r(u), 0) is a generating curve of a

constant mean curvature rotational surface of elliptic type.

Conversely, any constant mean curvature rotational surface of elliptic type is locally

constructed as above.

Proof: Let M′ be a general rotational surface of elliptic type generated by a spacelike
curve c : z̃(u) = (x1(u), x2(u), r(u), 0) ; u ∈ J . We assume that c is parameterized by the
arc-length and x′

1x
′′

2 − x′′

1x
′

2 6= 0 for u ∈ I ⊂ J . Using (5) we get that M′ is of constant
mean curvature if and only if

(7)
r2(x′

1
x′′

2
− x′′

1
x′

2
)2 − (rr′′ + (r′)2 + 1)2

4r2(1 + (r′)2)
= εC2, ε = sign〈H,H〉, C = const 6= 0.

Since the curve c is parameterized by the arc-length, we have (x′

1
)2 + (x′

2
)2 = 1 + (r′)2,

which implies that there exists a smooth function ϕ = ϕ(u) such that

(8)
x′

1
(u) =

√
1 + (r′)2 cosϕ(u),

x′

2
(u) =

√
1 + (r′)2 sinϕ(u).

It follows from (8) that x′

1x
′′

2 − x′′

1x
′

2 = (1 + (r′)2)ϕ′. Hence, condition (7) is written in
terms of r(u) and ϕ(u) as follows:

(9) ϕ′(u) = η

√
(rr′′ + (r′)2 + 1)2 ± 4C2r2(1 + (r′)2)

r(1 + (r′)2)
, η = ±1.

Formula (9) allows us to recover the function ϕ(u) from r(u), up to integration constant.
Using formulas (8), we can recover x1(u) and x2(u) from the functions ϕ(u) and r(u), up
to integration constants. Consequently, the constant mean curvature rotational surface
of elliptic type M′ is constructed as described in the theorem.

Conversely, given a smooth function r(u) > 0, we can define the function

ϕ(u) = η

∫ √
(rr′′ + (r′)2 + 1)2 ± 4C2r2(1 + (r′)2)

r(1 + (r′)2)
du,

where η = ±1, and consider the functions

x1(u) =

∫ √
1 + (r′)2 cosϕ(u) du,

x2(u) =

∫ √
1 + (r′)2 sinϕ(u) du.
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A straightforward computation shows that the curve c : z̃(u) = (x1(u), x2(u), r(u), 0) is
a spacelike curve generating a constant mean curvature rotational surface of elliptic type
according to formula (1).

Remark : In the special case when rr′′ + (r′)2 +1 = 0, i.e r(u) = ±
√
−u2 + 2au+ b, a =

const 6= 0, b = const, the function ϕ(u) is expressed as

ϕ(u) =
2C√
a2 + b

(
u− a

2

√
−u2 + 2au+ b+

a2 + b

2
arcsin

u− a√
a2 + b

+ d

)
, d = const.

3.2. Constant mean curvature rotational surfaces of hyperbolic type. Now,
we shall consider the rotational surface of hyperbolic type M′′, defined by (2). The
tangent space of M′′ is spanned by the vector fields zu = (r′ cosh v, x′

2, r
′ sinh v, x′

4);
zv = (r sinh v, 0, r cosh v, 0), and the coefficients of the first fundamental form of M′′ are
E = 1; F = 0; G = −r2(u).

The generating curve c is a spacelike curve parameterized by the arc-length, i.e. (r′)2+
(x′

2)
2−(x′

4)
2 = 1, and hence (x′

4)
2−(x′

2)
2 = (r′)2−1. We assume that (r′)2 6= 1, otherwise

the surface lies in a 2-dimensional plane. Denote by ε the sign of (r′)2 − 1.

We use the orthonormal tangent frame field X = zu; Y =
zv

r
and the normal frame

field {n1, n2}, defined by

(10)

n1 =
1√

ε((r′)2 − 1)
(0, x′

4
, 0, x′

2
);

n2 =
1√

ε((r′)2 − 1)

(
(1− (r′)2) cosh v,−r′x′

2
, (1− (r′)2) sinh v,−r′x′

4

)
.

The frame field {X,Y, n1, n2} satisfies 〈X,X〉 = 1; 〈X,Y 〉 = 0; 〈Y, Y 〉 = −1; 〈n1, n1〉 =
ε; 〈n1, n2〉 = 0; 〈n2, n2〉 = −ε.

The mean curvature vector field H of M′′ is expressed by the following formula

H =
ε

2r
√

ε((r′)2 − 1)

(
r(x′

4
x′′

2
− x′′

4
x′

2
)n1 − (rr′′ + (r′)2 − 1)n2

)
.

If x′

2x
′′

4 − x′′

2x
′

4 = 0, rr′′ + (r′)2 − 1 6= 0, M′′ lies in the hyperplane span{X,Y, n2}. So,
we assume that x′

2x
′′

4 − x′′

2x
′

4 6= 0 in an open interval I ⊂ J .
The local classification of constant mean curvature rotational surfaces of hyperbolic

type is given by the following theorem:
Theorem 3.2. Case (A). Given a smooth positive function r(u) : I ⊂ R → R, such

that (r′)2 > 1, define the functions

ϕ(u) = η

∫ √
(rr′′ + (r′)2 − 1)2 ± 4C2r2((r′)2 − 1)

r((r′)2 − 1)
du, η = ±1, C = const 6= 0,

and

x2(u) =

∫ √
(r′)2 − 1 sinhϕ(u) du,

x4(u) =

∫ √
(r′)2 − 1 coshϕ(u) du.

Then the spacelike curve c : z̃(u) = (r(u), x2(u), 0, x4(u)) is a generating curve of a

constant mean curvature rotational surface of hyperbolic type.
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Case (B). Given a smooth positive function r(u) : I ⊂ R → R, such that (r′)2 < 1,
define the functions

ϕ(u) = η

∫ √
(rr′′ + (r′)2 − 1)2 ± 4C2r2((r′)2 − 1)

r((r′)2 − 1)
du, η = ±1, C = const 6= 0,

and

x2(u) =

∫ √
1− (r′)2 coshϕ(u) du,

x4(u) =

∫ √
1− (r′)2 sinhϕ(u) du.

Then the spacelike curve c : z̃(u) = (r(u), x2(u), 0, x4(u)) is a generating curve of a

constant mean curvature rotational surface of hyperbolic type.

Conversely, any constant mean curvature rotational surface of hyperbolic type is locally

described by one of the cases given above.

The proof of the theorem is similar to the proof of Theorem 3.1.

In the case rr′′+(r′)2−1 = 0, i.e. r(u) = ±
√
u2 + 2au+ b, a = const 6= 0, b = const,

the function ϕ(u) is expressed by the formula

ϕ(u) =
2ηC√

ε(a2 − b)

(
u+ a

2

√
u2 + 2au+ b− ε(a2 − b)

2
ln
∣∣∣u+ a+

√
u2 + 2au+ b

∣∣∣+ d

)
.

3.3. Constant mean curvature rotational surfaces of parabolic type. Now
we shall consider the rotational surface of parabolic type M′′′, defined by formula (3).
The length of the mean curvature vector field of M′′′ is given by

〈H,H〉 = 1

4f2f ′2

(
f2(x′′

1
f ′ − x′

1
f ′′)2 − (ff ′′ + (f ′)2)2

)
.

In the case x′′

1
f ′ − x′

1
f ′′ = 0, ff ′′ + (f ′)2 6= 0 the surface M′′′ lies in a hyperplane of

E
4

2
. So, we assume that x′′

1
f ′ − x′

1
f ′′ 6= 0 in an open interval I ⊂ J .

In the following theorem we give a local description of constant mean curvature
rotational surfaces of parabolic type.

Theorem 3.3. Given a smooth function f(u) : I ⊂ R → R, define the functions

ϕ(u) = f ′

(
A±

∫
1

f ′

√
((ln |ff ′|)′)2 ± 4C2 du

)
, C = const 6= 0, A = const,

and

x1(u) =

∫
ϕ(u)du; g(u) =

∫
ϕ2(u)− 1

2f ′(u)
du.

Then the curve c : z̃(u) = x1(u) e1 + f(u) ξ1 + g(u) ξ2 is a spacelike curve generating a

constant mean curvature rotational surface of parabolic type.

Conversely, any constant mean curvature rotational surface of parabolic type is locally

constructed as described above.

In the special case ff ′′ + (f ′)2 = 0, i.e. f(u) = ±
√
2au+ b, a = const 6= 0, b = const,

we obtain the following expression for the function ϕ(u):

ϕ(u) =
1√

2au+ b

(
A± 2CB

3a

(√
2au+ b

)3
)
, A = const, B = const 6= 0.
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РОТАЦИОННИ ПОВЪРХНИНИ С ПОСТОЯННА СРЕДНА

КРИВИНА В ЧЕТИРИМЕРНО ПСЕВДО-ЕВКЛИДОВО

ПРОСТРАНСТВО С НЕУТРАЛНА МЕТРИКА

Яна Алексиева Алексиева, Величка Василева Милушева

В четиримерно псевдо-Евклидово пространство с неутрална метрика същест-
вуват три типа ротационни повърхнини с двумерна ос – това са ротационни по-
върхнини от елиптичен, хиперболичен и параболичен тип. В настоящата статия е
дадена класификация на ротационните повърхнини от елиптичен, хиперболичен
и параболичен тип с постоянна средна кривина.
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