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Let a1,...,as be positive integers. For a graph G the expression G' > (a1, ..., as)
means that for every coloring of the vertices of G in s colors (s-coloring) there exists
i € {1,...,s}, such that there is a monochromatic a;-clique of color 4. If m and p are
positive integers, then G = m{p means that for arbitrary positive integers a1, ..., as

S
(s is not fixed), such that Z(ai —1)4+ 1 =m and max{ai,...,as} < p, we have
i=1

G % (a1,...,as). Let
ﬁ(m{p;q) ={G:G > m|p and w(G) < q}.
The modified vertex Folkman numbers are defined by the equality
F(m| ;q) = min {|V(G)| : G € Fi(m| ;)}.

If ¢ > m these numbers are known and they are easy to compute. In the case g = m—1
we know all of the numbers when p < 5. In this work we consider the next unknown
case p = 6 and we prove with the help of a computer that

ﬁ(m|6;mf 1) = m + 10.

1. Introduction. In this paper only finite, non-oriented graphs without loops and
multiple edges are considered. The following notations are used:

V(G) — the vertex set of G;

E(G) — the edge set of G;

G — the complement of G;

w(G) — the clique number of G;

a(@G) — the independence number of G;

X(G) — the chromatic number of G;

N (), Ng(v),v € V(G) — the set of all vertices of G adjacent to v;

d(v),v € V(G) — the degree of the vertex v, i.e. d(v) = |N(v)];

G — v,v € V(G) — subgraph of G obtained from G by deleting the vertex v and all
edges incident to v;

G — e,e € E(GQ) — subgraph of G obtained from G by deleting the edge e;
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G + e,e € E(G) — supergraph of G obtained by adding the edge e to E(G).

K,, — complete graph on n vertices;

C,, — simple cycle on n vertices;

mo = mo(p) — see Theorem 2.1;

G1+G3 —a graph G for which: V(G) = V(G1)UV(G2) and E(G) = E(G1)UE(G2)UE’,
where E' = {[z,y] : ® € V(G1),y € V(G2)}, i.e. G is obtained by connecting every vertex
of GG1 to every vertex of G.

All undefined terms can be found in [18].

Let ai,...,as be positive integers. The expression G — (a1,...,as) means that for
any coloring of V(G) in s colors (s-coloring) there exists i € {1,..., s} such that there is
a monochromatic a;-clique of color 7. In particular, G — (a1) means that w(G) > a;.

Define:

H(ai,...,as;q) = {G 1G5 (ay,...,as) and w(G) < q}.

H(ai,...,as;q;n) ={G: G € H(a,...,as;q) and | V(G)| =n}.

The vertex Folkman number F,(aq,...,as;q) is defined by the equality:

Fy(ay,...,as;q) =min{|V(G)| : G € H(a,...,as;q)}.

Folkman proves in [5] that:

(1.1) Fy(ay,...,as;q) exists < ¢ > max{ay,...,as}.
Other proofs of (1.1) are given in [4] and [9].
In [10] for arbitrary positive integers as, ..., as the following are defined

S
(1.2) m(ai,...,a5) =m= Z(ai —1)4+1 and p=max{a,...,as}.
i=1

Obviously, K, — (a1,...,as) and K,,_1 - (a1, ...,as). Therefore,
Fy(ay,...,as;9) =m, qg>m+1.

The following theorem for the numbers F,(aq,...,as;m) is true

Theorem 1.1. Let ay,...,as be positive integers and let m and p be defined by (1.2).
If m>p+1, then:

(a) Fy(as,-..,a5;m) = m+p, [10, 9]

(b) Koyp — C2p+1 =Kpp-1+ C2p+1
is the only graph in H(a1,...,as;m) with m + p vertices, [9].

The condition m > p+1 is necessary according to (1.1). Other proofs of Theorem 1.1
are given in [12] and [13].

Very little is known about the numbers F,(aq,...,as;q), ¢ < m — 1. In this work we
suggest a method to bound these numbers with the help of the modified vertex Folkman
numbers Fy,(m i q), which are defined below.

Definition 1.2. Let G be a graph and let m and p be positive integers. The expression
G5 m}p

means that for any choice of positive integers ay,...,as (s is not fized), such that m =
S

Z(ai — 1)+ 1 and max{as,...,as} < p, we have
i=1

G5 (ay,...,as).
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lzeﬁne:
’H(m|p;q) = {G G5 m‘p and w(G) < q}.

ﬁ(m|p;q;n) = {G N ENS ﬁ(m‘p;Q) and | V(G)| = ”}

The modified vertex Folkman numbers are defined by the equality:
ﬁy(m|p;q) = min {|V(G)| :G e ﬁ(m}p;q)} .

The graph G is called an extremal graph in ﬁ(m|p; q)if G € ’;q(m|p; q) and | V(GQ)| =
ﬁv(m|p; q). We say that G is a maximal graph in ﬁ(m|p; q)ifG e ﬁ(m i q), but G+e &
ﬁ(m|p; q),Ve € E(G), i.e. w(G +¢e) > q,Ve € E(G).

For convenience we also define the following term:

Definition 1.3. The graph G is called a (+K3)-graph if G+e contains a new t-clique

for all e € E(G).

Obviously, G € ﬁ(m|p; q) is a maximal graph in ﬁ(m
(+K4)-graph.

From the definition of the modified Folkman numbers it becomes clear that if aq, ..., as
are positive integers and let m and p be defined by (1.2), then
(1.3) Fy(ay,...,as;q) < Fy(m p;q).
Defining and computing the modified Folkman numbers is appropriate because of the
following reasons:

1) On the left side of (1.3) there is actually a whole class of numbers, which are bound
by only one number ﬁy(m|p; q).

p;q) if and only if G is a

2) The upper bound for F, (m‘p; q) is easier to compute than the numbers F,(aq, ..., as)
because of the following

Theorem 1.4 ([1], Theorem 7.2). Let m, mg, p and q be positive integers, m > myg
and q > min {mg, p}. Then

ﬁv(mlp;m —mo +q) < Fy(mg

p;q)—i—m—mo.

Therefore, if we know the value of one number f‘v (m'|p; q), then we can obtain an

upper bound for ﬁ, (m o q) where m > m’.

3) As we will see below (Theorem 2.1), the computation of the numbers F), (m|p; m—1)

is reduced to finding the exact values of the first several of these numbers (bounds for
the number of exact values needed are given in 2.1 (c)).

Let A be an independent set of vertices in G. If ViU- - -UV; is (a4, . . ., as)-free s-coloring
of V(G — A) (i.e. V; does not contain an a;-clique, i = 1,...,s), then AUV, U---UVj is
(2,a1,...,as)-free (s + 1)-coloring of V(G). Therefore,

(1.4) G5 (2,a1,...,a5) = G — A5 (a1,...,a,).
Further we will need the following
Proposition 1.5. Let G > m‘p and A is an independent set of vertices in G. Then

G-AS% (mfl)‘p,
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Proof. Let ay,...,as be positive integers, such that
S

m71:2(ai71)+1 and 2 < a; < p.
i=1
Then,

m:(2—1)+zs:(ai—1)+1.

It follows that G % (2,a1,...,as) and from (1.4) we obtain G — A 5 (a1,...,as). O
It is easy to see that if ¢ > m, then F,(a1,...,as;q) = f‘v(m|p; q) = m. From Theorem
1.1 it follows that F,(a1,...,as;m) = ﬁy(m‘p;m) = m + p. In the case ¢ = m — 1 the
following general bounds are known:
(1.5) m+p+2<F,(m

p;m—l) <m+3p, m>p+2.

The upper bound follows from the proof of the Main Theorem from [7] and the lower
bound follows from (1.3) and F,(ay,...,as;m —1) > m+p+ 2, [12].

We know all the numbers Fy(m‘p;m — 1) where p < 5 (in the cases p < 4 see the

Remark after Theorem 4.5 and (1.5) from [1], and in the case p = 5 see Theorem 7.4 also
from [1]). It is also known that

(1.6) m+9 < Fy(m|gm—1) <m+10, [1]
In this work we complete the computation of the numbers E, (m‘ 6 M= 1) by proving
Main Theorem 1. ﬁv(m‘G;m —1)=m+10, m > 8.

2. A theorem for the numbers ﬁu (m|p; m — 1). We will need the following fact:

(2.1) G5 (a1,...,as) = x(G) > m, [13] (see also [1]).
It is easy to prove (see Proposition 4.4 from [1]) that
(2.2) Fy(m pi M 1) exists & m >p+2.

In [1] (version 1) we formulate as Theorem 10.1 without proof the following
Theorem 2.1. Let mo(p) = mo be the smallest positive integer for which

i, (Fo )} =

10 — 1) — my.

Then: B
(a) Fy(m|p;m —-1)= Fy(mo‘p;mo —1) 4+ m —mg, m > my.
(b) if mg > p+2 and G is an extremal graph in ﬁ(mo}p; mo — 1), then G 5 (2, mo—2).
(c) mo < Fu((p+2)];p+1) —p.
In this section we present a proof of Theorem 2.1.
The condition m > p + 2 is necessary according to (2.2).
Proof. (a) According to the definition of mg(p) = mg we have
ﬁy(m|p;m -1)> ﬁy(mo‘p;mo -1 +m—mgo, m>p+2.

According to Theorem 1.4 if m > mg the opposite inequality is also true.
(b) Assume the opposite is true and let
V(G) =1 UV, ViNnVe =0,
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where V; is an independent set and V, does not contain an (mg — 2)-clique. Let G; =
G[V,] = G—V;. According to Proposition 1.5, from G N m0|p it follows G — (mo — 1)|p.
Since w(G1) < mo — 2, Gy € H((mo — 1)|p; mo — 2). Therefore,
V(@) = 1> V(G| > Fy((mo— 1) ;mo - 2).

Since | V(G)| = F, (m0|p; mo — 1), from these inequalities it follows that

Fy(mol ;mo —1) = mo > F,((mo — 1)] smo — 2) — (mg — 1),
which contradicts the definition of mg.

(¢) If mp = p+2, then from (1.5) we have F,((p + 2)|p;p +1)>2p+4=p+2+mo
and therefore in this case the inequality (c) is true.

Let mg > p+ 2 and G be an extremal graph in ﬁ(mo‘p;mo —1). If a1,...,as are
S

positive integers, such that m = Z(ai —1) +1 and max{ay,...,as} < p, then G >
(a1,...,as) and according to (2.1)1, ;((G) > mg. From (b) and Theorem 1.1 we see that
| V(G)| = 2mg —3 and | V(G)| = 2mg — 3 only if G = Cay,—3. However, the last equality
is not possible because x(G) > mg and x(Capm,—3) = mo — 1. Therefore,
|V(G)| = Fy(mol ;mo —1) > 2mo — 2
Since mg > p + 2 from the definition of mg we have
Fy(mo‘p;mo —1)—mo < F,((p+ 2)|p;p+ )—p-—2.
From these inequalities the inequality (c) follows easily. O

3. Algorithms. In this section we present algorithms for finding all maximal graphs
in H(m|p; q;n) with the help of a computer. The remaining graphs in this set can be
obtained by removing edges from the maximal graphs. The idea for these algorithms
comes from [14] (see Algorithm A1l). Similar algorithms are used in [1, 2, 19, 8, 15]. Also
with the help of the computer, results for Folkman numbers are obtained in [6, 17, 16, 3].

The following proposition for maximal graphs in 7—~[(m|p; g;n) will be useful

Proposition 3.1. Let G be a mazimal graph in ﬁ(m‘p;q;n). Let vy, v9,...,v; be
independent vertices of G and H = G — {v1,va,...,vr}. Then:

(a) H € H((m—1) Lin—k)

(b) H is a (+K,4—1)-graph

(c) Ng(v;) is a mazimal K1 -free subset of V(H), i =1,...,k

Proof. The proposition (a) follows from Proposition 1.5, (b) and (c) follow from the
maximality of G. [

We define an algorithm, which is based on Proposition 3.1, and generates all maximal
graphs in H(m o @ n) with independence number at least k.

Algorithm 3.2. Finding all mazimal graphs in ﬁ(m

o @ n) with independence number
at least k by adding k independent vertices to the (+K4—1)-graphs in ﬁ((m — 1)‘;); gn—k).
1. Denote by A the set of all (+K,_1)-graphs in H((m — 1)|p; g;n — k). The obtained
maximal graphs in ﬁ(m‘p; q;n) will be output in B, let B =10.
2. For each graph H € A:
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2.1. Find the family M(H) = {M,..., M} of all mazimal K,_1-free subsets of
V(H).

2.2. Consider all the k-tuples (M;,, M;,,..., M, ) of elements of M(H), for which
1<idy <o <ig <t (in these k-tuples some subsets M; can coincide). For every such k-
tuple construct the graph G = G(My,, M, ..., M;, ) by adding to V(H) new independent
vertices vi,va, ..., Vg, so that Ng(vj) = M;.,j = 1,..., k. If w(G + e) = ¢q,Ve € E(G),
then add G to B.

3. Remove the isomorph copies of graphs from B.

VRS

4. Remowve from B all graphs which are not in 7-l(m|p; q;n).
Theorem 3.3. Upon completion of Algorithm 3.2 the obtained set B coincides with
the set of all maximal graphs in H(m‘p; g;n) with independence number at least k.

Proof. From step 4 we see that B C ﬁ(m|p; q;n) and from step 2.2 it becomes clear,
that B contains only maximal graphs in ﬁ(m}p; g;n) with independence number at least
k. Let G be an arbitrary maximal graph in 7-l(m|p; q;n) with independence number at
least k. We will prove that G € B. Let v1,...,v; be independent vertices of G and H =
G — {v1,...,v}. According to Proposition 3.1(a) and (b), H € H((m — 1)|p;q;n —k)

and H is a (+K,_1)-graph. Therefore, in step 1 we have H € A. According to Proposition
3.1(c), Ng(v;) € M(H) for all i € {1,...,k}, hence in step 2 G is added to B. O

Let us note that if G € ﬁ(m‘p;q;n) and n > ¢, then G # K, and therefore
a(G) > 2. In this case, with the help of Algorithm 3.2 we can obtain all maximal
p;q;n) by adding 2 non-adjacent vertices to the (+K,_1)-graphs in

graphs in H(m
H((m —1)| 1q5n - 2).

It is clear that if G is a graph for which a(G) = 2 and H is a subgraph of G obtained
by removing independent vertices, then «(H) < 2. We modify Algorithm 3.2 in the
following way in order to obtain the maximal graphs in ’H(m|p; q;n) with independence
number 2:

Algorithm 3.4. A modification of Algorithm 3.2 for finding all maximal graphs
mn H(m|p;q;n) with independence number 2 by adding 2 independent vertices to the
(+K4-1)-graphs in ﬁ((m — 1)|p; q;n — 2) with independence number not greater than 2.

In step 1 of Algorithm 3.2 we add the condition that the set A contains only the
(+K4-1)-graphs H((m —1) PG — 2) with independence number not greater than 2,
and at the end of step 2.2 after the condition w(G + €) = q,Ve € E(G) we also add the
condition a(G) = 2.

Thus, finding all maximal graphs in ﬁ(m‘p;q;n) with independence number 2 is

reduced to finding all (+K,_1)-graphs with independence number not greater than 2
in ﬁ((m -1 |p; ¢;n — 2) and finding the remaining maximal graphs in ﬁ(m|p; q;n) with
independence number greater than or equal to 3 is reduced to finding all (+K,_1)-graphs
in ﬁ((m — 1)}1); g;n — 3). In this way we can obtain all maximal graphs in ﬁ(m}p; q;n)
in steps, starting from graphs with a small number of vertices.

The nauty programs [11] have an important role in this work. We use them for fast
generation of non-isomorphic graphs and for graph isomorph rejection.

118



4. Computation of the number E,(8|6; 7). From Theorem 2.1 it becomes clear
that in order to compute the numbers f‘v(m| ¢ — 1) we need the exact value of the
number mg(6). According to Theorem 2.1 (¢), to obtain an upper bound for this number
we need to know Fv(8| 6;7). In this section we compute this number by proving the

following _
Theorem 4.1. F,(8|;7) = 18.

Proof. By 1.6, ﬁy(S‘G; 7) < 18. This upper bound is proved in [1] with the help of
the graph I'y which is given on Figure 1 (see the proof of Theorem 1.10 in version 1 or
the proof of Theorem 1.9 in version 2). To obtain the lower bound we will prove with the
help of a computer that ﬁ(8‘6; 7;,17) = 0.

First, we search for maximal graphs in 7—7(8| 6 75 17) with independence number greater

than 2. It is clear that K¢ and Kg — e are the only (+Kg)-graphs in (3 ¢ 7;6). With
the help of Algorithm 3.2 we add 2 non-adjacent vertices to these graphs to find all
maximal graphs in 7—[(4‘ ¢ 73 8). By removing edges from them we find all (+Kg)-graphs

OOCOCOOKRKRKHRKRKRRRERRRRRLRRKLEO
OHROHRKHKHKHRKHERKHRKRKHRORKRKROOR
HOHROKRKHKHRKRKRKRERKRKRLRORKROOR
OHRHOHOKFRORKRRERRERRLRRLRORRER
HOOHOKFHORRRERRERRERRLRORRRERE
OHRHHHOKRKHRKHRKHROKRORRORHR
HOHRHOKRKHRKHRKHRORORRRROR
HHRHROHRKHHROORORORRHR :
HHOHHHOHOOHOHHHHI—'H\"."’:V
HRPHFPROORHOOORKRKRREKRREKR]| :g‘
HFRPRHRHPOHFROORKFROKRRIHRORRRLRE Y
HHRHRHHOOOKRORRRORRRER
HHRHRHHOOFRORKRROKRORKRER
HHHHOHHOORKROKRORRRER
HHRHOHRKHRKHRKHRKRERKHERORKRKRLROOKO
HHOHRHKHKHERKRKHEROKRRKRORKLROO
HORHHKHKRKHERKRKHERKHLROROKROKRO
OrRrHRHRHRHRKHRKRRRRROROROO

=
R

Fig. 1. Graph T'; € ﬁ(8|6;7; 18)
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in ’;q 4‘ e 8) In the same > way, we successively obtain all maximal and all (+Kj)-graphs
in the sets: H(5]; 7;10), H(6];; 7:12), H(7|;; 7; 14).

In the end, with the help of Algorlthm 3.2 we add 3 independent vertices to the
obtained (+K6)—graphs in ’H(?‘G; 7;14) to find all maximal graphs in H(S‘G; 7,17) with
independence number greater than 2. N

After that, we search for maximal graphs in H(8| o 7 17) with independence number
2. Tt is clear that K3 is the only (+Kg)-graph in ﬁ(2|6; 7;5). With the help of Algorithm
3.4 we add 2 non-adjacent vertices to this graph to find all maximal graphs in ﬁ(3‘ 6 0 7)
with independence number 2. By removing edges from them we find all (+Kg)-graphs
in H(3 o 1 7) with independence number 2. In the same way, we successively obtain all
maximal and all (+Ks)- graphs with independence number 2 in the sets:

H(4|4:7:9), H(5|;7511), H(6],;7;13), H (7|, 7;15) and H( (8],:7:17).

The number of graphs found in each step is descrlbed in Table 1. In both cases we do
not obtain any maximal graphs in 7-[ 8‘6, 7;17), therefore 7—[ 8‘6, 7;17)=0. O

Corollary 4.2. 8 <mp(6) <11

Proof. The inequality mo(6) > 8 follows from the definition of mg and the upper
bound follows from Theorem 2.1 (¢), p=6. O

5. Proof of the Main Theorem. Since Fy(8|6; 7) = 18, according to Theorem 2.1
(a) it is enough to prove mg(6) = 8. According to Corollary 4.2 this equality will be proved
6;8) > 18, F,(10];9) > 19 and F,(11],;10) > 20. The proof of these
inequalities is similar to the proof of Z3 8|6; > 17 from Theorem 4.1. From Theorem 1.4
(m = mg+1) it is easy to see that F,( 1}6, —2)+1> ﬁy(m}(;; m — 1) and therefore
it is enough to prove F@ 11‘ . 10) > 20. However, we also prove the other two inequalities
with the help of a computer, because in this way we obtain more information, which is
presented in Appendix A. It is clear that it is enough to prove H(m|6; m—1m+9)=10
for m = 9,10, 11. ~

First, we search for maximal graphs in H(m‘ gm—Llim+ 9) with independence num-
ber greater than 2. It is clear that K,,_o and K,,_2 — e are the only (+K,,_2)-graphs
in H((m —5) |6; m — 1;m — 2). With the help of Algorithm 3.2 we successively obtain all
maximal and all (+K,,_2)-graphs in the sets: ’;q((m - 4)|6; m— 1;m),
H((m = 3)|s;m—Lm+2), H((m —2)|;m —1ym+4), H((m —1)|;;m —1;m+6).

In the end, with the help of Algorithm 3.2 we add 3 independent vertices to the
obtained (4K,,_2)-graphs in H((m 1)‘6; m — 1;m + 6) to find all maximal graphs in

ﬁ(m|6; m — 1;m 4+ 9) with independence number greater than 2.

if we prove Fj(

After that, we search for maximal graphs in ﬁ(m| gm—Llim+ 9) with independence
number 2. It is clear that K, _3 is the only (+K,,_2)-graph in ’;q((m —06) |6; m—1;m —3).
With the help of Algorithm 3.4 we successively obtain all maximal and all (+K,,_2)-
graphs with independence number 2 in the sets: H((m — m—1;m—1
H((m — 4)|m—1;m+1), H((m — 3)|g;m —13m+3), H((m — m—1;m+5

The number of graphs found in each step is given in Table 2, Table 3 and Table 4.
In both cases we do not obtain any maximal graphs in the sets H(m‘ﬁ; m—1;m+9),
120
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m = 9,10,11, hence it follows F,(9|:8) > 18, F,(10|,;9) > 19, F,(11|;10) > 20 and

mo(6) = 8. Thus we finish the proof of the Main Theorem.

Appendix A. Results of the computations

Table 1. Steps in the search of all maximal graphs in

Table 2. Steps in the search of all maximal graphs in

H(8| 4573 17) H(9]4:8;18)

set ind. maximal (+Ks)- set ind. maximal (+K~7)-

number | graphs graphs number | graphs graphs
7:[(3{6; 7;6) - 2 7:[(4{6;8; 7) - 2
7;[(4 6175 8) - 2 13 7;[(5 618:9) - 2 13
7:[(5 63 75 10) - 8 324 7:[(6 618 11) - 8 326
7;[(6{6; 7;12) - 56 104 271 7;[(7{6;8; 13) - 56 105 125
7:[(7 63 7514) - 18 1825 7:[(8 i 8;15) - 20 1844
H(8|437517) >3 0 H(9]4:8;18) >3 0
H(245755) <2 1 H(3|4;58;6) <2 1
71(3{6;7; 7) =2 1 3 7;[(4{6;8;8) =2 1 3
7:[(4 6i759) 2 2 22 7:[(5 i 8;10) =2 2 22
7;[(5 61 73 11) =2 5 468 7;[(6 6 8:12) =2 5 489
7:[(6 63 7513) =2 24 97 028 7:[(7 63 8:14) =2 25 119 124
7:[(7 673 15) =2 468 2 395 573 7:[(8 i 8;16) =2 506 2 747 120
H(8|4:7517) =2 0 H(9]4:8;18) =2 0
H(8|g;7517) - 0 H(9]g;8;18) - 0

Table 3. Steps in the search of all maximal graphs in

H(10| 4 9;19)

Table 4. Steps in the search of all maximal graphs in
7—[(11{6; 105 20)

set ind. maximal (+Ks)- set ind. maximal (+Ko)-

number | graphs graphs number | graphs graphs
7;[(5{6;9;8) - 2 7;[(6{6; 10;9) - 2
H(6]4;9;10) - 2 13 7;[(7{6; 10;11) - 2 13
H(7|4:9;12) - 8 327 7;[(8{6; 10;13) - 8 327
H(84:9;14) - 56 105 281 7;‘(91@ 10;15) - 56 105 314
H(9] 43 9;16) - 20 1845 7-L(10|6; 10;17) |- 20 1845
H(10],59;19) |>3 0 H(11],;10;20) | >3 0
71(4{6;9;7) <2 1 71(5{6; 10; 8) <2 1
7:[(5 6:9:9) =2 1 3 7:[(6{6; 10;10) =2 1 3
H(6]4:9;11) =2 2 22 7:[(7{6; 10;12) =2 2 22
71(7{6;9; 13) =2 5 496 7;[(8{6; 10;14) =2 5 498
7:[(8{6;9; 15) =2 25 121 498 7;[(9{6; 10;16) =2 25 121 863
7;[(9{6;9; 17) =2 509 2 749 155 9;[(10|6; 10;18) | =2 509 2749 171
H(10],;9;19) =2 0 H(11];10520) | =2 0
H(10],;9;19) - 0 H(11],;10;20) |- 0
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MOANPUITNPAHU BbPXOBU ®OJIKMAHOBU YNUCJIA
Anexcanabp Bukos, Heasiiko Henos

Heka a1, ...,as ca ecrectBenn uncia. 3a rpad G cumponst G > (a1,...,as) 03
HavaBa, Y€ TPU BCSIKO OIBETsABAHE Ha BbpxoBere Ha G B s IBaATa (S-OIBETABAHE)
cbijectByBa ¢ € {1,...,s}, TakoBa 4e MMa a;-KJIMKA OT -5 UBAT. AKO M U p ca ec-
TecTBEeHH umC/Ia, Torapa G —» m‘p O3HAYAaBa, Y€ 3a MPOU3BOJIHHU €CTECTBEHU YHCIIA

S
ai,...,as (s He e pUKCHPAHO), TAKUBA Ue Z(ai— 1)+1=mumax{ai,...,as} <p,
i=1
uvanme G > (a1, ...,as). Heka

ﬁ(m|p; q)={G:G% m|p n w(G) < ¢}
Momudunupanure BbpxoBu PoJIKMAHOBH YUCIIA Ce JIedpUHUPAT C PABEHCTBOTO
F(ml,;:q) = min {[V(G)] : G € H(ml ;q)}.

Ako ¢ > m Te3m Ymcia ca U3BECTHU M Ce IpecMdATaT JjiecHo. B ciaydas ¢ = m — 1
3HaeM BCUUYKM TaKhBa 4Yucja korato p < 5. B Ttasu pabora pasriiexkmamMe CjieIBallus
HEM3BECTEH cJiydail p = 6 KaTo J0Ka3BaMe C MIOMOIITa HAa KOMIIOTHD, e

ﬁ(m|6;mf 1) = m + 10.
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