МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2016 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2016 Proceedings of the Forty Fifth Spring Conference of the Union of Bulgarian Mathematicians Pleven, April 6–10, 2016

MODIFIED VERTEX FOLKMAN NUMBERS*

Aleksandar Bikov, Nedyalko Nenov

Let a_1, \ldots, a_s be positive integers. For a graph G the expression $G \stackrel{v}{\rightarrow} (a_1, \ldots, a_s)$ means that for every coloring of the vertices of G in s colors (s-coloring) there exists $i \in \{1, \ldots, s\}$, such that there is a monochromatic a_i -clique of color i. If m and p are positive integers, then $G \stackrel{v}{\rightarrow} m \Big|_p$ means that for arbitrary positive integers a_1, \ldots, a_s (s is not fixed), such that $\sum_{i=1}^{s} (a_i - 1) + 1 = m$ and max $\{a_1, \ldots, a_s\} \leq p$, we have $G \stackrel{v}{\rightarrow} (a_1, \ldots, a_s)$. Let

$$\mathcal{H}(m|_{n};q) = \{G: G \xrightarrow{v} m|_{n} \text{ and } \omega(G) < q\}.$$

The modified vertex Folkman numbers are defined by the equality

$$\widetilde{F}(m|_{n};q) = \min\{|V(G)|: G \in \widetilde{\mathcal{H}}(m|_{n};q)\}.$$

If $q \ge m$ these numbers are known and they are easy to compute. In the case q = m-1 we know all of the numbers when $p \le 5$. In this work we consider the next unknown case p = 6 and we prove with the help of a computer that

$$\widetilde{F}(m|_{e}; m-1) = m+10.$$

1. Introduction. In this paper only finite, non-oriented graphs without loops and multiple edges are considered. The following notations are used:

V(G) – the vertex set of G;

 $\underline{\mathrm{E}}(G)$ – the edge set of G;

 \overline{G} – the complement of G;

 $\omega(G)$ – the clique number of G;

 $\alpha(G)$ – the independence number of G;

 $\chi(G)$ – the chromatic number of G;

 $N(v), N_G(v), v \in V(G)$ – the set of all vertices of G adjacent to v;

 $d(v), v \in V(G)$ – the degree of the vertex v, i.e. d(v) = |N(v)|;

 $G - v, v \in V(G)$ – subgraph of G obtained from G by deleting the vertex v and all edges incident to v;

 $G - e, e \in E(G)$ – subgraph of G obtained from G by deleting the edge e;

⁶2010 Mathematics Subject Classification: Primary 05C35.

Key words: Folkman number, clique number, independence number, chromatic number.

 $G + e, e \in E(\overline{G})$ – supergraph of G obtained by adding the edge e to E(G).

 K_n – complete graph on n vertices;

 C_n – simple cycle on n vertices;

 $m_0 = m_0(p)$ – see Theorem 2.1;

 G_1+G_2 – a graph G for which: $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2) \cup E'$, where $E' = \{[x, y] : x \in V(G_1), y \in V(G_2)\}$, i.e. G is obtained by connecting every vertex of G_1 to every vertex of G_2 .

All undefined terms can be found in [18].

Let a_1, \ldots, a_s be positive integers. The expression $G \xrightarrow{v} (a_1, \ldots, a_s)$ means that for any coloring of V(G) in s colors (s-coloring) there exists $i \in \{1, \ldots, s\}$ such that there is a monochromatic a_i -clique of color i. In particular, $G \xrightarrow{v} (a_1)$ means that $\omega(G) \ge a_1$. Define:

 $\overline{\mathcal{H}}(a_1, \dots, a_s; q) = \left\{ G : G \xrightarrow{v} (a_1, \dots, a_s) \text{ and } \omega(G) < q \right\}.$

 $\mathcal{H}(a_1,\ldots,a_s;q;n) \stackrel{\checkmark}{=} \{G: G \in \mathcal{H}(a_1,\ldots,a_s;q) \text{ and } |\mathcal{V}(G)| = n\}.$

The vertex Folkman number $F_v(a_1, \ldots, a_s; q)$ is defined by the equality:

$$F_v(a_1, \ldots, a_s; q) = \min\{|V(G)| : G \in \mathcal{H}(a_1, \ldots, a_s; q)\}.$$

Folkman proves in [5] that:

(1.1)

$$F_v(a_1,\ldots,a_s;q)$$
 exists $\Leftrightarrow q > \max\{a_1,\ldots,a_s\}$

Other proofs of (1.1) are given in [4] and [9].

In [10] for arbitrary positive integers a_1, \ldots, a_s the following are defined

(1.2)
$$m(a_1, \dots, a_s) = m = \sum_{i=1}^{s} (a_i - 1) + 1$$
 and $p = \max\{a_1, \dots, a_s\}.$

Obviously, $K_m \xrightarrow{v} (a_1, \ldots, a_s)$ and $K_{m-1} \xrightarrow{v} (a_1, \ldots, a_s)$. Therefore,

$$F_v(a_1,\ldots,a_s;q) = m, \quad q \ge m+1.$$

The following theorem for the numbers $F_v(a_1, \ldots, a_s; m)$ is true

Theorem 1.1. Let a_1, \ldots, a_s be positive integers and let m and p be defined by (1.2). If $m \ge p+1$, then:

(a) $F_v(a_1, \ldots, a_s; m) = m + p, [10, 9].$

(b) $K_{m+p} - C_{2p+1} = K_{m-p-1} + \overline{C}_{2p+1}$

is the only graph in $\mathcal{H}(a_1, \ldots, a_s; m)$ with m + p vertices, [9].

The condition $m \ge p+1$ is necessary according to (1.1). Other proofs of Theorem 1.1 are given in [12] and [13].

Very little is known about the numbers $F_v(a_1, \ldots, a_s; q), q \leq m - 1$. In this work we suggest a method to bound these numbers with the help of the modified vertex Folkman numbers $\widetilde{F}_v(m|_p; q)$, which are defined below.

Definition 1.2. Let G be a graph and let m and p be positive integers. The expression $G \xrightarrow{v} m|_{r}$

means that for any choice of positive integers a_1, \ldots, a_s (s is not fixed), such that $m = \sum_{i=1}^{s} (a_i - 1) + 1$ and $\max\{a_1, \ldots, a_s\} \leq p$, we have

$$G \xrightarrow{v} (a_1, \ldots, a_s).$$

$$\begin{split} & \text{Define:} \\ & \widetilde{\mathcal{H}}(m\big|_p;q) = \Big\{ G: G \xrightarrow{v} m\big|_p \text{ and } \omega(G) < q \Big\}. \\ & \widetilde{\mathcal{H}}(m\big|_p;q;n) = \Big\{ G: G \in \widetilde{\mathcal{H}}(m\big|_p;q) \text{ and } |\operatorname{V}(G)| = n \Big\}. \end{split}$$

The modified vertex Folkman numbers are defined by the equality:

$$\widetilde{F}_{v}(m\big|_{p};q) = \min\left\{ |\operatorname{V}(G)| : G \in \widetilde{\mathcal{H}}(m\big|_{p};q) \right\}$$

The graph G is called an extremal graph in $\widetilde{\mathcal{H}}(m|_p; q)$ if $G \in \widetilde{\mathcal{H}}(m|_p; q)$ and $|V(G)| = \widetilde{F}_v(m|_p; q)$. We say that G is a maximal graph in $\widetilde{\mathcal{H}}(m|_p; q)$ if $G \in \widetilde{\mathcal{H}}(m|_p; q)$, but $G + e \notin \widetilde{\mathcal{H}}(m|_p; q)$, $\forall e \in \mathcal{E}(\overline{G})$, i.e. $\omega(G + e) \ge q$, $\forall e \in \mathcal{E}(\overline{G})$.

For convenience we also define the following term:

Definition 1.3. The graph G is called a $(+K_t)$ -graph if G + e contains a new t-clique for all $e \in E(\overline{G})$.

Obviously, $G \in \widetilde{\mathcal{H}}(m|_p;q)$ is a maximal graph in $\widetilde{\mathcal{H}}(m|_p;q)$ if and only if G is a $(+K_q)$ -graph.

From the definition of the modified Folkman numbers it becomes clear that if a_1, \ldots, a_s are positive integers and let m and p be defined by (1.2), then

(1.3)
$$F_v(a_1,\ldots,a_s;q) \le F_v(m|_p;q).$$

Defining and computing the modified Folkman numbers is appropriate because of the following reasons:

1) On the left side of (1.3) there is actually a whole class of numbers, which are bound by only one number $\widetilde{F}_v(m|_n; q)$.

2) The upper bound for $\tilde{F}_v(m|_p;q)$ is easier to compute than the numbers $F_v(a_1,\ldots,a_s)$ because of the following

Theorem 1.4 ([1], Theorem 7.2). Let m, m_0, p and q be positive integers, $m \ge m_0$ and $q > \min\{m_0, p\}$. Then

$$\widetilde{F}_v(m\big|_p; m - m_0 + q) \le \widetilde{F}_v(m_0\big|_p; q) + m - m_0.$$

Therefore, if we know the value of one number $\widetilde{F}_v(m'|_p;q)$, then we can obtain an upper bound for $\widetilde{F}_v(m|_p;q)$ where $m \ge m'$.

3) As we will see below (Theorem 2.1), the computation of the numbers $F_v(m|_p; m-1)$ is reduced to finding the exact values of the first several of these numbers (bounds for the number of exact values needed are given in 2.1 (c)).

Let A be an independent set of vertices in G. If $V_1 \cup \cdots \cup V_s$ is (a_1, \ldots, a_s) -free s-coloring of V(G - A) (i.e. V_i does not contain an a_i -clique, $i = 1, \ldots, s$), then $A \cup V_1 \cup \cdots \cup V_s$ is $(2, a_1, \ldots, a_s)$ -free (s + 1)-coloring of V(G). Therefore,

(1.4)
$$G \xrightarrow{v} (2, a_1, \dots, a_s) \Rightarrow G - A \xrightarrow{v} (a_1, \dots, a_s)$$

Further we will need the following

Proposition 1.5. Let $G \xrightarrow{v} m \Big|_p$ and A is an independent set of vertices in G. Then $G - A \xrightarrow{v} (m-1) \Big|_p$.

Proof. Let a_1, \ldots, a_s be positive integers, such that

$$m-1 = \sum_{i=1}^{s} (a_i - 1) + 1$$
 and $2 \le a_i \le p_i$

Then,

$$m = (2 - 1) + \sum_{i=1}^{s} (a_i - 1) + 1.$$

It follows that $G \xrightarrow{v} (2, a_1, \ldots, a_s)$ and from (1.4) we obtain $G - A \xrightarrow{v} (a_1, \ldots, a_s)$. It is easy to see that if q > m, then $F_v(a_1, \ldots, a_s; q) = \widetilde{F}_v(m|_p; q) = m$. From Theorem

1.1 it follows that $F_v(a_1, \ldots, a_s; m) = \widetilde{F}_v(m|_p; m) = m + p$. In the case q = m - 1 the following general bounds are known:

(1.5)
$$m+p+2 \le \widetilde{F}_v(m|_p;m-1) \le m+3p, \ m \ge p+2.$$

The upper bound follows from the proof of the Main Theorem from [7] and the lower bound follows from (1.3) and $F_v(a_1, \ldots, a_s; m-1) \ge m+p+2$, [12].

We know all the numbers $\tilde{F}_v(m|_p; m-1)$ where $p \leq 5$ (in the cases $p \leq 4$ see the Remark after Theorem 4.5 and (1.5) from [1], and in the case p = 5 see Theorem 7.4 also from [1]). It is also known that

(1.6)
$$m+9 \le F_v(m|_6;m-1) \le m+10, [1]$$

In this work we complete the computation of the numbers $F_v(m|_6; m-1)$ by proving

Main Theorem 1. $\tilde{F}_v(m|_6; m-1) = m + 10, \ m \ge 8.$

2. A theorem for the numbers $\tilde{F}_v(m|_p; m-1)$. We will need the following fact:

(2.1) $G \xrightarrow{v} (a_1, \dots, a_s) \Rightarrow \chi(G) \ge m, [13] \text{ (see also [1])}.$

It is easy to prove (see Proposition 4.4 from [1]) that

(2.2)
$$\widetilde{F}_{v}(m|_{p}; m-1) \text{ exists } \Leftrightarrow m \ge p+2.$$

In [1] (version 1) we formulate as Theorem 10.1 without proof the following **Theorem 2.1.** Let $m_0(p) = m_0$ be the smallest positive integer for which

$$\min_{m \ge p+2} \left\{ \widetilde{F}_v(m\big|_p; m-1) - m \right\} = \widetilde{F}_v(m_0\big|_p; m_0 - 1) - m_0.$$

(a)
$$F_v(m|_n; m-1) = F_v(m_0|_n; m_0-1) + m - m_0, \ m \ge m_0.$$

(b) if
$$m_0 > p+2$$
 and G is an extremal graph in $\widetilde{\mathcal{H}}(m_0|_r; m_0-1)$, then $G \xrightarrow{v} (2, m_0-2)$.

(c) $m_0 < \widetilde{F}_v((p+2)|_p; p+1) - p.$

In this section we present a proof of Theorem 2.1.

The condition $m \ge p+2$ is necessary according to (2.2).

Proof. (a) According to the definition of $m_0(p) = m_0$ we have

 $F_v(m|_p; m-1) \ge F_v(m_0|_p; m_0-1) + m - m_0, \ m \ge p+2.$

According to Theorem 1.4 if $m \ge m_0$ the opposite inequality is also true.

 $\mathcal{V}(G) = V_1 \cup V_2, V_1 \cap V_2 = \emptyset,$

where V_1 is an independent set and V_2 does not contain an $(m_0 - 2)$ -clique. Let $G_1 = G[V_2] = G - V_1$. According to Proposition 1.5, from $G \xrightarrow{v} m_0|_p$ it follows $G_1 \xrightarrow{v} (m_0 - 1)|_p$. Since $\omega(G_1) < m_0 - 2$, $G_1 \in \widetilde{\mathcal{H}}((m_0 - 1)|_p; m_0 - 2)$. Therefore,

$$|V(G)| - 1 \ge |V(G_1)| \ge \widetilde{F}_v((m_0 - 1)|_p; m_0 - 2).$$

Since $|V(G)| = \widetilde{F}_v(m_0|_p; m_0 - 1)$, from these inequalities it follows that

 $\widetilde{F}_{v}(m_{0}|_{p}; m_{0}-1) - m_{0} \geq \widetilde{F}_{v}((m_{0}-1)|_{p}; m_{0}-2) - (m_{0}-1),$ which contradicts the definition of m_{0} .

(c) If $m_0 = p + 2$, then from (1.5) we have $\tilde{F}_v((p+2)|_p; p+1) \ge 2p + 4 = p + 2 + m_0$ and therefore in this case the inequality (c) is true.

Let $m_0 > p+2$ and G be an extremal graph in $\widetilde{\mathcal{H}}(m_0|_p; m_0-1)$. If a_1, \ldots, a_s are positive integers, such that $m = \sum_{i=1}^s (a_i - 1) + 1$ and $\max\{a_1, \ldots, a_s\} \leq p$, then $G \xrightarrow{v} (a_1, \ldots, a_s)$ and according to (2.1), $\chi(G) \geq m_0$. From (b) and Theorem 1.1 we see that $|V(G)| \geq 2m_0 - 3$ and $|V(G)| = 2m_0 - 3$ only if $G = \overline{C}_{2m_0-3}$. However, the last equality is not possible because $\chi(G) \geq m_0$ and $\chi(\overline{C}_{2m_0-3}) = m_0 - 1$. Therefore, $|V(G)| = \widetilde{F}_v(m_0|_p; m_0 - 1) \geq 2m_0 - 2$

Since $m_0 > p + 2$ from the definition of m_0 we have

$$\overline{F}_{v}(m_{0}|_{p};m_{0}-1) - m_{0} < \overline{F}_{v}((p+2)|_{p};p+1) - p - 2.$$

From these inequalities the inequality (c) follows easily. \Box

3. Algorithms. In this section we present algorithms for finding all maximal graphs in $\mathcal{H}(m|_p; q; n)$ with the help of a computer. The remaining graphs in this set can be obtained by removing edges from the maximal graphs. The idea for these algorithms comes from [14] (see Algorithm A1). Similar algorithms are used in [1, 2, 19, 8, 15]. Also with the help of the computer, results for Folkman numbers are obtained in [6, 17, 16, 3].

The following proposition for maximal graphs in $\mathcal{H}(m|_{p};q;n)$ will be useful

Proposition 3.1. Let G be a maximal graph in $\mathcal{H}(m|_p;q;n)$. Let v_1, v_2, \ldots, v_k be independent vertices of G and $H = G - \{v_1, v_2, \ldots, v_k\}$. Then:

(a)
$$H \in \mathcal{H}((m-1)|_n; q; n-k)$$

(b) H is a $(+K_{q-1})$ -graph

(c) $N_G(v_i)$ is a maximal K_{q-1} -free subset of V(H), i = 1, ..., k

Proof. The proposition (a) follows from Proposition 1.5, (b) and (c) follow from the maximality of G. \Box

We define an algorithm, which is based on Proposition 3.1, and generates all maximal graphs in $\widetilde{\mathcal{H}}(m|_n;q;n)$ with independence number at least k.

Algorithm 3.2. Finding all maximal graphs in $\mathcal{H}(m|_p; q; n)$ with independence number at least k by adding k independent vertices to the $(+K_{q-1})$ -graphs in $\mathcal{H}((m-1)|_p; q; n-k)$.

1. Denote by \mathcal{A} the set of all $(+K_{q-1})$ -graphs in $\widetilde{\mathcal{H}}((m-1)|_p; q; n-k)$. The obtained maximal graphs in $\widetilde{\mathcal{H}}(m|_p; q; n)$ will be output in \mathcal{B} , let $\mathcal{B} = \emptyset$.

2. For each graph $H \in \mathcal{A}$:

2.1. Find the family $\mathcal{M}(H) = \{M_1, \ldots, M_t\}$ of all maximal K_{q-1} -free subsets of V(H).

2.2. Consider all the k-tuples $(M_{i_1}, M_{i_2}, \ldots, M_{i_k})$ of elements of $\mathcal{M}(H)$, for which $1 \leq i_1 \leq \cdots \leq i_k \leq t$ (in these k-tuples some subsets M_i can coincide). For every such k-tuple construct the graph $G = G(M_{i_1}, M_{i_2}, \ldots, M_{i_k})$ by adding to V(H) new independent vertices v_1, v_2, \ldots, v_k , so that $N_G(v_j) = M_{i_j}, j = 1, \ldots, k$. If $\omega(G + e) = q, \forall e \in E(\overline{G})$, then add G to \mathcal{B} .

3. Remove the isomorph copies of graphs from \mathcal{B} .

4. Remove from \mathcal{B} all graphs which are not in $\mathcal{H}(m|_{n};q;n)$.

Theorem 3.3. Upon completion of Algorithm 3.2 the obtained set \mathcal{B} coincides with the set of all maximal graphs in $\widetilde{\mathcal{H}}(m|_n; q; n)$ with independence number at least k.

Proof. From step 4 we see that $\mathcal{B} \subseteq \mathcal{H}(m|_p; q; n)$ and from step 2.2 it becomes clear, that \mathcal{B} contains only maximal graphs in $\mathcal{H}(m|_p; q; n)$ with independence number at least k. Let G be an arbitrary maximal graph in $\mathcal{H}(m|_p; q; n)$ with independence number at least k. We will prove that $G \in \mathcal{B}$. Let v_1, \ldots, v_k be independent vertices of G and $H = G - \{v_1, \ldots, v_k\}$. According to Proposition 3.1(a) and (b), $H \in \mathcal{H}((m-1)|_p; q; n-k)$ and H is a $(+K_{q-1})$ -graph. Therefore, in step 1 we have $H \in \mathcal{A}$. According to Proposition 3.1(c), $N_G(v_i) \in \mathcal{M}(H)$ for all $i \in \{1, \ldots, k\}$, hence in step 2 G is added to \mathcal{B} . \Box

Let us note that if $G \in \mathcal{H}(m|_p;q;n)$ and $n \geq q$, then $G \neq K_n$ and therefore $\alpha(G) \geq 2$. In this case, with the help of Algorithm 3.2 we can obtain all maximal graphs in $\mathcal{H}(m|_p;q;n)$ by adding 2 non-adjacent vertices to the $(+K_{q-1})$ -graphs in $\mathcal{H}((m-1)|_p;q;n-2)$.

It is clear that if G is a graph for which $\alpha(G) = 2$ and H is a subgraph of G obtained by removing independent vertices, then $\alpha(H) \leq 2$. We modify Algorithm 3.2 in the following way in order to obtain the maximal graphs in $\widetilde{\mathcal{H}}(m|_p;q;n)$ with independence number 2:

Algorithm 3.4. A modification of Algorithm 3.2 for finding all maximal graphs in $\widetilde{\mathcal{H}}(m|_p; q; n)$ with independence number 2 by adding 2 independent vertices to the $(+K_{q-1})$ -graphs in $\widetilde{\mathcal{H}}((m-1)|_p; q; n-2)$ with independence number not greater than 2.

In step 1 of Algorithm 3.2 we add the condition that the set \mathcal{A} contains only the $(+K_{q-1})$ -graphs $\widetilde{\mathcal{H}}((m-1)|_p; q; n-2)$ with independence number not greater than 2, and at the end of step 2.2 after the condition $\omega(G+e) = q, \forall e \in E(\overline{G})$ we also add the condition $\alpha(G) = 2$.

Thus, finding all maximal graphs in $\mathcal{H}(m|_p; q; n)$ with independence number 2 is reduced to finding all $(+K_{q-1})$ -graphs with independence number not greater than 2 in $\mathcal{H}((m-1)|_p; q; n-2)$ and finding the remaining maximal graphs in $\mathcal{H}(m|_p; q; n)$ with independence number greater than or equal to 3 is reduced to finding all $(+K_{q-1})$ -graphs in $\mathcal{H}((m-1)|_p; q; n-3)$. In this way we can obtain all maximal graphs in $\mathcal{H}(m|_p; q; n)$ in steps, starting from graphs with a small number of vertices.

The *nauty* programs [11] have an important role in this work. We use them for fast generation of non-isomorphic graphs and for graph isomorph rejection. 118 4. Computation of the number $\tilde{F}_{v}(8|_{6};7)$. From Theorem 2.1 it becomes clear that in order to compute the numbers $\tilde{F}_{v}(m|_{6};m-1)$ we need the exact value of the number $m_{0}(6)$. According to Theorem 2.1 (c), to obtain an upper bound for this number we need to know $\tilde{F}_{v}(8|_{6};7)$. In this section we compute this number by proving the following

Theorem 4.1. $\widetilde{F}_{v}(8|_{6};7) = 18.$

Proof. By 1.6, $\tilde{F}_{v}(8|_{6};7) \leq 18$. This upper bound is proved in [1] with the help of the graph Γ_{1} which is given on Figure 1 (see the proof of Theorem 1.10 in version 1 or the proof of Theorem 1.9 in version 2). To obtain the lower bound we will prove with the help of a computer that $\tilde{\mathcal{H}}(8|_{6};7;17) = \emptyset$.

First, we search for maximal graphs in $\widetilde{\mathcal{H}}(8|_6;7;17)$ with independence number greater than 2. It is clear that K_6 and $K_6 - e$ are the only $(+K_6)$ -graphs in $\widetilde{\mathcal{H}}(3|_6;7;6)$. With the help of Algorithm 3.2 we add 2 non-adjacent vertices to these graphs to find all maximal graphs in $\widetilde{\mathcal{H}}(4|_6;7;8)$. By removing edges from them we find all $(+K_6)$ -graphs

Fig. 1. Graph $\Gamma_1 \in \widetilde{\mathcal{H}}(8|_6;7;18)$

in $\mathcal{H}(4|_6; 7; 8)$. In the same way, we successively obtain all maximal and all $(+K_6)$ -graphs in the sets: $\mathcal{H}(5|_6;7;10), \mathcal{H}(6|_6;7;12), \mathcal{H}(7|_6;7;14).$

In the end, with the help of Algorithm 3.2 we add 3 independent vertices to the obtained $(+K_6)$ -graphs in $\mathcal{H}(7|_6; 7; 14)$ to find all maximal graphs in $\mathcal{H}(8|_6; 7; 17)$ with independence number greater than 2.

After that, we search for maximal graphs in $\mathcal{H}(8|_6;7;17)$ with independence number 2. It is clear that K_5 is the only $(+K_6)$ -graph in $\mathcal{H}(2|_6; 7; 5)$. With the help of Algorithm 3.4 we add 2 non-adjacent vertices to this graph to find all maximal graphs in $\mathcal{H}(3|_{e};7;7)$ with independence number 2. By removing edges from them we find all $(+K_6)$ -graphs in $\mathcal{H}(3|_6;7;7)$ with independence number 2. In the same way, we successively obtain all maximal and all $(+K_6)$ -graphs with independence number 2 in the sets: $\widetilde{\mathcal{H}}(4\big|_6;7;9),\,\widetilde{\mathcal{H}}(5\big|_6;7;11),\,\widetilde{\mathcal{H}}(6\big|_6;7;13),\,\widetilde{\mathcal{H}}(7\big|_6;7;15)\text{ and }\widetilde{\mathcal{H}}(8\big|_6;7;17).$

The number of graphs found in each step is described in Table 1. In both cases we do not obtain any maximal graphs in $\mathcal{H}(8|_6;7;17)$, therefore $\mathcal{H}(8|_6;7;17) = \emptyset$.

Corollary 4.2. $8 \le m_0(6) \le 11$

Proof. The inequality $m_0(6) \ge 8$ follows from the definition of m_0 and the upper bound follows from Theorem 2.1 (c), p = 6.

5. Proof of the Main Theorem. Since $\tilde{F}_v(8|_6;7) = 18$, according to Theorem 2.1 (a) it is enough to prove $m_0(6) = 8$. According to Corollary 4.2 this equality will be proved if we prove $F_v(9|_6; 8) > 18$, $F_v(10|_6; 9) > 19$ and $F_v(11|_6; 10) > 20$. The proof of these inequalities is similar to the proof of $\widetilde{F}_v(8|_6;7) > 17$ from Theorem 4.1. From Theorem 1.4 $(m = m_0 + 1)$ it is easy to see that $\widetilde{F}_v(m - 1|_6; m - 2) + 1 \ge \widetilde{F}_v(m|_6; m - 1)$ and therefore it is enough to prove $F_v(11|_6; 10) > 20$. However, we also prove the other two inequalities with the help of a computer, because in this way we obtain more information, which is presented in Appendix A. It is clear that it is enough to prove $\mathcal{H}(m)_{e}; m-1; m+9 = \emptyset$ for m = 9, 10, 11.

First, we search for maximal graphs in $\mathcal{H}(m|_6; m-1; m+9)$ with independence number greater than 2. It is clear that K_{m-2} and $K_{m-2} - e$ are the only $(+K_{m-2})$ -graphs in $\mathcal{H}((m-5)|_6; m-1; m-2)$. With the help of Algorithm 3.2 we successively obtain all maximal and all $(+K_{m-2})$ -graphs in the sets: $\mathcal{H}((m-4)|_6; m-1; m)$, $\widetilde{\mathcal{H}}((m-3)|_6; m-1; m+2), \ \widetilde{\mathcal{H}}((m-2)|_6; m-1; m+4), \ \widetilde{\mathcal{H}}((m-1)|_6; m-1; m+6).$

In the end, with the help of Algorithm 3.2 we add 3 independent vertices to the obtained $(+K_{m-2})$ -graphs in $\mathcal{H}((m-1)|_6; m-1; m+6)$ to find all maximal graphs in $\mathcal{H}(m|_6; m-1; m+9)$ with independence number greater than 2.

After that, we search for maximal graphs in $\mathcal{H}(m|_6; m-1; m+9)$ with independence number 2. It is clear that K_{m-3} is the only $(+K_{m-2})$ -graph in $\mathcal{H}((m-6)|_6; m-1; m-3)$. With the help of Algorithm 3.4 we successively obtain all maximal and all $(+K_{m-2})$ graphs with independence number 2 in the sets: $\mathcal{H}((m-5)|_6; m-1; m-1),$ $\widetilde{\mathcal{H}}((m-4)|_6; m-1; m+1), \quad \widetilde{\mathcal{H}}((m-3)|_6; m-1; m+3), \quad \widetilde{\mathcal{H}}((m-2)|_6; m-1; m+5),$ $\widetilde{\mathcal{H}}((m-1)|_{6}; m-1; m+7), \widetilde{\mathcal{H}}(m|_{6}; m-1; m+9).$

The number of graphs found in each step is given in Table 2, Table 3 and Table 4. In both cases we do not obtain any maximal graphs in the sets $\mathcal{H}(m|_6; m-1; m+9)$, 120

m = 9, 10, 11, hence it follows $\tilde{F}_v(9|_6; 8) > 18$, $\tilde{F}_v(10|_6; 9) > 19$, $\tilde{F}_v(11|_6; 10) > 20$ and $m_0(6) = 8$. Thus we finish the proof of the Main Theorem.

Appendix A. Results of the computations

Table 1. Steps in the search of all maximal graphs in $\widetilde{\mathcal{H}}(8|_6;7;17)$

set	ind.	maximal	$(+K_6)$ -
	number	graphs	graphs
$\widetilde{\mathcal{H}}(3 _6;7;6)$	-		2
$\widetilde{\mathcal{H}}(4 _6;7;8)$	-	2	13
$\widetilde{\mathcal{H}}(5 _{6};7;10)$	-	8	324
$\widetilde{\mathcal{H}}(6 _6;7;12)$	-	56	$104\ 271$
$\widetilde{\mathcal{H}}(7 _6;7;14)$	-	18	1825
$\widetilde{\mathcal{H}}(8 _{6};7;17)$	≥ 3	0	
$\left.\widetilde{\mathcal{H}}(2\right _{6};7;5)$	≤ 2		1
$\left \widetilde{\mathcal{H}}(3) \right _{6}; 7; 7)$	= 2	1	3
$\widetilde{\mathcal{H}}(4 _{6};7;9)$	= 2	2	22
$\widetilde{\mathcal{H}}(5 _{6};7;11)$	= 2	5	468
$\left \mathcal{H}(6) \right _{6}; 7; 13)$	= 2	24	$97 \ 028$
$\widetilde{\mathcal{H}}(7 _{6}^{\circ};7;15)$	= 2	468	$2 \ 395 \ 573$
$\widetilde{\mathcal{H}}(8 _{6}^{\circ};7;17)$	= 2	0	
$\mathcal{H}(8 _{6}; 7; 17)$	-	0	

Table 2. Steps in the search of all maximal graphs in $\widetilde{\mathcal{H}}(9|_6; 8; 18)$

set	ind.	maximal	$(+K_7)$ -
	number	graphs	graphs
$\widetilde{\mathcal{H}}(4 _6; 8; 7)$	-		2
$\widetilde{\mathcal{H}}(5 _{6}; 8; 9)$	-	2	13
$\widetilde{\mathcal{H}}(6 _{6}; 8; 11)$	-	8	326
$\widetilde{\mathcal{H}}(7 _{6}; 8; 13)$	-	56	$105 \ 125$
$\widetilde{\mathcal{H}}(8 _6; 8; 15)$	-	20	1844
$\widetilde{\mathcal{H}}(9 _{6}; 8; 18)$	\geq 3	0	
$\left. \widetilde{\mathcal{H}}(3 \right _{6}; 8; 6) \right.$	≤ 2		1
$\widetilde{\mathcal{H}}(4 _{6}; 8; 8)$	= 2	1	3
$\widetilde{\mathcal{H}}(5 _6; 8; 10)$	= 2	2	22
$\widetilde{\mathcal{H}}(6 _{6}; 8; 12)$	= 2	5	489
$\widetilde{\mathcal{H}}(7 _{6}; 8; 14)$	= 2	25	$119\ 124$
$\widetilde{\mathcal{H}}(8 _{6}; 8; 16)$	= 2	506	$2\ 747\ 120$
$\widetilde{\mathcal{H}}(9 _{6}; 8; 18)$	= 2	0	
$\mathcal{H}(9 _{6}; 8; 18)$	-	0	

Table 3. Steps in the search of all maximal graphs in $\widetilde{\mathcal{H}}(10\big|_6;9;19)$

Table 4. Steps in the search of all maximal graphs in $\widetilde{\mathcal{H}}(11|_6; 10; 20)$

$(10 _6, 0, 10)$					
set	ind.	maximal	$(+K_8)$ -		
	number	graphs	graphs		
$\widetilde{\mathcal{H}}(5 _6; 9; 8)$	-		2		
$\widetilde{\mathcal{H}}_{6}(6 _{6}^{6};9;10)$	-	2	13		
$\mathcal{H}(7 _{6}; 9; 12)$	-	8	327		
$\widetilde{\mathcal{H}}(8 _{6};9;14)$	-	56	$105\ 281$		
$\widetilde{\mathcal{H}}(9 _6; 9; 16)$	-	20	1845		
$\widetilde{\mathcal{H}}(10 _6; 9; 19)$	≥ 3	0			
$\widetilde{\mathcal{H}}(4 _6; 9; 7)$	≤ 2		1		
$\widetilde{\mathcal{H}}(5 _{6}^{6};9;9)$	= 2	1	3		
$\widetilde{\mathcal{H}}(6 _{6};9;11)$	= 2	2	22		
$\widetilde{\mathcal{H}}(7 _{e}; 9; 13)$	= 2	5	496		
$\widetilde{\mathcal{H}}(8 _{6}; 9; 15)$	= 2	25	$121 \ 498$		
$\begin{array}{c} \widetilde{\mathcal{H}}(8 \big _{6}^{6}; 9; 15) \\ \widetilde{\mathcal{H}}(9 \big _{6}^{}; 9; 17) \end{array}$	= 2	509	$2\ 749\ 155$		
$\widetilde{\mathcal{H}}(10 _6; 9; 19)$	= 2	0			
$\widetilde{\mathcal{H}}(10 _6; 9; 19)$	-	0			

set	ind.	maximal	$(+K_9)$ -
	number	graphs	graphs
$\widetilde{\mathcal{H}}(6 _6; 10; 9)$	-		2
$\widetilde{\mathcal{H}}(7 _6; 10; 11)$	-	2	13
$\widetilde{\mathcal{H}}(8 _{6}^{\circ};10;13)$	-	8	327
$\mathcal{H}(9 _{6}; 10; 15)$	-	56	$105 \ 314$
$\widetilde{\mathcal{H}}(10 _6; 10; 17)$	-	20	1845
$\widetilde{\mathcal{H}}(11 _{6};10;20)$	≥ 3	0	
$\widetilde{\mathcal{H}}(5 _6; 10; 8)$	≤ 2		1
$\mathcal{H}(6 _{6}; 10; 10)$	= 2	1	3
$\widetilde{\mathcal{H}}(7 _6; 10; 12)$	= 2	2	22
$\widetilde{\mathcal{H}}(8 _6; 10; 14)$	= 2	5	498
$\mathcal{H}(9 _6; 10; 16)$	= 2	25	121 863
$\widetilde{\mathcal{H}}(10 _6; 10; 18)$	= 2	509	$2\ 749\ 171$
$\widetilde{\mathcal{H}}(11 _6; 10; 20)$	= 2	0	
$\widetilde{\mathcal{H}}(11 _6; 10; 20)$	-	0	

REFERENCES

- [1] A. BIKOV, N. NENOV. The vertex Folkman numbers $F_v(a_1, \ldots, a_s; m-1) = m+9$, if $\max\{a_1, \ldots, a_s\} = 5$. Journal of Combinatorial Mathematics and Combinatorial Computing (to appear); preprint: arXiv:1503.08444, 2015.
- [2] J. COLES, S. RADZISZOWSKI. Computing the Folkman number $F_v(2, 2, 3; 4)$. Journal of Combinatorial Mathematics and Combinatorial Computing, 58 (2006), 13–22.

- [3] F. DENG, M. LIANG, Z. SHAO, X. XU. Upper bounds for the vertex Folkman number $F_v(3,3,3;4)$ and $F_v(3,3,3;5)$. ARS Combinatoria, **112** (2013), 249–256.
- [4] A. DUDEK, V. RÖDL. New upper bound on vertex Folkman numbers. Lecture Notes in Computer Science, 4557 (2008), 473–478.
- [5] J. FOLKMAN. Graphs with monochromatic complete subgraphs in every edge coloring. SIAM Journal on Applied Mathematics, 18 (1970), 19–24.
- [6] T. JENSEN, G. ROYLE. Small graphs with chromatic number 5: a computer research. Journal of Graph Theory, **19** (1995), 107–116.
- [7] N. KOLEV, N. NENOV. New upper bound for a class of vertex Folkman numbers. The Electronic Journal of Combinatorics, 13 (2006).
- [8] J. LATHROP, S. RADZISZOWSKI. Computing the Folkman number $F_v(2, 2, 2, 2, 2, 2, 4)$. Journal of Combinatorial Mathematics and Combinatorial Computing, **78** (2011), 213–222, .
- [9] T. LUCZAK, A. RUCIŃSKI, S. URBAŃSKI. On minimal vertex Folkman graphs. Discrete Mathematics, 236 (2001), 245–262.
- [10] T. LUCZAK, S. URBAŃSKI. A note on restricted vertex Ramsey numbers. Periodica Mathematica Hungarica, 33 (1996), 101–103.
- [11] B. MCKAY. nauty user's guide (version 2.4). Technical report, Department of Computer Science, Australian National University, 1990. The latest version of the software is available at http://cs.anu.edu.au/~bdm/nauty/.
- [12] N. NENOV. On a class of vertex Folkman graphs. Ann. Univ. Sofia Fac. Math. Inform., 94 (2000), 15–25.
- [13] N. NENOV. A generalization of a result of Dirac. Ann. Univ. Sofia Fac. Math. Inform., 95 (2001), 59–69.
- [14] K. PIWAKOWSKI, S. RADZISZOWSKI, S. URBANSKI. Computation of the Folkman number $F_e(3,3;5)$. Journal of Graph Theory, **32** (1999), 41–49.
- [15] Z. SHAO, M. LIANG, L. PAN, X. XU. Computation of the Folkman number $F_v(3,5;6)$. Journal of Combinatorial Mathematics and Combinatorial Computing, **81** (2012), 11–17.
- [16] Z. SHAO, X. XU, H. LUO. Bounds for two multicolor vertex Folkman numbers. Application Research of Computers, 3 (2009), 834–835. (in Chinese).
- [17] Z. SHAO, X. XU, L. PAN. New upper bounds for vertex Folkman numbers $F_v(3, k; k+1)$. Utilitas Mathematica, 80 (2009), 91–96.
- [18] D. WEST. Introduction to Graph Theory. Prentice Hall, Inc., Upper Saddle River, 2nd edition, 2001.
- [19] X. XU, H. LUO, Z. SHAO. Upper and lower bounds for $F_v(4,4;5)$. Electronic Journal of Combinatorics, **17**, 2010.

Aleksandar Bikov e-mail: asbikov@fmi.uni-sofia.bg Nedyalko Nenov e-mail: nenov@fmi.uni-sofia.bg Faculty of Mathematics and Informatics Sofia University "St. Kliment Ohridski" 5, James Bourchier Blvd 1164 Sofia, Bulgaria

МОДИФИЦИРАНИ ВЪРХОВИ ФОЛКМАНОВИ ЧИСЛА

Александър Биков, Недялко Ненов

Нека a_1,\ldots,a_s са естествени числа. За граф G символът $G \stackrel{v}{\to} (a_1,\ldots,a_s)$ означава, че при всяко оцветяване на върховете на G в sцвята (s-оцветяване) съществува $i \in \{1,\ldots,s\}$, такова че има a_i -клика от i-я цвят. Ако m и p са естествени числа, тогава $G \stackrel{v}{\to} m \big|_p$ означава, че за произволни естествени числа

 a_1,\ldots,a_s (s не е фиксирано), такива че $\sum_{i=1}^s (a_i-1)+1=m$ и max $\{a_1,\ldots,a_s\}\leq p,$

имаме $G \xrightarrow{v} (a_1, \ldots, a_s)$. Нека

$$\widetilde{\mathcal{H}}(m\big|_p;q) = \{G: G \xrightarrow{v} m\big|_p \bowtie \omega(G) < q\}.$$

Модифицираните върхови Фолкманови числа се дефинират с равенството

$$\widetilde{F}(m|_{p};q) = \min\{|V(G)|: G \in \widetilde{\mathcal{H}}(m|_{p};q)\}.$$

Ако $q \ge m$ тези числа са известни и се пресмятат лесно. В случая q = m - 1 знаем всички такива числа когато $p \le 5$. В тази работа разглеждаме следващия неизвестен случай p = 6 като доказваме с помощта на компютър, че

$$F(m|_{6}; m-1) = m+10.$$