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Let a1, . . . , as be positive integers. For a graph G the expression G
v
→ (a1, . . . , as)

means that for every coloring of the vertices of G in s colors (s-coloring) there exists
i ∈ {1, . . . , s}, such that there is a monochromatic ai-clique of color i. If m and p are
positive integers, then G

v
→ m

∣∣
p

means that for arbitrary positive integers a1, . . . , as

(s is not fixed), such that
s∑

i=1

(ai − 1) + 1 = m and max {a1, . . . , as} ≤ p, we have

G
v
→ (a1, . . . , as). Let

H̃(m
∣∣
p
; q) = {G : G

v
→ m

∣∣
p

and ω(G) < q}.

The modified vertex Folkman numbers are defined by the equality

F̃ (m
∣∣
p
; q) = min {|V (G)| : G ∈ H̃(m

∣∣
p
; q)}.

If q ≥ m these numbers are known and they are easy to compute. In the case q = m−1
we know all of the numbers when p ≤ 5. In this work we consider the next unknown
case p = 6 and we prove with the help of a computer that

F̃ (m
∣∣
6
;m− 1) = m+ 10.

1. Introduction. In this paper only finite, non-oriented graphs without loops and
multiple edges are considered. The following notations are used:

V(G) – the vertex set of G;
E(G) – the edge set of G;
G – the complement of G;
ω(G) – the clique number of G;
α(G) – the independence number of G;
χ(G) – the chromatic number of G;
N(v), NG(v), v ∈ V(G) – the set of all vertices of G adjacent to v;
d(v), v ∈ V(G) – the degree of the vertex v, i.e. d(v) = |N(v)|;
G − v, v ∈ V(G) – subgraph of G obtained from G by deleting the vertex v and all

edges incident to v;
G− e, e ∈ E(G) – subgraph of G obtained from G by deleting the edge e;
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G+ e, e ∈ E(G) – supergraph of G obtained by adding the edge e to E(G).
Kn – complete graph on n vertices;
Cn – simple cycle on n vertices;
m0 = m0(p) – see Theorem 2.1;
G1+G2 – a graph G for which: V(G) = V(G1)∪V(G2) and E(G) = E(G1)∪E(G2)∪E

′,
where E′ = {[x, y] : x ∈ V(G1), y ∈ V(G2)}, i.e. G is obtained by connecting every vertex
of G1 to every vertex of G2.

All undefined terms can be found in [18].

Let a1, . . . , as be positive integers. The expression G
v
→ (a1, . . . , as) means that for

any coloring of V(G) in s colors (s-coloring) there exists i ∈ {1, . . . , s} such that there is

a monochromatic ai-clique of color i. In particular, G
v
→ (a1) means that ω(G) ≥ a1.

Define:
H(a1, . . . , as; q) =

{
G : G

v
→ (a1, . . . , as) and ω(G) < q

}
.

H(a1, . . . , as; q;n) = {G : G ∈ H(a1, . . . , as; q) and |V(G)| = n} .
The vertex Folkman number Fv(a1, . . . , as; q) is defined by the equality:

Fv(a1, . . . , as; q) = min {|V(G)| : G ∈ H(a1, . . . , as; q)} .

Folkman proves in [5] that:

(1.1) Fv(a1, . . . , as; q) exists ⇔ q > max {a1, . . . , as} .

Other proofs of (1.1) are given in [4] and [9].
In [10] for arbitrary positive integers a1, . . . , as the following are defined

(1.2) m(a1, . . . , as) = m =

s∑

i=1

(ai − 1) + 1 and p = max {a1, . . . , as} .

Obviously, Km
v
→ (a1, . . . , as) and Km−1

v
9 (a1, . . . , as). Therefore,

Fv(a1, . . . , as; q) = m, q ≥ m+ 1.

The following theorem for the numbers Fv(a1, . . . , as;m) is true
Theorem 1.1. Let a1, . . . , as be positive integers and let m and p be defined by (1.2).

If m ≥ p+ 1, then:
(a) Fv(a1, . . . , as;m) = m+ p, [10, 9].
(b) Km+p − C2p+1 = Km−p−1 + C2p+1

is the only graph in H(a1, . . . , as;m) with m+ p vertices, [9].
The condition m ≥ p+1 is necessary according to (1.1). Other proofs of Theorem 1.1

are given in [12] and [13].
Very little is known about the numbers Fv(a1, . . . , as; q), q ≤ m− 1. In this work we

suggest a method to bound these numbers with the help of the modified vertex Folkman
numbers F̃v(m

∣∣
p
; q), which are defined below.

Definition 1.2. Let G be a graph and let m and p be positive integers. The expression

G
v
→ m

∣∣
p

means that for any choice of positive integers a1, . . . , as (s is not fixed), such that m =
s∑

i=1

(ai − 1) + 1 and max {a1, . . . , as} ≤ p, we have

G
v
→ (a1, . . . , as).
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Define:

H̃(m
∣∣
p
; q) =

{
G : G

v
→ m

∣∣
p

and ω(G) < q
}
.

H̃(m
∣∣
p
; q;n) =

{
G : G ∈ H̃(m

∣∣
p
; q) and |V(G)| = n

}
.

The modified vertex Folkman numbers are defined by the equality:

F̃v(m
∣∣
p
; q) = min

{
|V(G)| : G ∈ H̃(m

∣∣
p
; q)

}
.

The graph G is called an extremal graph in H̃(m
∣∣
p
; q) if G ∈ H̃(m

∣∣
p
; q) and |V(G)| =

F̃v(m
∣∣
p
; q). We say that G is a maximal graph in H̃(m

∣∣
p
; q) if G ∈ H̃(m

∣∣
p
; q), but G+e 6∈

H̃(m
∣∣
p
; q), ∀e ∈ E(G), i.e. ω(G+ e) ≥ q, ∀e ∈ E(G).

For convenience we also define the following term:
Definition 1.3. The graph G is called a (+Kt)-graph if G+e contains a new t-clique

for all e ∈ E(G).

Obviously, G ∈ H̃(m
∣∣
p
; q) is a maximal graph in H̃(m

∣∣
p
; q) if and only if G is a

(+Kq)-graph.

From the definition of the modified Folkman numbers it becomes clear that if a1, . . . , as
are positive integers and let m and p be defined by (1.2), then

(1.3) Fv(a1, . . . , as; q) ≤ F̃v(m
∣∣
p
; q).

Defining and computing the modified Folkman numbers is appropriate because of the
following reasons:

1) On the left side of (1.3) there is actually a whole class of numbers, which are bound

by only one number F̃v(m
∣∣
p
; q).

2) The upper bound for F̃v(m
∣∣
p
; q) is easier to compute than the numbers Fv(a1, . . . , as)

because of the following
Theorem 1.4 ([1], Theorem 7.2). Let m, m0, p and q be positive integers, m ≥ m0

and q > min {m0, p}. Then

F̃v(m
∣∣
p
;m−m0 + q) ≤ F̃v(m0

∣∣
p
; q) +m−m0.

Therefore, if we know the value of one number F̃v(m
′
∣∣
p
; q), then we can obtain an

upper bound for F̃v(m
∣∣
p
; q) where m ≥ m′.

3) As we will see below (Theorem 2.1), the computation of the numbers F̃v(m
∣∣
p
;m− 1)

is reduced to finding the exact values of the first several of these numbers (bounds for
the number of exact values needed are given in 2.1 (c)).

Let A be an independent set of vertices in G. If V1∪· · ·∪Vs is (a1, . . . , as)-free s-coloring
of V(G−A) (i.e. Vi does not contain an ai-clique, i = 1, . . . , s), then A ∪ V1 ∪ · · · ∪ Vs is
(2, a1, . . . , as)-free (s+ 1)-coloring of V(G). Therefore,

(1.4) G
v
→ (2, a1, . . . , as) ⇒ G−A

v
→ (a1, . . . , as).

Further we will need the following
Proposition 1.5. Let G

v
→ m

∣∣
p

and A is an independent set of vertices in G. Then

G−A
v
→ (m− 1)

∣∣
p
.

115



Proof. Let a1, . . . , as be positive integers, such that

m− 1 =

s∑

i=1

(ai − 1) + 1 and 2 ≤ ai ≤ p.

Then,

m = (2 − 1) +
s∑

i=1

(ai − 1) + 1.

It follows that G
v
→ (2, a1, . . . , as) and from (1.4) we obtain G−A

v
→ (a1, . . . , as). �

It is easy to see that if q > m, then Fv(a1, . . . , as; q) = F̃v(m
∣∣
p
; q) = m. From Theorem

1.1 it follows that Fv(a1, . . . , as;m) = F̃v(m
∣∣
p
;m) = m + p. In the case q = m − 1 the

following general bounds are known:

(1.5) m+ p+ 2 ≤ F̃v(m
∣∣
p
;m− 1) ≤ m+ 3p, m ≥ p+ 2.

The upper bound follows from the proof of the Main Theorem from [7] and the lower
bound follows from (1.3) and Fv(a1, . . . , as;m− 1) ≥ m+ p+ 2, [12].

We know all the numbers F̃v(m
∣∣
p
;m− 1) where p ≤ 5 (in the cases p ≤ 4 see the

Remark after Theorem 4.5 and (1.5) from [1], and in the case p = 5 see Theorem 7.4 also
from [1]). It is also known that

(1.6) m+ 9 ≤ F̃v(m
∣∣
6
;m− 1) ≤ m+ 10, [1]

In this work we complete the computation of the numbers F̃v(m
∣∣
6
;m− 1) by proving

Main Theorem 1. F̃v(m
∣∣
6
;m− 1) = m+ 10, m ≥ 8.

2. A theorem for the numbers F̃v(m
∣∣
p
;m − 1). We will need the following fact:

(2.1) G
v
→ (a1, . . . , as) ⇒ χ(G) ≥ m, [13] (see also [1]).

It is easy to prove (see Proposition 4.4 from [1]) that

(2.2) F̃v(m
∣∣
p
;m− 1) exists ⇔ m ≥ p+ 2.

In [1] (version 1) we formulate as Theorem 10.1 without proof the following
Theorem 2.1. Let m0(p) = m0 be the smallest positive integer for which

min
m≥p+2

{
F̃v(m

∣∣
p
;m− 1)−m

}
= F̃v(m0

∣∣
p
;m0 − 1)−m0.

Then:

(a) F̃v(m
∣∣
p
;m− 1) = F̃v(m0

∣∣
p
;m0 − 1) +m−m0, m ≥ m0.

(b) if m0 > p+2 and G is an extremal graph in H̃(m0

∣∣
p
;m0 − 1), then G

v
→ (2,m0−2).

(c) m0 < F̃v((p+ 2)
∣∣
p
; p+ 1)− p.

In this section we present a proof of Theorem 2.1.

The condition m ≥ p+ 2 is necessary according to (2.2).

Proof. (a) According to the definition of m0(p) = m0 we have

F̃v(m
∣∣
p
;m− 1) ≥ F̃v(m0

∣∣
p
;m0 − 1) +m−m0, m ≥ p+ 2.

According to Theorem 1.4 if m ≥ m0 the opposite inequality is also true.

(b) Assume the opposite is true and let

V(G) = V1 ∪ V2, V1 ∩ V2 = ∅,
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where V1 is an independent set and V2 does not contain an (m0 − 2)-clique. Let G1 =

G[V2] = G−V1. According to Proposition 1.5, from G
v
→ m0

∣∣
p

it follows G1
v
→ (m0 − 1)

∣∣
p
.

Since ω(G1) < m0 − 2, G1 ∈ H̃((m0 − 1)
∣∣
p
;m0 − 2). Therefore,

|V(G)| − 1 ≥ |V(G1)| ≥ F̃v((m0 − 1)
∣∣
p
;m0 − 2).

Since |V(G)| = F̃v(m0

∣∣
p
;m0 − 1), from these inequalities it follows that

F̃v(m0

∣∣
p
;m0 − 1)−m0 ≥ F̃v((m0 − 1)

∣∣
p
;m0 − 2)− (m0 − 1),

which contradicts the definition of m0.

(c) If m0 = p+2, then from (1.5) we have F̃v((p+ 2)
∣∣
p
; p+ 1) ≥ 2p+4 = p+2+m0

and therefore in this case the inequality (c) is true.

Let m0 > p + 2 and G be an extremal graph in H̃(m0

∣∣
p
;m0 − 1). If a1, . . . , as are

positive integers, such that m =
s∑

i=1

(ai − 1) + 1 and max {a1, . . . , as} ≤ p, then G
v
→

(a1, . . . , as) and according to (2.1), χ(G) ≥ m0. From (b) and Theorem 1.1 we see that
|V(G)| ≥ 2m0− 3 and |V(G)| = 2m0− 3 only if G = C2m0−3. However, the last equality
is not possible because χ(G) ≥ m0 and χ(C2m0−3) = m0 − 1. Therefore,

|V(G)| = F̃v(m0

∣∣
p
;m0 − 1) ≥ 2m0 − 2

Since m0 > p+ 2 from the definition of m0 we have
F̃v(m0

∣∣
p
;m0 − 1)−m0 < F̃v((p+ 2)

∣∣
p
; p+ 1)− p− 2.

From these inequalities the inequality (c) follows easily. �

3. Algorithms. In this section we present algorithms for finding all maximal graphs
in H̃(m

∣∣
p
; q;n) with the help of a computer. The remaining graphs in this set can be

obtained by removing edges from the maximal graphs. The idea for these algorithms
comes from [14] (see Algorithm А1). Similar algorithms are used in [1, 2, 19, 8, 15]. Also
with the help of the computer, results for Folkman numbers are obtained in [6, 17, 16, 3].

The following proposition for maximal graphs in H̃(m
∣∣
p
; q;n) will be useful

Proposition 3.1. Let G be a maximal graph in H̃(m
∣∣
p
; q;n). Let v1, v2, . . . , vk be

independent vertices of G and H = G− {v1, v2, . . . , vk}. Then:

(a) H ∈ H̃((m− 1)
∣∣
p
; q;n− k)

(b) H is a (+Kq−1)-graph

(c) NG(vi) is a maximal Kq−1-free subset of V(H), i = 1, . . . , k

Proof. The proposition (a) follows from Proposition 1.5, (b) and (c) follow from the
maximality of G. �

We define an algorithm, which is based on Proposition 3.1, and generates all maximal
graphs in H̃(m

∣∣
p
; q;n) with independence number at least k.

Algorithm 3.2. Finding all maximal graphs in H̃(m
∣∣
p
; q;n) with independence number

at least k by adding k independent vertices to the (+Kq−1)-graphs in H̃((m− 1)
∣∣
p
; q;n− k).

1. Denote by A the set of all (+Kq−1)-graphs in H̃((m− 1)
∣∣
p
; q;n− k). The obtained

maximal graphs in H̃(m
∣∣
p
; q;n) will be output in B, let B = ∅.

2. For each graph H ∈ A:
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2.1. Find the family M(H) = {M1, . . . ,Mt} of all maximal Kq−1-free subsets of
V(H).

2.2. Consider all the k-tuples (Mi1 ,Mi2 , . . . ,Mik) of elements of M(H), for which
1 ≤ i1 ≤ · · · ≤ ik ≤ t (in these k-tuples some subsets Mi can coincide). For every such k-
tuple construct the graph G = G(Mi1 ,Mi2 , . . . ,Mik) by adding to V(H) new independent
vertices v1, v2, . . . , vk, so that NG(vj) = Mij , j = 1, . . . , k. If ω(G + e) = q, ∀e ∈ E(G),
then add G to B.

3. Remove the isomorph copies of graphs from B.

4. Remove from B all graphs which are not in H̃(m
∣∣
p
; q;n).

Theorem 3.3. Upon completion of Algorithm 3.2 the obtained set B coincides with
the set of all maximal graphs in H̃(m

∣∣
p
; q;n) with independence number at least k.

Proof. From step 4 we see that B ⊆ H̃(m
∣∣
p
; q;n) and from step 2.2 it becomes clear,

that B contains only maximal graphs in H̃(m
∣∣
p
; q;n) with independence number at least

k. Let G be an arbitrary maximal graph in H̃(m
∣∣
p
; q;n) with independence number at

least k. We will prove that G ∈ B. Let v1, . . . , vk be independent vertices of G and H =
G − {v1, . . . , vk}. According to Proposition 3.1(a) and (b), H ∈ H̃((m− 1)

∣∣
p
; q;n− k)

and H is a (+Kq−1)-graph. Therefore, in step 1 we have H ∈ A. According to Proposition
3.1(c), NG(vi) ∈ M(H) for all i ∈ {1, . . . , k}, hence in step 2 G is added to B. �

Let us note that if G ∈ H̃(m
∣∣
p
; q;n) and n ≥ q, then G 6= Kn and therefore

α(G) ≥ 2. In this case, with the help of Algorithm 3.2 we can obtain all maximal

graphs in H̃(m
∣∣
p
; q;n) by adding 2 non-adjacent vertices to the (+Kq−1)-graphs in

H̃((m− 1)
∣∣
p
; q;n− 2).

It is clear that if G is a graph for which α(G) = 2 and H is a subgraph of G obtained
by removing independent vertices, then α(H) ≤ 2. We modify Algorithm 3.2 in the

following way in order to obtain the maximal graphs in H̃(m
∣∣
p
; q;n) with independence

number 2:
Algorithm 3.4. A modification of Algorithm 3.2 for finding all maximal graphs

in H̃(m
∣∣
p
; q;n) with independence number 2 by adding 2 independent vertices to the

(+Kq−1)-graphs in H̃((m− 1)
∣∣
p
; q;n− 2) with independence number not greater than 2.

In step 1 of Algorithm 3.2 we add the condition that the set A contains only the
(+Kq−1)-graphs H̃((m− 1)

∣∣
p
; q;n− 2) with independence number not greater than 2,

and at the end of step 2.2 after the condition ω(G + e) = q, ∀e ∈ E(G) we also add the
condition α(G) = 2.

Thus, finding all maximal graphs in H̃(m
∣∣
p
; q;n) with independence number 2 is

reduced to finding all (+Kq−1)-graphs with independence number not greater than 2

in H̃((m− 1)
∣∣
p
; q;n− 2) and finding the remaining maximal graphs in H̃(m

∣∣
p
; q;n) with

independence number greater than or equal to 3 is reduced to finding all (+Kq−1)-graphs

in H̃((m− 1)
∣∣
p
; q;n− 3). In this way we can obtain all maximal graphs in H̃(m

∣∣
p
; q;n)

in steps, starting from graphs with a small number of vertices.

The nauty programs [11] have an important role in this work. We use them for fast
generation of non-isomorphic graphs and for graph isomorph rejection.
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4. Computation of the number F̃v(8
∣∣
6
; 7). From Theorem 2.1 it becomes clear

that in order to compute the numbers F̃v(m
∣∣
6
;m− 1) we need the exact value of the

number m0(6). According to Theorem 2.1 (c), to obtain an upper bound for this number

we need to know F̃v(8
∣∣
6
; 7). In this section we compute this number by proving the

following
Theorem 4.1. F̃v(8

∣∣
6
; 7) = 18.

Proof. By 1.6, F̃v(8
∣∣
6
; 7) ≤ 18. This upper bound is proved in [1] with the help of

the graph Γ1 which is given on Figure 1 (see the proof of Theorem 1.10 in version 1 or
the proof of Theorem 1.9 in version 2). To obtain the lower bound we will prove with the

help of a computer that H̃(8
∣∣
6
; 7; 17) = ∅.

First, we search for maximal graphs in H̃(8
∣∣
6
; 7; 17) with independence number greater

than 2. It is clear that K6 and K6 − e are the only (+K6)-graphs in H̃(3
∣∣
6
; 7; 6). With

the help of Algorithm 3.2 we add 2 non-adjacent vertices to these graphs to find all
maximal graphs in H̃(4

∣∣
6
; 7; 8). By removing edges from them we find all (+K6)-graphs

Γ1

Fig. 1. Graph Γ1 ∈ H̃(8
∣∣
6
; 7; 18)
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in H̃(4
∣∣
6
; 7; 8). In the same way, we successively obtain all maximal and all (+K6)-graphs

in the sets: H̃(5
∣∣
6
; 7; 10), H̃(6

∣∣
6
; 7; 12), H̃(7

∣∣
6
; 7; 14).

In the end, with the help of Algorithm 3.2 we add 3 independent vertices to the
obtained (+K6)-graphs in H̃(7

∣∣
6
; 7; 14) to find all maximal graphs in H̃(8

∣∣
6
; 7; 17) with

independence number greater than 2.

After that, we search for maximal graphs in H̃(8
∣∣
6
; 7; 17) with independence number

2. It is clear that K5 is the only (+K6)-graph in H̃(2
∣∣
6
; 7; 5). With the help of Algorithm

3.4 we add 2 non-adjacent vertices to this graph to find all maximal graphs in H̃(3
∣∣
6
; 7; 7)

with independence number 2. By removing edges from them we find all (+K6)-graphs

in H̃(3
∣∣
6
; 7; 7) with independence number 2. In the same way, we successively obtain all

maximal and all (+K6)-graphs with independence number 2 in the sets:

H̃(4
∣∣
6
; 7; 9), H̃(5

∣∣
6
; 7; 11), H̃(6

∣∣
6
; 7; 13), H̃(7

∣∣
6
; 7; 15) and H̃(8

∣∣
6
; 7; 17).

The number of graphs found in each step is described in Table 1. In both cases we do
not obtain any maximal graphs in H̃(8

∣∣
6
; 7; 17), therefore H̃(8

∣∣
6
; 7; 17) = ∅. �

Corollary 4.2. 8 ≤ m0(6) ≤ 11

Proof. The inequality m0(6) ≥ 8 follows from the definition of m0 and the upper
bound follows from Theorem 2.1 (c), p = 6. �

5. Proof of the Main Theorem. Since F̃v(8
∣∣
6
; 7) = 18, according to Theorem 2.1

(a) it is enough to provem0(6) = 8. According to Corollary 4.2 this equality will be proved

if we prove F̃v(9
∣∣
6
; 8) > 18, F̃v(10

∣∣
6
; 9) > 19 and F̃v(11

∣∣
6
; 10) > 20. The proof of these

inequalities is similar to the proof of F̃v(8
∣∣
6
; 7) > 17 from Theorem 4.1. From Theorem 1.4

(m = m0+1) it is easy to see that F̃v(m− 1
∣∣
6
;m− 2)+1 ≥ F̃v(m

∣∣
6
;m− 1) and therefore

it is enough to prove F̃v(11
∣∣
6
; 10) > 20. However, we also prove the other two inequalities

with the help of a computer, because in this way we obtain more information, which is
presented in Appendix A. It is clear that it is enough to prove H̃(m

∣∣
6
;m− 1;m+ 9) = ∅

for m = 9, 10, 11.

First, we search for maximal graphs in H̃(m
∣∣
6
;m− 1;m+ 9) with independence num-

ber greater than 2. It is clear that Km−2 and Km−2 − e are the only (+Km−2)-graphs

in H̃((m− 5)
∣∣
6
;m− 1;m− 2). With the help of Algorithm 3.2 we successively obtain all

maximal and all (+Km−2)-graphs in the sets: H̃((m− 4)
∣∣
6
;m− 1;m),

H̃((m− 3)
∣∣
6
;m− 1;m+ 2), H̃((m− 2)

∣∣
6
;m− 1;m+ 4), H̃((m− 1)

∣∣
6
;m− 1;m+ 6).

In the end, with the help of Algorithm 3.2 we add 3 independent vertices to the
obtained (+Km−2)-graphs in H̃((m− 1)

∣∣
6
;m− 1;m+ 6) to find all maximal graphs in

H̃(m
∣∣
6
;m− 1;m+ 9) with independence number greater than 2.

After that, we search for maximal graphs in H̃(m
∣∣
6
;m− 1;m+ 9) with independence

number 2. It is clear that Km−3 is the only (+Km−2)-graph in H̃((m− 6)
∣∣
6
;m− 1;m− 3).

With the help of Algorithm 3.4 we successively obtain all maximal and all (+Km−2)-

graphs with independence number 2 in the sets: H̃((m− 5)
∣∣
6
;m− 1;m− 1),

H̃((m− 4)
∣∣
6
;m− 1;m+ 1), H̃((m− 3)

∣∣
6
;m− 1;m+ 3), H̃((m− 2)

∣∣
6
;m− 1;m+ 5),

H̃((m− 1)
∣∣
6
;m− 1;m+ 7), H̃(m

∣∣
6
;m− 1;m+ 9).

The number of graphs found in each step is given in Table 2, Table 3 and Table 4.
In both cases we do not obtain any maximal graphs in the sets H̃(m

∣∣
6
;m− 1;m+ 9),

120



m = 9, 10, 11, hence it follows F̃v(9
∣∣
6
; 8) > 18, F̃v(10

∣∣
6
; 9) > 19, F̃v(11

∣∣
6
; 10) > 20 and

m0(6) = 8. Thus we finish the proof of the Main Theorem.

Appendix A. Results of the computations

Table 1. Steps in the search of all maximal graphs in

H̃(8
∣∣
6
; 7; 17)

set ind.
number

maximal
graphs

(+K6)-
graphs

H̃(3
∣∣
6
; 7; 6) - 2

H̃(4
∣∣
6
; 7; 8) - 2 13

H̃(5
∣∣
6
; 7; 10) - 8 324

H̃(6
∣∣
6
; 7; 12) - 56 104 271

H̃(7
∣∣
6
; 7; 14) - 18 1825

H̃(8
∣∣
6
; 7; 17) ≥ 3 0

H̃(2
∣∣
6
; 7; 5) ≤ 2 1

H̃(3
∣∣
6
; 7; 7) = 2 1 3

H̃(4
∣∣
6
; 7; 9) = 2 2 22

H̃(5
∣∣
6
; 7; 11) = 2 5 468

H̃(6
∣∣
6
; 7; 13) = 2 24 97 028

H̃(7
∣∣
6
; 7; 15) = 2 468 2 395 573

H̃(8
∣∣
6
; 7; 17) = 2 0

H̃(8
∣∣
6
; 7; 17) - 0

Table 2. Steps in the search of all maximal graphs in

H̃(9
∣∣
6
; 8; 18)

set ind.
number

maximal
graphs

(+K7)-
graphs

H̃(4
∣∣
6
; 8; 7) - 2

H̃(5
∣∣
6
; 8; 9) - 2 13

H̃(6
∣∣
6
; 8; 11) - 8 326

H̃(7
∣∣
6
; 8; 13) - 56 105 125

H̃(8
∣∣
6
; 8; 15) - 20 1844

H̃(9
∣∣
6
; 8; 18) ≥ 3 0

H̃(3
∣∣
6
; 8; 6) ≤ 2 1

H̃(4
∣∣
6
; 8; 8) = 2 1 3

H̃(5
∣∣
6
; 8; 10) = 2 2 22

H̃(6
∣∣
6
; 8; 12) = 2 5 489

H̃(7
∣∣
6
; 8; 14) = 2 25 119 124

H̃(8
∣∣
6
; 8; 16) = 2 506 2 747 120

H̃(9
∣∣
6
; 8; 18) = 2 0

H̃(9
∣∣
6
; 8; 18) - 0

Table 3. Steps in the search of all maximal graphs in

H̃(10
∣∣
6
; 9; 19)

set ind.
number

maximal
graphs

(+K8)-
graphs

H̃(5
∣∣
6
; 9; 8) - 2

H̃(6
∣∣
6
; 9; 10) - 2 13

H̃(7
∣∣
6
; 9; 12) - 8 327

H̃(8
∣∣
6
; 9; 14) - 56 105 281

H̃(9
∣∣
6
; 9; 16) - 20 1845

H̃(10
∣∣
6
; 9; 19) ≥ 3 0

H̃(4
∣∣
6
; 9; 7) ≤ 2 1

H̃(5
∣∣
6
; 9; 9) = 2 1 3

H̃(6
∣∣
6
; 9; 11) = 2 2 22

H̃(7
∣∣
6
; 9; 13) = 2 5 496

H̃(8
∣∣
6
; 9; 15) = 2 25 121 498

H̃(9
∣∣
6
; 9; 17) = 2 509 2 749 155

H̃(10
∣∣
6
; 9; 19) = 2 0

H̃(10
∣∣
6
; 9; 19) - 0

Table 4. Steps in the search of all maximal graphs in

H̃(11
∣∣
6
; 10; 20)

set ind.
number

maximal
graphs

(+K9)-
graphs

H̃(6
∣∣
6
; 10; 9) - 2

H̃(7
∣∣
6
; 10; 11) - 2 13

H̃(8
∣∣
6
; 10; 13) - 8 327

H̃(9
∣∣
6
; 10; 15) - 56 105 314

H̃(10
∣∣
6
; 10; 17) - 20 1845

H̃(11
∣∣
6
; 10; 20) ≥ 3 0

H̃(5
∣∣
6
; 10; 8) ≤ 2 1

H̃(6
∣∣
6
; 10; 10) = 2 1 3

H̃(7
∣∣
6
; 10; 12) = 2 2 22

H̃(8
∣∣
6
; 10; 14) = 2 5 498

H̃(9
∣∣
6
; 10; 16) = 2 25 121 863

H̃(10
∣∣
6
; 10; 18) = 2 509 2 749 171

H̃(11
∣∣
6
; 10; 20) = 2 0

H̃(11
∣∣
6
; 10; 20) - 0
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МОДИФИЦИРАНИ ВЪРХОВИ ФОЛКМАНОВИ ЧИСЛА

Александър Биков, Недялко Ненов

Нека a1, . . . , as са естествени числа. За граф G символът G
v
→ (a1, . . . , as) оз-

начава, че при всяко оцветяване на върховете на G в s цвята (s-оцветяване)
съществува i ∈ {1, . . . , s}, такова че има ai-клика от i-я цвят. Ако m и p са ес-
тествени числа, тогава G

v
→ m

∣∣
p

означава, че за произволни естествени числа

a1, . . . , as (s не е фиксирано), такива че
s∑

i=1

(ai−1)+1 = m и max {a1, . . . , as} ≤ p,

имаме G
v
→ (a1, . . . , as). Нека

H̃(m
∣∣
p
; q) = {G : G

v
→ m

∣∣
p

и ω(G) < q}.

Модифицираните върхови Фолкманови числа се дефинират с равенството

F̃ (m
∣∣
p
; q) = min {|V (G)| : G ∈ H̃(m

∣∣
p
; q)}.

Ако q ≥ m тези числа са известни и се пресмятат лесно. В случая q = m − 1
знаем всички такива числа когато p ≤ 5. В тази работа разглеждаме следващия
неизвестен случай p = 6 като доказваме с помощта на компютър, че

F̃ (m
∣∣
6
;m− 1) = m+ 10.
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