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DIFFERENCE EQUATION RELATED TO
FISHER–KOLMOGOROV’S EQUATION*

Diko M. Souroujon

We study the existence of heteroclinic solutions of semilinear second-order difference
equations related to the Fisher-Kolmogorov’s equation ∆2

y (t− 1) + k∆y (t− 1) +
f (y (t)) = 0 for k ∈ (1, 2). Analogous equation is considered in [5] and this paper
continues the considerations there. The proves of the present results are based on
monotonicity and continuity arguments.

1. Introduction. In the present paper we study the existence of heteroclinic solu-
tions of the second-order difference equation

(1) ∆2y (t− 1) + k∆y (t− 1) + f (y (t)) = 0, t ∈ Z for k ∈ (1, 2)

under suitable assumptions, given in Section 1. This paper extends the consideration
for the case k ∈ (0, 1).The proof of the presented results are based on monotonicity and
continuity arguments. Equation (1) is related to Fisher-Kolmogorov’s equation ut =
uxx + g (u), which was introduced in the papers of Fisher [7] and Kolmogorov [8] and it
is originally motivated by models in population dynamic. Looking for traveling waves
u (x, t) = U (x− Ct), with speed C, one obtain the second-order ODE

(2) U ′′ + CU ′ + g(U) = 0.

We note that a similar equation

(3) ∆2y (t− 1) + c∆y (t) + f (y (t)) = 0, t ∈ Z

is considered in [5]. It is easy to see, that (3) is equivalent to Equation (1) with k =
c

c+ 1
.

In [5] is considered the case, when c > 0, i.e. k ∈ (0, 1). In the present paper is
considered the case k ∈ (1, 2) under some additional conditions for the function f (.),
given in Section 1. Here we derive our main results using simple monotonicity and
continuity arguments. As it is described in [1], Equations (1) and (3) appear after a
discretization and rescaling of Eq. (2). Fast and heteroclinic solutions of Eq. (2) are
studied in the paper of Arias [2]. Several methods of considerations of various classes of
difference equations can be found for example in [3, 4, 6, 9] etc.
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2. Basic assumptions and the behavior of solutions for t ≥ 0. We consider
the equation (1), where ∆y (t) = y (t+ 1)− y (t) , ∆2y (t) = y (t+ 2)− 2y (t+ 1)+ y (t) ,
Z is the set of integers and the constant number k ∈ (1, 2). For the function f (.) we
suppose that the following conditions are fulfilled:

C1. For any two numbers x ∈ [0, 1] and y ∈ [0, 1] and x 6= y,

(4) |f (x)− f (y)| < (2− k) |x− y| ;

C2. f : [0, 1] → R+, where f (0) = f (1) = 0 and f (y) > 0 for y ∈ (0, 1) ;

C3. f (x) < (k − 1) (1− x) and f is strictly monotonous decreasing function in a
small left neighbourhood of 1.

Obviously, we can define the function f (y) for y ∈ R, as f (y) = 0 for y /∈ [0, 1]. So
the function f (.) such defined, satisfies Lipshich condition for any two numbers x ∈ R

and y ∈ R. In particular thus defined function f (y) is continuous ∀y ∈ R.
Lemma 1. Let l be an arbitrary positive integer and z is an arbitrary real number,

such that z ∈ (0, 1). Then, there exists a real number z0 ∈ [z, 1) such that there exists

a solution y (t) of (1), satisfying the conditions: y (t0) = z0, y (t0 + l) = z, (t0 is an

arbitrary integer), {y (t)} is a monotonous decreasing function for t ≥ t0, i.e. y (t+ 1) <
y (t) for t ≥ t0, t ∈ Z, y (t) > 0 for t ≥ t0, t ∈ Z and lim y (t) = 0 for t → +∞.

We give only a sketch of the proof. We choose the solution {y (t)} of (1) such that

(5) y (t0) = 1− ε1, y (t0 + 1) = 1− ε1 − ε2,

where ε1 > 0 and ε2 > 0 are sufficiently small numbers. We define the function ε1 (ε2) so
that the number ε1 (ε2) is the smallest positive root of f (1− ε1 (ε2)− ε2) = (k − 1) ε2.
We can prove that the function ε1 (ε2) is continuous function for ε2 ∈

(

0, ε02
]

. We can
construct the solution {y (t)} of (1) such that it satisfies (5) with ε1 = ε1 (ε2) for suitable
ε2, {y (t)} is strictly monotonous decreasing function for t ≥ t0, t ∈ Z , lim y (t) = 0 for
t → +∞ and {y (t)} satisfies the other conditions of Lemma 1.

3. Heteroclinic solutions of (1). If y (t) is a solution of (1), then

(6) y (t)− y (t− 1) = −
1

k − 1
(y (t+ 1)− y (t))−

1

k − 1
f (y (t))

and y (t− 1) =
k − 2

k − 1
y (t) +

1

k − 1
y (t+ 1)+

1

k − 1
f (y (t)), k ∈ (1, 2). If z (t) is another

solution of (1), then we obtain:

y (t− 1)− z (t− 1) = −
1

k − 1
[(2− k) (y (t)− z (t))− (f (y (t))− f (z (t)))]

+
1

k − 1
(y (t+ 1)− z (t+ 1)) .(7)

From C1 the sign of (2− k) (y (t)− z (t)) − (f (y (t))− f (z (t))) coincides with the sign
of y (t) − z (t) for k ∈ (1, 2) and we conclude that: If y (t+ 1) − z (t+ 1) ≥ 0 (≤ 0)
and y (t) − z (t) ≤ 0 (≥ 0), where at least one of these inequalities is strong, then
y (t− 1)−z (t− 1) > 0 (< 0). In particular, if {y (t)} is a solution of (1), then {y (t+ 1)}
is also a solution of (1) and for z (t) = y (t+ 1), we can do the previous conclusion. If we
have one of these situations, it follows that the sign of y (t) − z (t) (or y (t) − y (t+ 1))
changes (oscillate) when t → −∞, i.e. for t = t0, t0 − 1, t0 − 2, . . . . And in each of these
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cases from (7) it follows that

(8) |y (t− 1)− z (t− 1)| ≥
1

k − 1
|y (t+ 1)− z (t+ 1)|

or

(9) |y (t− 1)− y (t)| ≥
1

k − 1
|y (t+ 1)− y (t+ 2)| .

From (9) it follows that if {y (t)} is heteroclinic solution, then for any t ∈ Z, t <
−N , N sufficiently large, it is not possible that y (t+ 1) − y (t+ 2) ≥ 0 and y (t) −
y (t+ 1) ≤ 0, where at least one of these inequalities is strong and the converse case
(y (t+ 1)− y (t+ 2) ≤ 0 and y (t)− y (t+ 1) ≥ 0, where at least one of these inequalities

is strong) is not possible, because from (9) since
1

k − 1
> 1 for k ∈ (1, 2), it follows

that lim |y (t+ 1)− y (t)| = ∞ for t → −∞ and since the signs of y (t− 1)− y (t) change
alternatively when t → −∞, then lim

t→−∞

y (t) does not exists. Thus if {y (t)} is heteroclinic

solution of (1), then {y (t)} has to be monotonous. But if y (t+ 1) > y (t) for some t ∈ Z,
then from (6) y (t− 1)−y (t) > 0, i.e. y (t− 1) > y (t) < y (t+ 1) and hence the sequence
{y (t)} cannot be monotonous when ∀t ∈ Z. By analogy, if y (t+ 1) = y (t) ∈ (0, 1) for
some t ∈ Z, then from (6) y (t− 1)− y (t) > 0 and we obtain

y (t− 2)− y (t− 1) = −
1

k − 1
[(2− k) (y (t− 1)− y (t))− (f (y (t− 1))− f (y (t)))]

+
1

k − 1
(y (t)− y (t+ 1)) .

Since
1

k − 1
(y (t)− y (t+ 1)) = 0, then from C1,

y (t− 2)− y (t− 1) = −
1

k − 1
[(2− k) (y (t− 1)− y (t))− (f (y (t− 1))− f (y (t)))] < 0,

i.e. y (t− 2) < y (t− 1) > y (t) and hence again {y (t)} cannot be monotonous when
t ∈ Z. Thus if {y (t)} is heteroclinic solution of (1) then

(10) y (t) > y (t+ 1) , t ∈ Z

and lim
t→∞

y (t) = 0. We prove now that

(11) y (t) ∈ (0, 1) , t ∈ Z.

Suppose the contrary, i.e. that y (t0) ∈ (0, 1), but y (t0 − 1) ≥ 1. Then, putting
z (t) ≡ 1, t ∈ Z we obtain that y (t0 − 2) < 1, y (t0 − 3) > 1, . . . , i.e. y (t0) <
y (t0 − 1) > y (t0 − 2), which contradicts with (10). Thus we prove that (11) holds. If we
take limit in (6) for t → −∞, then we obtain that f (l−) = 0, where l− = lim

t→−∞

y (t) and

from (11) l− ∈ (0, 1]. Since f (u) > 0 for u ∈ (0, 1), we conclude that the only possibility
is l− = 1. Thus any heteroclinic solution of (1) satisfies conditions (10) and (11) and
lim
t→∞

y (t) = 0, lim
t→−∞

y (t) = 1.

Lemma 2. For any y1 ∈ (0, 1), there exists at most one heteroclinic solution {y (t)}
of (1) with the property y (1) = y1.

Proof. Let {y (t)} and {z (t)} are two heteroclinic solutions of (1) for which y (1) =
z (1) = y1. If y (0) = z (0), then obviously y (t) ≡ z (t) ∀t ∈ Z. Let us suppose for example
that y (0) > z (0). Since y (1) = z (1), then from (7) y (−1) < z (−1), y (−2) > z (−2), . . .

142



and |y (t− 2)− z (t− 2)| ≥
1

k − 1
|y (t)− z (t)| ∀t ∈ Z. Since

1

k − 1
> 1 for k ∈ (1, 2),

then it follows that lim
t→−∞

|y (t)− z (t)| = ∞ and then both y (t) and z (t) cannot be

heteroclinic solutions of (1). Lemma 2 is proved. �

Our aim now is to prove the existence of heteroclinic solution {y (t)} of (1) for which
y (1) = y1. Our main result is

Theorem 3. For any real number y1 ∈ (0, 1), there exists an unique heteroclinic

solution of (1) {y (t)}, satisfying the conditions: y (1) = y1, y (t) > y (t+ 1), ∀t ∈ Z,

y (t) ∈ (0, 1), t ∈ Z and lim
t→+∞

y (t) = 0 and lim
t→−∞

y (t) = 1.

Proof. Let {y (t)} be a solution of (1) for which y (1) = y1 ∈ (0, 1). Let y (0) =
y0. If we denote y (2) = y2, then from (6) y2 − y1 = − (k − 1) (y1 − y0) − f (y1) =
(k − 1) (y0 − y1)− f (y1) < 0 iff

(12) y1 < y0 < y1 +
f (y1)

k − 1
,

i.e. (12) holds if and only if y2 < y1 < y0. From (7) it is easy to obtain that

If y (t− 1)− z (t− 1) ≥ 0 (> 0) and y (t)− z (t) ≥ 0 (> 0), then

(13) y (t+ 1)− z (t+ 1) ≥ 0 (> 0).

So (12) is necessary and sufficient condition for y (t) > y (t+ 1) , t = 0, 1, . . . . Thus
we obtained that {y (t)} is monotonously decreasing solution of (1) for t ≥ 0 if and only
if (12) holds. Further for any fixed real number y0 satisfying (12), we can obtain the
solution {y (t)} of (1) for t ∈ Z. Our aim is to prove that there exists y0 satisfying (12)
such that the obtained solution y (t) = y (t, y1, y0) of (1) satisfies the conditions (10) and
(11). Let now for ∀n ∈ N with {yn (t)} denote the solution of (1), satisfying Lemma 1,
i.e. yn (1) = y1 and yn (t) > yn (t+ 1) ∀t ≥ −n, t ∈ Z, i.e. yn (t) ≡ y (t, y1, yn (0)) and
obviously yn (0) satisfies (12). Then the obtained sequence {yn (0)}

∞

n=1 is bounded and
one can choose a convergent subsequence {ynk

(0)}∞
k=1

for which nk → ∞ when k → ∞

and lim
k→∞

ynk
(0) = y0 ∈

[

y1, y1 +
f (y1)

k − 1

]

, see (12). That means the solutions of (1)

{y (t, y1, ynk
(0))}∞

k=1
have the properties y (1, y1, ynk

(0)) = y1, y (0, y1, ynk
(0)) = ynk

(0)
and

(14) y (t, y1, ynk
(0)) > y (t+ 1, y1, ynk

(0)) ∀t ≥ −nk, t ∈ Z.

We prove that y (t) = y (t, y1, y0) is the sought heteroclinic solution. We assume at first
that there exists s0 ∈ N such that y (−s0) > y (−s0 + 1), but y (−s0) > y (−s0 − 1),
i.e. y (−s0, y1, y0) > y (−s0 + 1, y1, y0) and y (−s0, y1, y0) > y (−s0 − 1, y1, y0). Since
s0 ∈ N is a fixed number, then y (−s0, y1, y0), y (−s0 + 1, y1, y0), y (−s0 − 1, y1, y0) are
continuous functions with respect to y0. Hence for sufficiently large numbers nk ∈ N,

y (−s0, y1, ynk
(0)) > y (−s0 + 1, y1, ynk

(0))

y (−s0, y1, ynk
(0)) > y (−s0 − 1, y1, ynk

(0)) .(15)

But (15) contradicts (14) for sufficiently large numbers k, such that nk >> s0. Hence

the above assumption is not true. This fact, the fact that y0 ∈

[

y1, y1 +
f (y1)

k − 1

]

and

(13) show that the solution of (1) y (t) = y (t, y1, y0) thus defined is a monotonously
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nonincreasing sequence, i.e.

(16) y (t) ≥ y (t+ 1) , t ∈ Z.

We assume now that for some t0 ∈ Z, y (t0) = y (t0 + 1). Then from (6) we obtain

y (t0 − 1) − y (t0) =
1

k − 1
f (y (t0)) > 0 and from (7) and C1, y (t0 − 2) − y (t0 − 1) =

−
1

k − 1
[(2− k) (y (t0 − 1)− y (t0))− (f (y (t0 − 1))− f (y (t0)))] < 0, (because the last

expression can be equal to 0 iff y (t0 − 2) = y (t0 − 1) = y (t0) = y (t0 + 1), i.e. y (t) ≡ 0
or y (t) ≡ 1, t ∈ Z, which is impossible). Thus we obtain that y (t0 − 2) < y (t0 − 1) >
y (t0), which contradicts (16). Thus (16) be in force, must all inequalities in (16) to be
strong, i.e. for the our solution y (t) = y (t, y1, y0), (10) holds, i.e. y (t) > y (t+ 1),
∀t ∈ Z. Also if y1 ∈ (0, 1), then y0 > y1 > 0 and it follows that y (t) > 0, t ∈ Z. But
we proved that if {y (t)} satisfies (10), then (11) also holds. Thus we proved that the
solution y (t) = y (t, y1, y0) of (1) satisfies (10) and (11) and as we shown above,

(17) lim
t→+∞

y (t) = 0 and lim
t→−∞

y (t) = 1

i.e. y (t) is the sought heteroclinic solution. �

Corollary 4. For any real number y0 ∈ (0, 1) and arbitrary t0 ∈ Z, there exists an

unique heteroclinic solution of (1) {y (t)} satisfying the conditions: y (t0) = y0, y (t) >
y (t+ 1), t ∈ Z, y (t) ∈ (0, 1), ∀t ∈ Z and lim

t→+∞

y (t) = 0 and lim
t→−∞

y (t) = 1.
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ХЕТЕРОКЛИНИЧНИ РЕШЕНИЯ НА ЕДНО ДИФЕРЕНЧНО

УРАВНЕНИЕ ОТ ВТОРИ РЕД СВЪРЗАНО С УРАВНЕНИЕТО

НА ФИШЕР–КОЛМОГОРОВ

Дико Моис Суружон

В предлаганата статия се третира проблема за съществуване на хетероклинич-
ни решения за диференчно уравнение от втори ред, свързано с уравнението на
Фишер–Колмогоров ∆2

y(t−1)+k∆y(t−1)+f(y(t)) = 0 за k ∈ (1, 2). Аналогично
уравнение се разглежда в [5] и тази статия е продължение на разглежданията в
[5] като доказателствата на представените резултати са базирани на съображения
за монотонност и непрекъснатост.
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