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OF DIMENSION 11"
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In the present paper we prove that the group PSLi1(q) is (2,3)-generated for any
q. Actually, we give explicit generators x and y of respective orders 2 and 3, for the
linear group SL11(q).

1. Introduction. (2, 3)-generated groups are those groups which can be generated
by an involution and an element of order 3 or, equivalently, they appear to be homo-
morphic images of the famous modular group PSLo(Z). It is known that many series
of finite simple groups are (2, 3)-generated. Most powerful result of Liebeck-Shalev and
Liibeck-Malle (see [14]) states that, except for the infinite families PSps(2™), PSp4(3™)
and the Suzuki groups Sz(22™1), all finite simple groups are (2, 3)-generated, up to a
finite number of exceptions. We have especially focused our attention to the projective
special linear groups defined over finite fields. Many authors have been investigated the
groups PSL,(q) with respect to that generation property. (2,3)-generation has been
proved in the cases n =2, ¢ #9 (9], n = 3, ¢ # 4 [5],[2], n = 4, ¢ # 2 [16], [15], [10],
[12], n = 5, any ¢ [19], [11], n = 6, any ¢ [18], n = 7, any ¢ [17], n = 8, any ¢ [6],
n >5,0dd ¢ #9 [3], [4], and n > 13, any ¢ [13]. In this way the only cases that still
remain open are those for 9 < n < 12, even g or ¢ = 9 (it is a well-known fact that
the groups PSL3(9) = Ag, PSL3(4) and PSL4(2) = Ag are not (2,3)-generated). In
the forthcoming papers ([7], [8]) we prove that the groups PSLg(q) and PSLio(q) are
(2, 3)-generated for all g. In the present work we continue our investigation by proving
the following:

Theorem. The groups SL11(q) and PSL11(q) are (2,3)-generated for all q.

2. Proof of the Theorem. Let G = SL1;(q) and G = G/Z(G) = PSL11(q), where
q = p° and p is a prime. Set d = (11,¢ — 1) and Q = (¢*! — 1)/(qg — 1). It is easily
seen that here (6,Q) = 1. The group G acts (naturally) on an eleven-dimensional vector
space V = F''! over the field F = GF(q).

To prove the theorem we make use of the known list of maximal subgroups of G
given in [1]. In Aschbaher’s notation any maximal subgroup of G belongs to one of the
following families C4, Co, C3, Cs, Cg, Cs, and S. Roughly speaking, they are:
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e (: stabilizers of subspaces of V,

e (5: stabilizers of direct sum decompositions of V',

e (3. stabilizers of extension fields of F' of prime degree,

e (5: stabilizers of subfields of F' of prime index,

e (C4: normalizers of extraspecial groups in absolutely irreducible representations,
e (g: classical groups on V contained in G,

e S:almost simple groups, absolutely irreducible on V| and the representation of their
(simple) socles on V' can not be realized over proper subfields of F'; not continued
in members of Cg.

In [1] the representatives of the conjugacy classes of maximal subgroups of G are
specified in Tables 8.70 and 8.71. For the reader’s convenience we provide the exact list
of maximal subgroups of G together with their orders. The notation used here for group
structures is standard group-theoretic notation as in [1]. Especially, A x B is the direct
product of groups A and B, and we write A : B or A.B to denote a split extension of
A by B or an extension of A by B of unspecified type, respectively; the cyclic group of

order n is simple denoted by n, and E + stands for an elementary abelian group of order

"

If M is a maximal subgroup of G then one of the following holds.

1. M = Ego : GL1o(q) of order ¢°°(q—1)(¢* = 1)(¢° = 1)(¢* = 1)(¢" = 1)(¢* = 1)(¢" —
1)(¢® = 1)(¢” = 1)(¢" - 1).

2. M = B : (SLola) x SLa(g)) : (g 1) of order ¢(q = 1" = 1)*(¢" - D(g" -
1)(¢° = 1)(¢° = 1)(¢" = 1)(¢* = 1)(¢° — 1).

3. M = Epa: (SL (q) x SL3( )): (g — 1) of order q° (q _ 1)(q2 _ 1)2(q3 _ 1)2((14 _
1)(¢° — 1 )q® = 1)(¢" —1)(¢® - 1).

4. M = Eps : (SL7(q) x SLa(q)) : (

12(° — 1)(g® — 1)(q" — 1).

5. M = Ego : (SLe(q) x SLs(q)) : (¢ — 1) of order ¢*°(q — 1)(¢* = 1)*(¢* = 1)*(¢* -
1)?(¢” = 1)*(¢° - 1).

q— 1) of order ¢°°(q — 1)(¢* — 1)2((13 - 1)2(q4 -

6. M = (q—1)'%: 8 (if ¢ > 5) of order 2%.3*.5%.7.11.(q — 1)'°

11 1 11 _ 1
: 11 of order 11.q .
g—1 g—1

-1
8. M = SL11(qo).(11, ;—1) (if ¢ = g5, r prime) of order ¢5°(q2 — 1)(¢5 — 1)(qs —
0 —

1)(g5 — 1)(a5 — 1)(gg — D(ap — 1)(g5 — D’ — )(ge" — 1)-(11, qqoill)-

147



9. M 11}rJr2 : Spa(11) (if g=p =1 (mod 11) or ¢ = p° and p = 3,4,5,9 (mod 11))
of order 23.3.5.11* (here 11i_+2 stands for an extraspecial group of order 11% and
exponent 11).

10. M = dx SO11(q) (if ¢ is odd) of order d.¢**(¢* —1)(¢* —1)(¢® — 1)(¢® —1)(¢*° - 1).

1L M = (11,4 — 1) x SUw(a0) (if ¢ = g5) of order ¢°(q5 — 1)(a + 1)(ao — 1)(a3 +
(g — gy +1)(g — D(go + Vg — V(g +1).(11,q0 — 1).

120 M =2dx Ly(23) (ifg=p=1,2,3,4,6,8,9,12,13, 16, 18 (mod 23), ¢ # 2) of order
23.3.11.23.d.

13. M = d x Us(2) (if ¢ =p =1 (mod 3)) of order 2'°.35.5.11.d.

14. M = My, (if ¢ = 2) of order 2'°.3%.5.7.11.23.

We proceed now as follows. First we prove that there is only one type of maximal

subgroups of G whose order is a multiple of @); actually these are the groups (in Aschba-
11
P

her’s class C3) in case 7 above, of order 11. . Into the second step we find out two

elements x and y of respective orders 2 and 3 in G such that their product has got order
Q. Finally, we deduce that the group G is generated by these two elements. Then the
projective images of these elements will generate the group G.

Let us start with the first step in our strategy. In order to prove the above mentioned
arithmetic fact we use the well-known Zsigmondy’s theorem, and take a primitive prime
divisor of p''¢ — 1, i.e., a prime r which divides p''® — 1 but does not divide p* — 1 for
0 < i < 1le. Obviously r > 23 (as r — 1 is a multiple of 11e) and also r divides Q. It is
easy now to be seen that the only maximal subgroups of orders divisible by r are those

22
-1
in cases 11, and 12 or 14 with » = 23. In case 11 if Q = q02 1 divides the order of M,
q0 —
11
-1

then L0 1 should be a factor of the integer ¢3°(qo + 1)(g5 — 1)(5 + 1)(g5 — 1)(g5 +

qo —

(S — 1) (g +1)(g5 — 1) () + 1)(gd® —1).(11, g0 — 1), which is impossibile, by the same
11 1 311 -1
Zsigmondy’s theorem. As for the groups in case 12, we have @ = b 1 > 51 >
p— _
23.3.112.23 > |M|. Lastly, in case 14 Q = 2'* — 1 = 23.89 does not divide the order of
Moy.

Further, let us choose for x the matrix

(000000 00000 1]
00000 000010
00000 000T100
00000 001000
00000 010000
=0 0000 -1 00000
00001 000000
00010 000000
00100 000O0O0 O
01000 000000
(10000 00000 O|
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and y to be in the form
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Then z is an involution of G and y is an element of order 3 in G for any 1, d2, d3,
54; 557 56; 577 58; 597 510 S GF(Q), also
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The characteristic polynomial of z is

o

o

(o9
[y

fo(t) =t — 6140 + (610 — 1)t + (281 + 63 + 1)t® — (81 + 85 + 9 + 2810 + 1)t7 — (61 —
82 + 03 + 05 — 010)t° + (81 + 83 — 06 + 07 + I8 + 69 + 019 + 1)t° + (81 — 62 — 64 — 07 — Ig —
8o — 010)t* — (01 — G2 — 04 + 9 + 610 4+ 2)t> + (62 + 69 + 510 + 2)t2 — (65 — 1)t — 1

Let take now an element w of order ) in the multiplicative group of the field GF (qn)
and put

) = (t = w)(t = w)(t =W )t — W)t = W)t = W)t = W)t~ W)t = W)t~

W) (t—w? ) =t —at?0 £ bt — ot 4 dtT — etS + {5 — gt* + ht® — Kt +mt — 1.

The last polynomial has all its coefficients in the field GF(q) and the roots of I(t)
are pairwise distinct (in fact, the polynomial /() is irreducible over GF'(q) which is not
necessary for our considerations). The polynomials f,(¢) and [(t) are identically equal if

0p=a,do=—-m+1,03=-2a—c—1,04=a+2m—2—k+h,
0s =a—m+3+c+b+e ds=—a—c+1l+g—m+k—h—f,
or=3—-m+k—h+g+a+b+d,dg=—-a+k—m+1—-b—d,dg=m—4—-b—k,
dio=b+1
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For these values of 6;(i = 1,...,10) f.(t) = I(t) and then, in GLq1(¢*!), z is conjugate

8

to diag (w,wq,wq2,wq cwl W Wl w? Wl w? Wl ) and hence z is an element of G
of order Q.

Then, H = (x,y) is a subgroup of G of order divisible by 6Q. We have already
proved above that the only maximal subgroup of G whose order is a multiple of @ is
that in Aschbaher’s class C3, of order 11(), which means that H can not be contained
in any maximal subgroup of G. Thus H = G and G = (z,y) is a (2, 3)-generated group;

G =

(1]
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(Z,7) is a (2, 3)-generated group too. The theorem is proved. O
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(2,3)-IIOPOAEHOCT HA CIIEIITMAJTHUTE JINMHEVHU I'PYIIN OT

PASMEPHOCT 11

Koucrantun TabakoB, Eienka I'enueBa, Ilanko I'enuen

B nacrosimmara pabora pasriiexkjiame CHerrajHuTe JUHEHHN I'PYIHA OT Pa3MEPHOCT
11 ma KpaitHu ToJIETa U JJOKa3BaMe, 9e Te ca enuMOpdHE 06pa3u Ha J00pe M3BeCTHA-
Ta MoayusipHa rpyna PSLy(Z). IociaegHoro o3HaUaBa, de BCsIKA OT PaslIeXKIaHuTe
or nac rpynu SLi1(q) u PSLi11(q) ce mopaxkma OT euH CBOI eeMeHT oT pef, 2 (uH-
BOJIIOIMSI) W OIIE €JIMH €JIEMEHT OT pesn 3. IIpesiosKeHOTO JOKAa3aTeJICTBO € B CHJIA
3a IPOM3BOJIHO KpaifiHo mose GF(q), Hax Koeto ca jneduHMpaHn Te3u rpynu. Bebi-
HOCT HUE II0COYBAME B SIBEH BUJ J[B€ MATPUIM, OT PEJl JBE U TPHU ChOTBETHO, KOUTO

nopasxjar rpynara SLii(q).
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