# (2,3)-GENERATION OF THE SPECIAL LINEAR GROUPS OF DIMENSION 11* 

K. Tabakov, E. Gencheva, Ts. Genchev

In the present paper we prove that the group $P S L_{11}(q)$ is $(2,3)$-generated for any $q$. Actually, we give explicit generators $x$ and $y$ of respective orders 2 and 3 , for the linear group $S L_{11}(q)$.

1. Introduction. (2,3)-generated groups are those groups which can be generated by an involution and an element of order 3 or, equivalently, they appear to be homomorphic images of the famous modular group $P S L_{2}(\mathbb{Z})$. It is known that many series of finite simple groups are ( 2,3 )-generated. Most powerful result of Liebeck-Shalev and Lübeck-Malle (see [14]) states that, except for the infinite families $P S p_{4}\left(2^{m}\right), P S p_{4}\left(3^{m}\right)$ and the Suzuki groups $S z\left(2^{2 m+1}\right)$, all finite simple groups are $(2,3)$-generated, up to a finite number of exceptions. We have especially focused our attention to the projective special linear groups defined over finite fields. Many authors have been investigated the groups $P S L_{n}(q)$ with respect to that generation property. $(2,3)$-generation has been proved in the cases $n=2, q \neq 9[9], n=3, q \neq 4[5],[2], n=4, q \neq 2$ [16], [15], [10], [12], $n=5$, any $q$ [19], [11], $n=6$, any $q[18], n=7$, any $q$ [17], $n=8$, any $q$ [6], $n \geq 5$, odd $q \neq 9$ [3], [4], and $n \geq 13$, any $q$ [13]. In this way the only cases that still remain open are those for $9 \leq n \leq 12$, even $q$ or $q=9$ (it is a well-known fact that the groups $P S L_{2}(9) \cong A_{6}, P S L_{3}(4)$ and $P S L_{4}(2) \cong A_{8}$ are not (2,3)-generated). In the forthcoming papers ([7], [8]) we prove that the groups $P S L_{9}(q)$ and $P S L_{10}(q)$ are $(2,3)$-generated for all $q$. In the present work we continue our investigation by proving the following:

Theorem. The groups $S L_{11}(q)$ and $P S L_{11}(q)$ are $(2,3)$-generated for all $q$.
2. Proof of the Theorem. Let $G=S L_{11}(q)$ and $\bar{G}=G / Z(G)=P S L_{11}(q)$, where $q=p^{e}$ and $p$ is a prime. Set $d=(11, q-1)$ and $Q=\left(q^{11}-1\right) /(q-1)$. It is easily seen that here $(6, Q)=1$. The group $G$ acts (naturally) on an eleven-dimensional vector space $V=F^{11}$ over the field $F=G F(q)$.

To prove the theorem we make use of the known list of maximal subgroups of $G$ given in [1]. In Aschbaher's notation any maximal subgroup of $G$ belongs to one of the following families $C_{1}, C_{2}, C_{3}, C_{5}, C_{6}, C_{8}$, and $S$. Roughly speaking, they are:

[^0]- $C_{1}$ : stabilizers of subspaces of $V$,
- $C_{2}$ : stabilizers of direct sum decompositions of $V$,
- $C_{3}$ : stabilizers of extension fields of $F$ of prime degree,
- $C_{5}$ : stabilizers of subfields of $F$ of prime index,
- $C_{6}$ : normalizers of extraspecial groups in absolutely irreducible representations,
- $C_{8}$ : classical groups on $V$ contained in $G$,
- $S$ : almost simple groups, absolutely irreducible on $V$, and the representation of their (simple) socles on $V$ can not be realized over proper subfields of $F$; not continued in members of $C_{8}$.

In [1] the representatives of the conjugacy classes of maximal subgroups of $G$ are specified in Tables 8.70 and 8.71. For the reader's convenience we provide the exact list of maximal subgroups of $G$ together with their orders. The notation used here for group structures is standard group-theoretic notation as in [1]. Especially, $A \times B$ is the direct product of groups $A$ and $B$, and we write $A: B$ or $A . B$ to denote a split extension of $A$ by $B$ or an extension of $A$ by $B$ of unspecified type, respectively; the cyclic group of order $n$ is simple denoted by $n$, and $E_{q^{k}}$ stands for an elementary abelian group of order $q^{k}$.
If $M$ is a maximal subgroup of $G$ then one of the following holds.

1. $M \cong E_{q^{10}}: G L_{10}(q)$ of order $q^{55}(q-1)\left(q^{2}-1\right)\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-\right.$ 1) $\left(q^{8}-1\right)\left(q^{9}-1\right)\left(q^{10}-1\right)$.
2. $M \cong E_{q^{18}}:\left(S L_{9}(q) \times S L_{2}(q)\right):(q-1)$ of order $q^{55}(q-1)\left(q^{2}-1\right)^{2}\left(q^{3}-1\right)\left(q^{4}-\right.$ 1) $\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)\left(q^{8}-1\right)\left(q^{9}-1\right)$.
3. $M \cong E_{q^{24}}:\left(S L_{8}(q) \times S L_{3}(q)\right):(q-1)$ of order $q^{55}(q-1)\left(q^{2}-1\right)^{2}\left(q^{3}-1\right)^{2}\left(q^{4}-\right.$ 1) $\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)\left(q^{8}-1\right)$.
4. $M \cong E_{q^{28}}:\left(S L_{7}(q) \times S L_{4}(q)\right):(q-1)$ of order $q^{55}(q-1)\left(q^{2}-1\right)^{2}\left(q^{3}-1\right)^{2}\left(q^{4}-\right.$ $1)^{2}\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)$.
5. $M \cong E_{q^{30}}:\left(S L_{6}(q) \times S L_{5}(q)\right):(q-1)$ of order $q^{55}(q-1)\left(q^{2}-1\right)^{2}\left(q^{3}-1\right)^{2}\left(q^{4}-\right.$ $1)^{2}\left(q^{5}-1\right)^{2}\left(q^{6}-1\right)$.
6. $M \cong(q-1)^{10}: S_{11}($ if $q \geq 5)$ of order $2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11 \cdot(q-1)^{10}$.
7. $M \cong \frac{q^{11}-1}{q-1}: 11$ of order 11. $\frac{q^{11}-1}{q-1}$.
8. $M \cong S L_{11}\left(q_{0}\right) .\left(11, \frac{q-1}{q_{0}-1}\right)$ (if $q=q_{0}^{r}$, $r$ prime) of order $q_{0}^{55}\left(q_{0}^{2}-1\right)\left(q_{0}^{3}-1\right)\left(q_{0}^{4}-\right.$ 1) $\left(q_{0}^{5}-1\right)\left(q_{0}^{6}-1\right)\left(q_{0}^{7}-1\right)\left(q_{0}^{8}-1\right)\left(q_{0}^{9}-1\right)\left(q_{0}^{10}-1\right)\left(q_{0}^{11}-1\right) .\left(11, \frac{q-1}{q_{0}-1}\right)$.
9. $M \cong 11_{+}^{1+2}: S p_{2}(11)\left(\right.$ if $q=p \equiv 1(\bmod 11)$ or $q=p^{5}$ and $\left.p \equiv 3,4,5,9(\bmod 11)\right)$ of order $2^{3} \cdot 3 \cdot 5 \cdot 11^{4}$ (here $11_{+}^{1+2}$ stands for an extraspecial group of order $11^{3}$ and exponent 11).
10. $M \cong d \times S O_{11}(q)$ (if $q$ is odd) of order $d \cdot q^{25}\left(q^{2}-1\right)\left(q^{4}-1\right)\left(q^{6}-1\right)\left(q^{8}-1\right)\left(q^{10}-1\right)$.
11. $M \cong\left(11, q_{0}-1\right) \times S U_{11}\left(q_{0}\right)$ (if $\left.q=q_{0}^{2}\right)$ of order $q_{0}^{55}\left(q_{0}^{2}-1\right)\left(q_{0}^{3}+1\right)\left(q_{0}^{4}-1\right)\left(q_{0}^{5}+\right.$ 1) $\left(q_{0}^{6}-1\right)\left(q_{0}^{7}+1\right)\left(q_{0}^{8}-1\right)\left(q_{0}^{9}+1\right)\left(q_{0}^{10}-1\right)\left(q_{0}^{11}+1\right) .\left(11, q_{0}-1\right)$.
12. $M \cong d \times L_{2}(23)($ if $q=p \equiv 1,2,3,4,6,8,9,12,13,16,18(\bmod 23), q \neq 2)$ of order $2^{3}$.3.11.23.d.
13. $M \cong d \times U_{5}(2)($ if $q=p \equiv 1(\bmod 3))$ of order $2^{10} \cdot 3^{5} .5 .11$.d.
14. $M \cong M_{24}($ if $q=2)$ of order $2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11.23$.

We proceed now as follows. First we prove that there is only one type of maximal subgroups of $G$ whose order is a multiple of $Q$; actually these are the groups (in Aschbaher's class $C_{3}$ ) in case 7 above, of order 11. $\frac{q^{11}-1}{q-1}$. Into the second step we find out two elements $x$ and $y$ of respective orders 2 and 3 in $G$ such that their product has got order $Q$. Finally, we deduce that the group $G$ is generated by these two elements. Then the projective images of these elements will generate the group $\bar{G}$.

Let us start with the first step in our strategy. In order to prove the above mentioned arithmetic fact we use the well-known Zsigmondy's theorem, and take a primitive prime divisor of $p^{11 e}-1$, i.e., a prime $r$ which divides $p^{11 e}-1$ but does not divide $p^{i}-1$ for $0<i<11 e$. Obviously $r \geq 23$ (as $r-1$ is a multiple of $11 e$ ) and also $r$ divides $Q$. It is easy now to be seen that the only maximal subgroups of orders divisible by $r$ are those in cases 11 , and 12 or 14 with $r=23$. In case 11 if $Q=\frac{q_{0}^{22}-1}{q_{0}^{2}-1}$ divides the order of $M$, then $\frac{q_{0}^{11}-1}{q_{0}-1}$ should be a factor of the integer $q_{0}^{55}\left(q_{0}+1\right)\left(q_{0}^{2}-1\right)\left(q_{0}^{3}+1\right)\left(q_{0}^{4}-1\right)\left(q_{0}^{5}+\right.$ 1) $\left(q_{0}^{6}-1\right)\left(q_{0}^{7}+1\right)\left(q_{0}^{8}-1\right)\left(q_{0}^{9}+1\right)\left(q_{0}^{10}-1\right) \cdot\left(11, q_{0}-1\right)$, which is impossibile, by the same Zsigmondy's theorem. As for the groups in case 12 , we have $Q=\frac{p^{11}-1}{p-1} \geq \frac{3^{11}-1}{3-1}>$ $2^{3} .3 .11^{2} .23 \geq|M|$. Lastly, in case $14 Q=2^{11}-1=23.89$ does not divide the order of $M_{24}$.

Further, let us choose for $x$ the matrix

$$
x=\left[\begin{array}{rrrrlrlllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and $y$ to be in the form

$$
y=\left[\begin{array}{rrrrrrrrrrr}
-1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \delta_{1} \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \delta_{2} \\
0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & \delta_{3} \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \delta_{4} \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & \delta_{5} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \delta_{6} \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & \delta_{7} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \delta_{8} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & \delta_{9} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \delta_{10} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Then $x$ is an involution of $G$ and $y$ is an element of order 3 in $G$ for any $\delta_{1}, \delta_{2}, \delta_{3}$, $\delta_{4}, \delta_{5}, \delta_{6}, \delta_{7}, \delta_{8}, \delta_{9}, \delta_{10} \in G F(q)$, also

$$
z=x y=\left[\begin{array}{rrrrrrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \delta_{10} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & \delta_{9} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \delta_{8} \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & \delta_{7} \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & -\delta_{6} \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & \delta_{5} \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \delta_{4} \\
0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & \delta_{3} \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \delta_{2} \\
-1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \delta_{1}
\end{array}\right]
$$

The characteristic polynomial of $z$ is

$$
\begin{gathered}
f_{z}(t)=t^{11}-\delta_{1} t^{10}+\left(\delta_{10}-1\right) t^{9}+\left(2 \delta_{1}+\delta_{3}+1\right) t^{8}-\left(\delta_{1}+\delta_{8}+\delta_{9}+2 \delta_{10}+1\right) t^{7}-\left(\delta_{1}-\right. \\
\left.\delta_{2}+\delta_{3}+\delta_{5}-\delta_{10}\right) t^{6}+\left(\delta_{1}+\delta_{3}-\delta_{6}+\delta_{7}+\delta_{8}+\delta_{9}+\delta_{10}+1\right) t^{5}+\left(\delta_{1}-\delta_{2}-\delta_{4}-\delta_{7}-\delta_{8}-\right. \\
\left.\delta_{9}-\delta_{10}\right) t^{4}-\left(\delta_{1}-\delta_{2}-\delta_{4}+\delta_{9}+\delta_{10}+2\right) t^{3}+\left(\delta_{2}+\delta_{9}+\delta_{10}+2\right) t^{2}-\left(\delta_{2}-1\right) t-1
\end{gathered}
$$

Let take now an element $\omega$ of order $Q$ in the multiplicative group of the field $G F\left(q^{11}\right)$ and put

$$
\begin{aligned}
& l(t)=(t-\omega)\left(t-\omega^{q}\right)\left(t-\omega^{q^{2}}\right)\left(t-\omega^{q^{3}}\right)\left(t-\omega^{q^{4}}\right)\left(t-\omega^{q^{5}}\right)\left(t-\omega^{q^{6}}\right)\left(t-\omega^{q^{7}}\right)\left(t-\omega^{q^{8}}\right)(t- \\
& \left.\omega^{q^{9}}\right)\left(t-\omega^{q^{10}}\right)=t^{11}-a t^{10}+b t^{9}-c t^{8}+d t^{7}-e t^{6}+f t^{5}-g t^{4}+h t^{3}-k t^{2}+m t-1
\end{aligned}
$$

The last polynomial has all its coefficients in the field $G F(q)$ and the roots of $l(t)$ are pairwise distinct (in fact, the polynomial $l(t)$ is irreducible over $G F(q)$ which is not necessary for our considerations). The polynomials $f_{z}(t)$ and $l(t)$ are identically equal if

$$
\begin{gathered}
\delta_{1}=a, \delta_{2}=-m+1, \delta_{3}=-2 a-c-1, \delta_{4}=a+2 m-2-k+h, \\
\delta_{5}=a-m+3+c+b+e, \delta_{6}=-a-c+1+g-m+k-h-f, \\
\delta_{7}=3-m+k-h+g+a+b+d, \delta_{8}=-a+k-m+1-b-d, \delta_{9}=m-4-b-k, \\
\delta_{10}=b+1
\end{gathered}
$$

For these values of $\delta_{i}(i=1, \ldots, 10) f_{z}(t)=l(t)$ and then, in $G L_{11}\left(q^{11}\right), z$ is conjugate to $\operatorname{diag}\left(\omega, \omega^{q}, \omega^{q^{2}}, \omega^{q^{3}}, \omega^{q^{4}}, \omega^{q^{5}}, \omega^{q^{6}}, \omega^{q^{7}}, \omega^{q^{8}}, \omega^{q^{9}}, \omega^{q^{10}}\right)$ and hence $z$ is an element of $G$ of order $Q$.

Then, $H=\langle x, y\rangle$ is a subgroup of $G$ of order divisible by $6 Q$. We have already proved above that the only maximal subgroup of $G$ whose order is a multiple of $Q$ is that in Aschbaher's class $C_{3}$, of order $11 Q$, which means that $H$ can not be contained in any maximal subgroup of $G$. Thus $H=G$ and $G=\langle x, y\rangle$ is a $(2,3)$-generated group; $\bar{G}=\langle\bar{x}, \bar{y}\rangle$ is a $(2,3)$-generated group too. The theorem is proved.

## REFERENCES

[1] J. N. Bray, D.F. Holt, C. M. Roney-Dougal. The Maximal Subgroups of the LowDimensional Finite Classical Groups. London Math. Soc. Lecture Note Series 407, Cambridge University Press, 2013.
[2] J. Cohen. On non-Hurwitz groups and noncongruence of the modular group. Glasgow Math. J., 22 (1981), 1-7.
[3] L. Di Martino, N. A. Vavilov. (2,3)-generation of $S L_{n}(q)$. I. Cases $n=5,6,7$. Comm. Alg., 22, No 4 (1994), 1321-1347.
[4] L. Di Martino, N. A. Vavilov. (2,3)-generation of $S L_{n}(q)$. II. Cases $n \geq 8$. Comm. Alg., 24, No 2 (1996), 487-515.
[5] D. Garbe. Über eine Klasse von arithmetisch definierbaren Normalteilern der Modulgruppe. Math. Ann., 235, No 3 (1978), 195-215.
[6] Ts. Genchev, E. Gencheva. (2,3)-generation of the special linear groups of dimension 8. Math. and Education in Math., 44 (2015), 167-173.
[7] Ts. Genchev, E. Gencheva, K. Tabakov. (2,3)-generation of the special linear groups of dimension 9. arXiv, 2016 (in preparation).
[8] Ts. Genchev, E. Gencheva, K. Tabakov. (2,3)-generation of the special linear groups of dimension 10. arXiv, 2016 (in preparation).
[9] A. M. Macbeath. Generators of the linear fractional group. Proc. Symp. Pure Math., 12 (1969), 14-32.
[10] P. Manolov, K. Tchakerian. (2,3)-generation of the groups $P S L_{4}\left(2^{m}\right)$. Ann. Univ. Sofia, Fac. Math. Inf., 96 (2004), 101-104.
[11] M. A. Pellegrini, M. C. Tamburini Bellani. The simple classical groups of dimension less than 6 which are (2,3)-generated. arXiv 1405.3149v2, 2015.
[12] M. A. Pellegrini, M. C. Tamburini Bellani, M. A. Vsemirnov. Uniform $(2, k)$ generation of the 4-dimensional classical groups. J. Algebra, 369 (2012), 322-350.
[13] P. Sanchini, M. C. Tamburini. Constructive (2,3)-generation: a permutational approach. Rend. Sem. Mat. Fis. Milano, 64 (1994), 141-158.
[14] A. Shalev. Asymptotic group theory. Notices Amer. Math. Soc., 48, No 4 (2001), 383-389.
[15] M. C. Tamburini, S. Vassallo. (2,3)-generazione di gruppi lineari. Scritti in onore di Giovanni Melzi. Sci. Mat., 11 (1994), 391-399.
[16] M. C. Tamburini, S. Vassallo. (2,3)-generazione di $S L_{4}(q)$ in caratteristica dispari e problemi collegati. Boll. Un. Mat. Ital. B(7), 8 (1994), 121-134.
[17] K. Tabakov. (2,3)-generation of the groups $P S L_{7}(q)$. Math. and Education in Math., 42 (2013), 260-264.
[18] K. Tabakov, K. Tchakerian. (2,3)-generation of the groups $\operatorname{PSL} L_{6}(q)$. Serdica Math. J., 37, No 4 (2011), 365-370.
150
[19] K. Tchakerian. (2, 3)-generation of the groups $P S L_{5}(q)$. Ann. Univ. Sofia, Fac. Math. Inf., 97 (2005), 105-108.

K. Tabakov<br>Faculty of Mathematics and Informatics<br>Department of Algebra<br>"St. Kliment Ohridski" University of Sofia Sofia, Bulgaria<br>e-mail: ktabakov@fmi.uni-sofia.bg

E. Gencheva e-mail: elenkag@abv.bg
Ts. Genchev
e-mail: genchev57@yahoo.com
Department of Mathematics
Technical University of Varna Varna, Bulgaria

# (2,3)-ПОРОДЕНОСТ НА СПЕЦИАЛНИТЕ ЛИНЕЙНИ ГРУПИ ОТ РАЗМЕРНОСТ 11 

## Константин Табаков, Еленка Генчева, Цанко Генчев

В настоящата работа разглеждаме специалните линейни групи от размерност 11 над крайни полета и доказваме, че те са епиморфни образи на добре известната модулярна група $P S L_{2}(\mathbb{Z})$. Последното означава, че всяка от разглежданите от нас групи $S L_{11}(q)$ и $P S L_{11}(q)$ се поражда от един свой елемент от ред 2 (инволюция) и още един елемент от ред 3 . Предложеното доказателство е в сила за произволно крайно поле $G F(q)$, над което са дефинирани тези групи. Всъщност ние посочваме в явен вид две матрици, от ред две и три съответно, които пораждат групата $S L_{11}(q)$.


[^0]:    *2010 Mathematics Subject Classification: 20F05, 20 D06.
    Key words: (2,3)-generated group.

