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In this paper it is considered a method for checking the population homogeneity
of a given psychological or didactical test with respect to the way of its accepting
from different populations. For this purpose we look for a statistical association
between the a priori known populations and posterior estimated clusters on the base of
experimental data. The lack of such statistically significant association is considered
as an evidence for the absence of a discrimination and therefore as a strong indicator
for homogeneity. The posterior clusters are searched by means of the Generalized
Partial Credit Model from the Item Response Theory.

The basic probability model for the typical tests. The psychological measure-
ment represents assigning of a numerical or some other sign characteristic to the observed
person [1, 12]. In the modern test theory – Item Response Theory [2, 3, 9, 10, 11, 17,
18, 19] (IRT) the ultimate aim of the measurement is to quantify some specific latent
variable θ (ability). Actually the test result v (the answers set) presents just some result
indicator which must be transformed to usual measurement. Thus the measurement
itself can be considered as composed from two stages. At the first stage we postulate
a stochastic relation between the ability θ and the indicator v. At the second stage we
have to find some method to obtain statistical estimation θ̂ on the base of v. The typical
test consists of a finite number I of test items. The result from the item i execution is
rendered by successive markers 0, 1, . . . ,Mi (the integers from 0 to Mi.). The probability
model for the test item i consists of the assumption for the presence of the probabilities
Pim(θ) (Item Category Response Function) for obtaining a result with a marker m under
a performance of an individual of ability θ. These probabilities naturally depend on
a set of parameters ξi = (ξi1, ξi2, . . . ). The set of all item parameters is denoted by
η = (ξ1, ξ2, . . . , ξI). In this text we stick to the traditional assumption of local stochastic
independence of test results for separate items.

The result indicator can be written as a matrix v = (vim), 1 ≤ i ≤ I, 0 ≤ m ≤ Mi,
where vim = 1 if for item i is pointed marker m and νim = 0 otherwise. Also it is conve-
nient for a datum to be presented as vector u = (ui) in which each coordinate points the
corresponding marker. Without loss of generality we assume a normal N(µ, σ2) popula-
tion distribution of the ability θ with a density ϕ(θ) whose parameters are considered as
an overall model ones.
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Under the above assumptions, the probability of a result indicator v is given by the
formula (see e.g. [18, 19])

f (v|θ, η) =

I
∏

i=1

Mi
∏

m=0

(Pim (θ, ξi))
vim

conditionally to θ which defines a discrete probability space over the set of the result
indicators. The joint distribution of the random variables v and θ has density

(1) f (v, θ|η) = f (v|θ, η)ϕ (θ|η) =

(

I
∏

i=1

Mi
∏

m=0

(Pim (θ, ξi))
vim

)

ϕ (θ|η)

and therefore, for any indicator set V and for any numerical interval ∆ the probability
of the basic events (v ∈ V )& (θ ∈ ∆) is given by the formula

Pr ((v ∈ V )& (θ ∈ ∆)) =
∑

v∈V

∫

∆

f (v, θ|η) dθ.

Further all the integrals are taken from −∞ to ∞ and the notation η stands for the
overall model parameters set. The joint distribution (1) we call a basic probability model
because it describes the relation between the aim of the measurement θ and its indicator
v.

The marginal distribution f(ν|η) of v can be obtained after elimination of θ from the
joint distribution

(2) f (v|η) =

∫

f (v, θ|η) dθ =

∫

(

I
∏

i=1

Mi
∏

m=0

(Pim (θ, ξi))
vim

)

ϕ (θ|η) dθ.

The generation of an artificial data for (1) is made through the scheme θ(j) ∼ ϕ (θ|η),

v(j) ∼ f
(

v|θ(j), η
)

. In this way (v(j), θ(j)), 1 ≤ j ≤ J , forms the complete data for (1)
and (v(j)) becomes an iid sample of result indicators. Let we are given an iid sample
v = (v(j)). Then according to (2) its likelihood function has the form

L (v|η) =

J
∏

j=1

f
(

v(j)|η
)

=

J
∏

j=1

∫

f
(

v(j), θ|η
)

dθ

=
J
∏

j=1

∫

(

I
∏

i=1

Mi
∏

m=0

(Pim (θ, ξi))
v(j)im

)

ϕ (θ|η) dθ

from which for the log-likelihood we find

(3) l (v|η) = lnL (v|η) =

J
∑

j=1

ln f
(

v(j)|η
)

=
J
∑

j=1

ln

∫

(

I
∏

i=1

Mi
∏

m=0

(Pim (θ, ξi))
v(j)im

)

ϕ (θ|η) dθ.

The estimation of the parameters η under the presentation (3) is done by the popular
EM-algorithm.

The EM-algorithm. The EM-algorithm [5] is a very basic and common iterative
method for obtaining a maximum likelihood estimation (MLE) for the parameters η. As
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a stop criteria one can use a sufficiently small change in lnL(v|η) value or sufficiently
small absolute or relative change in the successive values of η. The EM-algorithm has
various favorable properties from the numerical point of view – it is stable and convergent
in the typical case. In the common case however it may converge to a saddle point [13].

The M-step of the algorithm requires solving of the multivariable optimization task
(see e.g. [6, 15, 16]). In our case the optimization problem appears relatively simple
because it is performed separately item by item. This fact makes the use of the Newton-
Raphson method very convenient and effectual. Here it is possible to use also various
quasi Newton methods as BFGS and also some none typical methods as genetic algo-
rithms. However the success of the iterative methods depends heavily on the choice of
the initial value.

The presence of an integrals in the analytical terms requires a numerical integration
of certain integrals with a weight function the standard normal density ϕ(·|σ) with zero
mean and dispersion σ2. In this paper we follow the traditional approach to use the
Gaussian quadrature formulas. This approach has an advantage that the numerical inte-
gration can be considered as a replacement of the continuous normal ability distribution
by a discrete distribution supported on the quadrature nodes (θs) and with probabilities
corresponding quadrature weights (ws).

Polytomous models. Using of the binary test items appears as a sort of a situation
in which the possible outcomes are minimal in number (only 2). In this case the forced
polarization of the responses has either obvious advantages and disadvantages. For mark-
ing the middle (neutral) answer diapason we need at least one more marker [9, 10, 11].
In the practice they are used 4 or 5 outcome markers per test item. A great variety of
such polytomous IRT models are presented for example in [9]. Here we pay attention to
the so called Generalized Partial Credit Model (GPCM). In GPCM the markers m are
whole numbers from to some M ≥ 1. The probability for result m of a person of ability
θ is

(4) Pm (θ) =

exp

(

m
∑

s=0

a (θ − ds)

)

Mi
∑

µ=0
exp

(

µ
∑

s=0
a (θ − ds)

) ,

where (ds) are parameters for item localization and the parameter a is associated with the
property of an item discrimination power. The parametric uncertainty in (4) is avoided
by putting d0 = 0 after which for item i we have

Pi0 (θ, ai, bi1, . . . , biMi
) =

1

1 +
Mi
∑

µ=1
exp(µaiθ + biµ)

,

Pim (θ, ai, bi1, . . . , biMi
) =

exp(maiθ + bim)

1 +
Mi
∑

µ=1
exp(µaiθ + biµ)

,

where bim = −ai(di1 + · · · + dim). Now for the parameters ξi of test item i we have
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ξi = (ai, bi1, . . . , biMi
). The basic probability model turns into the form

f (v, θ|η) = f (v|θ, η)ϕ (θ) =

I
∏

i=1

Mi
∏

m=0

(Pim (θ, ξi))
vimϕ (θ) ,

where η = (ξ1, . . . , ξI) is the overall model parameter set. The population distribution
of the ability θ is assumed to be N(0, 1) by which is avoided the uncertainty in the
parameter a.

Models with latent classes. In the models with latent classes (see e.g. [4, 7, 8]) it
is assumed that the population is separated in some parts numbered with k, 1 ≤ k ≤ K.
Let αk defines the probability for a random choice from the population k. This choice is
associated with a random variable κ accepting values k with probabilities f(κ = k) = αk.
The joint distribution of (ν, θ, k) has a density

(5) f (v, θ, k|η) = f (v|θ, ηk)ϕ (θ|ηk)αk,

(

∑

k

∑

v

∫

f (v, θ, k|ηk) dθ = 1

)

where f(v|θ, ηk)ϕ(θ|ηk) sets some basic probability model for population k with parame-
ters ηk and η = (ηk, αk) defines the aggregation of all parameters of (5). The right-hand
side of (5) defines a mixture of distributions. Here we have two latent variables θ and k

therefore the complete data of a sample of size J has the form (v(j), θ(j), k(j)), 1 ≤ j ≤ J .
Here the values θ(j) and k(j) are not observable in the experiment. The generation of an
artificial complete data for (5) is made through the following schema

k(j) ∼ (αk) , θ(j) ∼ ϕ
(

θ|ηk(j)

)

, v(j) ∼ f
(

v|θ(j), ηk(j)

)

.

In this case data = (v(j)) becomes an iid sample from result indicators for the model
(5). Typically the populations models are assumed of the same type and the separate
classes differ only in the parametric set. For the logarithmic likelihood function we have

ln f (data|η) =

J
∑

j=1

ln
∑

k

∫

f
(

v(j), θ, k|η
)

dθ =

J
∑

j=1

ln
∑

k

αk

∫

f
(

v(j)|θ, ηk
)

ϕ (θ|ηk) dθ.

Respectively in the EM-algorithm it holds

Q
(

η|η(t)
)

=

J
∑

j=1

∑

k

∫

ln f
(

v(j), θ, k|η
)

f
(

θ, k|v(j), η
(t)
)

dθ, f (θ, k|v, η)

=
f (v, θ, k|η)

∑

k

∫

f (v, θ, k|η) dθ
,

which defines the following EM-algorithm – the common scheme for the latent class
models.

1 Initialization – choice of initial η(0) = (η
(0)
k , α

(0)
k )

2 E-step. Under known η(t) =
(

η
(t)
k , α

(t)
k

)

consider

f
(

θ, k|v(j), η
(t)
)

=
f
(

v(j)|θ, η
(t)
k

)

ϕ
(

θ|η
(t)
k

)

α
(t)
k

∑

k

α
(t)
k

∫

f
(

v(j)|θ, η
(t)
k

)

ϕ
(

θ|η
(t)
k

)

dθ
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3 M-step. Actualize η → η(t+1) by the rule

η(t+1) = argmax
η





J
∑

j=1

∑

k

∫

ln(f(v(j)|θ, ηk)ϕ(θ|ηk)αk)f(θ, k|v(j), η
(t))dθ

+ [ln f (η|τ )]





4 Stop criteria. Repeat the steps 2 → 3 until some stop criteria are met.

The addend [ln f(η|τ)] takes part only in the case of the presence of the prior distribu-
tions for η. The optimization about ηk is made as in the case of a single class model. In
the optimization for the parameters αk it is used the Lagrange multipliers technic from
which we get the following actualization formula

α
(t+1)
k =

1

J

J
∑

j=1

∫

f
(

θ, k|v(j), η
(t)
)

dθ

In the GPCM case for the stop criteria we use a small enough change in the numerical
logarithmic likelihood function

J
∑

j=1

ln

(

∑

k

α
(t)
k

∑

s

ws

I
∏

i=1

Mi
∏

m=0

(

Pim

(

xs, ξ
(t)
ki

))v(j)im

)

+
[

ln f
(

η(t)|τ
)]

,

where the quadrature nodes (θs) and weights (ws) are taken for the Gaussian integra-
tion with standard normal distribution density as a weight function and the addend
[ln f(η(t)|τ)] attends again only in the case of the presence of the prior distributions for
η.

Let we are given a parameter estimation η̂ = (η̂k, α̂k) under some experimental data.
Then we are able to classify a person j to population kj using naturally the highest
posterior probability

kj = argmax
k

f
(

k|v(j), η̂
)

.

Recognizing the prior populations serves as a criterion, to which content the described
scheme is efficient (in a certain sense).

Example 1. In this example we consider an illustrative performance of the GPCM
classes model for artificial data with K = 3 class populations, I = 20 test items with
M = 4 maximal marker per item and with J = 300 (100 persons per class population).

Table 1. Classification results for example 1

posterior class 1 posterior class 2 posterior class 3

population 1 2 95 3

population 2 100 0 0

population 3 0 2 98

This example shows practically perfect posterior recognition. Only 7 person are mis-
classified from 300 cases.
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Example 2. In this example we consider a performance of the GPCM classes model
for real experimental data from test about the stress resistance [14] with K = 2 popula-
tions, I = 21 test items with M = 3 and a sample with J = 193 individuals – males and
females.

Table 2. Classification results for example 2

posterior class 1 posterior class 2

males 64 50

females 41 38

In the last four-cells table we have χ2 (1) = 0.338 with p = 0.561 which shows sta-
tistical independence between the variable “sex” and variable “stress resistance”. This
independence points out that the stress resistance test is accepted in the same way by
males and females. In other words here is missing a sexual discrimination in the treating
of the both sexes.

Conclusions. The great diversity in the IRT models reveals an opportunity to
embrace the behavioral uncertainty during the psychological and educational measure-
ments using highly unified approach of the basic probability model and the associated
tools.

Using of the models with latent classes offers a rigorous argument to prove the test ho-
mogeneity with respect to some biological or social denotation by means of the posterior
classification.

The presented method suffers from drawbacks associated with possible unrealistic es-
timated parameter values. This phenomenon may be covered by using of prior parameter
distributions. The authors are thankful to the referee for the useful remarks.
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ЕДИН МЕТОД ЗА ПРОВЕРКА НА ХОМОГЕННОСТ НА ТЕСТ

Димитър Петков Цветков, Любомир Янакиев Христов,

Ралица Любомирова Ангелова-Славова

В настоящата работа се разглежда метод за проверка на хомогенност на да-
ден психологически или образователен тест относно начина на възприемане от
различни популации. За тази цел се търси статистическа асоциация между извес-
тните априорни популации и оценени от експериментални данни апостериорни
клъстери. Отсъствието на статистически значима асоциация при това съпоста-
вяне се разглежда като обективен индикатор за отсъствие на дискриминация и
респективно наличие на еднородност. Апостериорните клъстери се търсят въз ос-
нова на обобщения модел на частичния кредит (Generalized Partial Credit Model).
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