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SOME GEOMETRIC PROBLEMS SOLVED THROUGH

VECTORS*

Boyko B. Bantchev

The use of vectors for reasoning and for proving results in elementary geometry is
illustrated on several examples.

Introduction. In previous publications [1, 3, 2] we drew attention to the utility of
employing vectors for doing calculations and solving problems in plane geometry. Here
we give a further evidence of this utility. The examples demonstrate that the vector
approach provides direct and simple proofs that may be difficult or impossible to obtain
using other methods.

Along with linear operations and scalar product (·), we make use of the ‘perp’ operation
(⊥) and the area product of planar vectors. The perp rotates a planar vector at a right
angle counterclockwise. The area product can be defined as u × v = u⊥ · v and is in
fact the signed area of the parallelogram, formed by (any representatives of) the vectors
u and v, taken with the same origin – including the degenerate case of collinear vectors.
Both the perp and the area product were introduced, along with their basic algebraic
properties, in the above mentioned publications.

Throughout the text, bold letters denote exclusively vectors. Specifically, a single
capital letter designates the position vector of a point with the same name (all such
vectors being related to a single reference origin), and a pair of capital letters, such as
PQ, designates the vector Q−P.

For triangles, the standard notation A, B, C, a, b, c is used, including a=BC,
b=CA, c=AB (a+b+c= 0).

Proofs of propositions are enclosed in and .
Heron’s formula. Heron’s formula is usually proved by using the Pythagorean

theorem or trigonometric functions, or by exploiting the dissection of a triangle induced
by its incircle. Here is a fairly straightforward proof that makes use of vectors.

From

S2

ABC =

(

a× b

2

)2

=
a2 b2 − (a · b)2

4
=

(a b− a · b)(a b+ a · b)

4
,

a b− a · b =
(a+ b)2 − (a+ b)2

2
=

(a+ b)2 − c2

2
=

(a+ b+ c)(a+ b− c)

2
, and

a b+ a · b =
(a+ b)2 − (a− b)2

2
=

c2 − (a− b)2

2
=

(a− b+ c)(−a+ b+ c)

2
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we obtain

S2

ABC =
(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)

16
and therefore

SABC =
√

s(s− a)(s− b)(s− c) , where s=(a+b+c)/2 .

A triangle identity. If P, A, B, and C are any points in the plane, and A1, B1, C1

are the orthogonal projections of P on BC, CA, and AB, then

AB .AC1 +BC .BA1 + CA .CB1

does not depend on P and equals
a2 + b2 + c2

2
·

The lengths of AC1, BA1, and CB1 are taken with positive or negative signs according
to these segments having the same or opposite directions as AB, BC, and CA, respectively.
Their values, or, better still, the ratios AC1 :AB, BA1 :BC, and CB1 :CA, can be
considered triangular coordinates of P with respect to △ABC, in a similar sense as
cevian and barycentric coordinates are.

AB .AC1 +BC .BA1 + CA .CB1 = AB ·AC1 +BC ·BA1 +CA ·CB1

= c ·AP+ a ·BP+ b ·CP

= c · (P−A) + a · (P−B) + b · (P−C)

= (a+ b+ c) ·P− (a ·B+ b ·C+ c ·A)

= −(a ·B+ b ·C+ c ·A) .

As A · a+B · b+C · c = 0 (which follows immediately from a=C−B etc):

−(a ·B+ b ·C+ c ·A) = −(a ·B+ b ·C+ c ·A) + (A · a+B · b+C · c)

= −(a · (B−A) + b · (C−B) + c · (A−C))

= −(a · b+ b · c+ c · a) .

Finally, from (a+ b+ c)2 = 0, there follows −(a · b+ b · c + c · a) =
a2 + b2 + c2

2
,

which completes the proof.

It appears to be not very difficult to prove the above proposition without using vectors
when P is inside △ABC, but apparently several other cases need to be considered. Vector
algebra has the great advantage of being a language in which no such separate cases
emerge: right from the outset the problem is dealt with in full generality.

Van Aubel’s theorem of quadrilaterals. This theorem is usually formulated as
follows.

Given an arbitrary planar quadrilateral ABCD, and squares built outwardly on each
side, the lines connecting the centres of the opposite squares are perpendicular to each
other and of equal length.

Let a = AB, b = BC, c = CD, and d = DA. Then the centres of the squares
are

A+ 1/2 (a− a⊥), B+ 1/2 (b− b⊥), C+ 1/2 (c− c⊥), D+ 1/2 (d− d⊥),

so the lines connecting the first to the third and the second to the fourth centre are
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represented as vectors thus:

u = AC+
1

2
(c− a− c⊥+ a⊥) =

1

2
(2b+ a+ c+ a⊥− c⊥) ,

v = BD+
1

2
(d− b− d⊥+ b⊥) =

1

2
(2 c+ b+ d+ b⊥− d⊥) ,

In order to prove the theorem, it remains to establish u⊥−v= 0. This easily follows
from (x⊥)⊥=−x for any x, a+b+c+d=0, and the distributivity of ⊥ over vector
addition.

The proof demonstrates that the theorem actually holds for any points A, B, C, and
D, not necessarily forming a simple quadrilateral and even not necessarily different. It
suffices to build the squares uniformly on the same side (left or right) of AB, BC, CD,
and DA (and if some of these segments reduces to a point, that point also represents the
respective square and its centre).

Precedence-conforming turns. For any non-zero, non-parallel vectors u and v in
the plane, we say that u precedes v (u ≺ v) if v is in the left half-plane with respect to
u when (any representatives of) the two vectors share the same origin.

The area product u × v is either positive or negative according to which of u ≺ v

and v ≺ u (if any) holds. Similarly, for u 6=0, the direction of u⊥ is such that u ≺ u⊥.
Thus the definitions of both × and ⊥ depend on the ≺ relation, and in fact each of ×
and ⊥ can be derived from the other.

Of course, the ≺ relation is itself based on the informal, non-geometric notion of ‘left’.
However, for two pairs of vectors u×v 6= 0 and u′×v′ 6= 0, the notion of whether they
have the same or different precedence — i. e., whether they have conforming precedence

— is entirely geometric.

If u× v 6= 0, any vector p in the plane can be uniquely decomposed with respect to
u and v:

p =
(p× v)u + (u× p)v

u× v
·

Substituting p⊥ for p in the above equality yields

p⊥ =
(p⊥× v)u+ (u× p⊥)v

u× v
=

(u · p)v − (v · p)u

u× v
,

or, equivalently,

(u× v)p⊥ = (u · p)v − (v · p)u .

This and the definition of × and ⊥ assert the validity of the following
Proposition. Let q = (u · p)v − (v · p)u. Then

q⊥p, |q| = |u× v||p|, and p ≺ q ⇔ u ≺ v.(1)

Unlike p⊥, whose direction depends on our conventional understanding of ‘left’,
(u · p)v − (v · p)u, divided by |u × v| if one wants the same magnitude as p, is
perpendicular to p in a way conforming to u ≺ v.

The above proposition also works conversely: if a vector, q, is known to satisfy (1),
then it is none other than (u · p)v − (v · p)u. For, let q be such a vector. If q′ =
(u ·p)v− (v ·p)u, then, according to the proposition, (1) holds for q′ as well. It follows
that q and q′ have the same attitude (perpendicular to p), magnitude (|u× v||p|), and
sense of direction (p ≺ q ⇔ p ≺ q′), whence q = q′.
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The proposition is also valid if we consider u, v, and p to be spatial vectors, and u×v

the vector product of u and v. Indeed, |u × v| – the length of u × v – then still equals
the area of the parallelogram defined by u and v, just as for planar vectors and their
area product. Scalar products in space also have the same geometric meaning as in the
plane, and the precedence relation retains its meaning in any oriented plane. Specifically,
in space, there are two ‘opposite’ planes spanning u and v, and u ≺ v is true in one
of them, v ≺ u in the other. Correspondingly, if p is coplanar with u and v, then p

precedes (u ·p)v− (v ·p)u in the former plane, and the reverse precedence takes place
in the latter.

The vector triple product. The above observation enables a rather straightforward
derivation of a known formula for the vector triple product (a× b)× c in space.

If a× b 6= 0 and c = c′ + c′′, so that c′⊥ a× b and c′′‖ a× b, then

(a× b)× c = (a× b)× c′ ,(2)

so whatever (a × b) × c is equal to, it depends only on c′ — the part of c which is in
the (a,b) plane. The vector (a× b)× c′ is in the same plane, is perpendicular to c′ —
hence |(a × b) × c′| = |a × b||c′| — and is preceded by c′ in the oriented plane (a,b)
(the one in which a precedes b). This is exactly where (1) applies, therefore

(a× b)× c′ = (a · c′)b− (b · c′)a .

Taking into account c′′ · a = c′′ · b = 0, we also obtain

(a · c′)b− (b · c′)a = (a · c)b− (b · c)a ,

from which and (2) follows

(a× b)× c = (a · c)b− (b · c)a .(3)

Of course, (3) also holds when a× b = 0, as in this case both sides equal 0.
There is a large number of published proofs of (3). Ours is, as far as we know, the

only one that is both expressed solely in terms of vectors (no trigonometry or coordinates
involved) and explicitly based on planar vector algebra, which we believe reflects the
essence of this identity.
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НЯКОИ ГЕОМЕТРИЧНИ ЗАДАЧИ, РЕШЕНИ ЧРЕЗ ВЕКТОРИ

Бойко Бл. Банчев

Дават се няколко примера за използването на вектори при разсъждения и
доказване на твърдения от елементарната геометрия.
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