MATEMATUKA U MATEMATUYHECKO OGEPA30OBAHWE, 2016
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2016
Proceedings of the Forty Fifth Spring Conference

of the Union of Bulgarian Mathematicians
Pleven, April 6-10, 2016

MATLAB SIMULATION OF HIGH ORDER
MODELS IN STRUCTURE ENGINEERING"

Mihail Konstantinov, Galina Pelova, Petko Petkov, Vesela Pasheva

In this tutorial paper we deal with certain high order mathematical models in
structure engineering. We propose a MATLAB® based approach to simulate these
models using in-built matrix functions such as the the program expm for reliable
computation of the matrix exponential. The computation of the matrix sine and
cosine functions is also considered together with their applications. This approach has
been used by the authors in teaching mathematics and mechanics at the University of
Architecture, Civil Engineering and Geodesy (Sofia, Bulgaria), Technical University
of Sofia and the European Polytechnical University (Pernik, Bulgaria).

Introduction. Many processes in structure engineering are governed by linear high-
order time-invariant differential equations with given initial or boundary conditions. The
classical approach to deal with initial or boundary value problems may not be applicable
in this case. The direct implementation of integration schemes is also connected with
numerical difficulties since they do not take into account the special structure of the
problem. At the same time the formal solution is described by a matrix exponential
function, integrals involving this function and a set of unknown parameters that are
subject to further calculation. The computer computation of matrix functions (such as
sine, cosine and exponent) may be a problem. Recently effective and reliable algorithms
as well as computer codes for this purpose have been derived. An example is the program
expm from MATLAB for computing the matrix exponential. This program may success-
fully be used for tutorial purposes when solving problems in mathematics and mechanics
as well as for simulation of real models arising in structure engineering. Some aspects of
this approach are described in the present paper.

Dynamical model. We consider high-order time-invariant dynamical systems govern-
ing elastic and viscoelastic mechanical structures of the type [2]

(1) L(y)(t) == y"(t) + Ay'(t) + By(t) = £(t)
where
y(t) = [y1(t);y2(t); - 5 ya(t)] € R™

is the state vector of the system at the moment ¢t and A, B € R"*" are given matrices. The
function f: R — R™ is continuous (belongs to the set C(R,R™)). By £: C*(R,R™*?) —

*2010 Mathematics Subject Classification: Primary 97M50.
Key words: MATLAB based modeling, structure engineering, matrix functions.
“MATLAB® is a trademark of MathWorks, Inc.

215

C(R,R™*P) we denote a differential operator acting on (n X p)-matrix functions. In many
applications A = 0 and B is a symmetric positively definite matrix. The matrices A, B
may also depend on a vector-parameter A € R™, namely A = A()\), B =B(\).

The vector differential equation (1) is considered together with a set of initial

(2) y(0) =yo, ¥'(0) =y
or boundary
(3) y(0) =yo, y(I) = w1

conditions, where yo, y(,y; € R™ are given vectors. The more general multi-point boundary

condition
-

(4) Z(CkY(tk)+Dkyl(tk)) =b, 0=ty <t1 <---<t,=1
k=0
may also be considered, where Cj, Dy, € R2"*™ and b € R?" are given arrays. The vector
and matrix data in (2)—(4) may also depend on the parameter A.
As a first task the students have to show that the initial conditions (2) and the
boundary conditions (3) are particular cases of the general boundary condition (4). This
is done as follows. Setting r = 0 and

I 0
co=|g] D=7 p=| 3]

we obtain (2). For r = 1 and

o [3] e[t mom-[g] [

the conditions (4) take the form (3).

A variant of the above problem arises when the system is homogeneous (f = 0, b = 0)
and we are interested in values of A (i.e. generalized eigenvalues) for which a nontrivial
solution of (1), (4) exists. This is the so called generalized eigenvalue problem, see e.g. [4].
An example of a particular system solved in MATLAB environment is given in [5].

Further on the students are advised to write their own programs in MATLAB environ-
ment following the next presentation.

Formal solution. It is instructive to recall that the general solution of equation (1)
has the form
y(t) = Yi(t)er + Ya(t)er + y¢(t)
where the matrix functions Yy, satisfy the homogeneous equation
Y"'(t)+ AY'(t) + BY(t) =0
and yy is a particular solution corresponding to the right-hand side f, namely
Y() + Ay}(t) + By (t) = £(1)
The particular solution can be computed explicitly for various classes of functions like

£(t) = fult)a
k=0

where the scalar functions fj contain powers, exponents, sines, cosines and other elemen-
tary functions of ¢, and aj are given vectors. In such cases the particular solution is of

216

the form of the function f with unknown vector coeflicients which can be found by the
method of undetermined coefficients. This is done in a close cooperation with the students
(or, at least, with their active part).

Note that the use of this method is possible only under some restrictions on the
matrices A, B and the function f and this requires an additional analysis. Let for example
f(t) = ag + ta; and the matrix B be invertible. Then y;(¢) = bg + tby, where

b1 = B\al, bO = B\(ao — A% bl)
The notation b; = B\a; uses the MATLAB operator for left matrix division and means
that the vector by satisfies equation B * b; = a; and is computed by the corresponding
MATLAB algorithm (Gauss elimination with partial pivoting) thus avoiding matrix
inversion and matrix—vector multiplication.

Nonhomogeneous case. To solve (1), (4) in this case we set

_ Y(t) 2n _ 0 I 2nX2n _ 0 2n
Z(t)_[y’(t)]ER ’M_[B _A |€R , g(t) = £(t) eR
and Ej, = [Cy, D] € R?™ 2" The problem is then written as
Z/(t) = Mz(t) + g(t), Y Epz(t) =b
k=0
Using the matrix exponential
oo Xk §
_ bl nxn
eXp(X)—kZ R XeR
=0
the solution is obtained in the form
t
(5) z(t) = exp(tM)zg + u(t), u(t) = / exp((t — s)M)g(s)ds
0
where zg € R?" is the solution of the linear algebraic vector equation
T T
(6) Fzp=c, F = ZEk exp(tyM), c=b — Z Eju(t)
k=0 k=0

In the generic case the matrix F is invertible and the solution for zq is unique. Finally
the state vector is restored as y(t) = [I, 0]z(t).

The computation of the solution from (5) and (6) in MATLAB is done using the
command expm for the matrix exponential and the program quadl for numerical inte-
gration. The solution of the vector algebraic equation in (6) is obtained by the MATLAB
operator for left matrix division as » z0 = F\c.

Property of fundamental matrix. If we partition the fundamental matrix as
Dq1(t) P1a(t)
Doy (t) Poa(t)
where ®11(0) = $22(0) =T and P12(0) = P21(0) = 0, then

L(Ppy) =0forall p,g=1,2
This important property of the blocks of partitioned fundamental matrices of autonomous

equations is not very popular and the students are advised to check it theoretically
working ‘by hand’ and computationally using the MATLAB function expm (for p = 1

217

(7) exp(tM) = , Ppg(t) e R™™

and ¢ = 1,2 the property is trivial and is valid for non-autonomous equations as well).
Using the partition (7) the solution of the initial value problem (1), (2) is represented
as

(8) y(t) = 211(t)yo + P12(t)yg

In turn, the solution of the boundary value problem (1), (3) is again in the form (8),
where the vector yj{, is now not given but is the solution (if it ever exists) of the linear
algebraic equation

P12(D)y =y1 — P11(D)yo

A generalization of the above facts for vector differential equations of higher order
such as

y"(t) + Ay"(t) + By'(t) + Cy(t) = 0
etc. is straightforward and is proposed as an exercise to the students.

Homogeneous case. Here f = 0 and b = 0. The problem (1), (4) has trivial solution
z = 0. When the data matrices A, B, C, and D; depend on the vector-parameter A,
we have F = F()\) and the problem is to find the eigenvalues A. The boundary value
problem has a nontrivial solution

z(t) = exp(tM)zg, 2o # 0
when the matrix F(\) is singular. In this case z(is any nonzero vector from the kernel of

the matrix F(A). Although computing determinants is not a pleasant operation in finite
arithmetics, we can find the values for A by the equation

FA) =0, f(A) = det(F()))
This equation defines a (m — 1)-dimensional variety in the space R of the parameter A.

The cases m = 1, m = 2 and m = 3 are especially instructive. For m = 1 the argument
A of the function f is scalar and we may construct the graph of this function numerically.
The zeros of f are found by the MATLAB commands solve, or fzero.

In general the equation f(A) = 0 may have more than one root. However, in this case
the command solve most probably will produce only one root. To find all roots in the
interesting interval for A we plot the graph of the function A — |f(\)|. The inverted peaks
of the graph correspond to the zeros of equation f(A) = 0. Having information about
the approximate values of all roots in the given interval we can implement the program
fzero for any one of them (this program requires an initial approximation to the root).
Of course, theoretically the number of eigenvalues may be infinite.

For m = 2 we have a curve in the plane (A1, A2) which may be constructed by the
command ezplot from MATLAB. For m = 3 we have a surface in the space (A1, A2, A3)
which is constructed by the MATLAB program ezsurf.

Classical approach example. Let n = 2, m = 1 and consider the equation

9) y'(t) + ANy (t) + B(Ny(t) = 0
with boundary conditions
(10) y(0) =0, y(l)=0

The problem of existence of nontrivial solutions may be reduced to a scalar 4-th order
differential equation with zero homogeneous boundary conditions. There is an analytical

218

solution recommended in classical textbooks on Theory of Elasticity. It is based on the
type of the characteristic 4-th degree algebraic characteristic equation of the form

st a1 (\)s® 4 ag(N)s? +az(N)s 4+ as(\) =0
with four roots s; = s;(\), j = 1,2, 3, 4. There are 8 (!) different subcases for the roots and
respectively 8 forms for the solution. In each subcase we have to solve a transcendental
equation for the scalar A. The complete solution of this problem requires a very large

amount of hand calculations which, as a rule, are contaminated with errors and the thus
result obtained is useless.

Even more involved is the case of two scalar parameters, i.e. A = [A;; \o] € R%. Here
we have 8 classes of transcendental curves gi (A1, A2) =0, k = 1,2,...,8. Until recently
the solution of such a problem was often the main part of a PhD thesis in Structure
Engineering.

It is clear that such an antediluvian approach is not to be used in a modern teaching
course in Structure Engineering. Moreover, it is not applicable at all for n > 3 since the
characteristic equation here is of degree > 6 when no closed form solution for the roots
ever exists.

The use of matrix exponential approach allows to solve the problem easily not only
for n = 2 but also for large values of n.

Scaling and Squaring Algorithm (SSA). The SSA for computing the matrix
exponential is well studied [1, 3, 6] and implemented as the MATLAB function expm.
Suppose that the computation of the matrix function F: R™"*™ — R™ " involves the
evaluation of matrix powers M, M2, ..., M" in floating-point binary arithmetics. If M
has large elements this may lead to large errors in the computed result.

In many cases, however, this may be avoided by preliminary scaling the matrix
argument M, e.g. M; = M/s, where the scaling factor s = 27, p € N, is a power of the
base 2 of the arithmetic. Usually we look for p such that |[M;|| < 1/2, i.e. p is the smallest
integer such that p > 1+ logy(||M]|). Thus the computation of F(M;) is reliable but
restoring the value of F(M) from F(M;) may be a problem. For the matrix exponential,
however, the restoration is straightforward due to the property exp(y) = (exp(y/s))® of
the exponential function. In particular we

exp(M) = (exp(M/s))” ~ (P(M/s))", s = 2"

where P(z) is a symmetric Padé approximation of exp(z),

k
p(x) ;
P) = p@) =1+ e
p(~z) ; !
11 1 B
“T oy 2T 43T g MT 008 95T 302407

or a truncation of the Taylor series of exp(x),
k

N X
k=0

Under certain conditions Padé and Taylor formulas have similar accuracy.
219

Computing matrix sine and cosine functions. The SSA cannot be applied
directly to the computation of the matrix sine and cosine functions either by Padé or
Taylor approximations, e.g.

N N
: (71)k92k+1 (71)kQ2k nxn
SIH(Q) ~ ;W, COS(Q) =~ ;W’ Q S R

In many applications the matrix Q = Q' is nonnegatively definite. Together with the
matrix cos(¢€2) which is always defined, we also need the matrix

S(t,Q) = O 'sin(tQ)
if Q is invertible, and
1)kg2kt+1 02k

o0
S(t.©) :Z (2k + 1)!

in the general case.

The importance of these matrices in Theory of Elasticity of mechanical systems comes
from the wide spread model

(11) y"(t) + Q%y(t) = 0; y(0) =yo, ¥'(0) =yo
Here the solution is
(12) y(t) = cos(tQ)yo + S(t, Q)yg

or, if the matrix € is invertible,
y(t) = cos(tQ)yo + Q' sin(tQ)y}

Consider next the homogeneous boundary value problem
(13) y'(t) + Q% (t) = 0; y(0) =y()) =0
which has trivial solution y = 0. The general solution of this problem is
y(t) = S(t,2)a
where S(I,2)a = 0, i.e. the vector a € R" is from the kernel of the matrix S(I,2) which
has dimension n — rank(S(l, Q2)).
If O = Q(A), where A € R™ is a vector-parameter then the spectrum of the problem
is an (m — 1)-dimensional variety in R™ defined by
A={\eR™: det(S(I,Q2(N\))) =0}
When det(£2(A)) # 0 the equation for A is reduced to det(sin(I£2(X))) = 0.
An effective way to compute the sine and cosine matrix functions for (n X n) matrices

is via the matrix exponential of a (2n x 2n) matrix exponential function. Indeed, the
initial value problem (11) may be written as

(14) 2 (t) = Na(t), z(t) = [;’,((tt)) | ~- [e o]

The fundamental matrix for (14) is

\Ifll(t) ‘I’lg(t) [COS(tQ) S(t Q)
p(iN) = { Uai(t) Waa(t)] B }

220

or, if the matrix € is invertible,
- cos(tQ) Q sin(tQ)
exp(tN) = [—Qsin(tQ) cos(t9)

Thus the interesting matrices cos(t?) and S(t,2) are simply the n x n blocks of the
matriz exponential exp(tN) in positions (1,1) and (1,2), respectively.
Note that the case 2 = 0 simply leads to N = [0,1;0, 0] and

exp(#N) = [o]

A further development is as follows. Consider the equation
y"(t) +By(t) =0
where the matrix B may not be symmetric and/or nonnegatively definite. If the matrix

B has a square root © (i.e. there is a matrix Q such that Q% = B), then we can still
apply the above approach obtaining the solution in the form (12). An interesting simple

caseis n = 2 and
1 1 1 0.5
o=[g 1]a=[5]

Here the principal root = B2 may be calculated easily “by hand” as well as by
the MATLAB command sqrtm(B) for computing the matrix square root. Obviously the
matrix —(Q is also a square root of B.

If the matrix B has no square root (this is possible when B is singular) we cannot
use the sine and cosine matrix functions immediately. Of course, the matrix exponential
for the augmented system may again be used to compute the solution.

Examples with reference solution. A very effective teaching technique is to
0 1

0 0
(the students must show that B has no square root). The students are asked to find the
solution

consider examples with known solutions. Our first example is n = 2 and B =

2 3

t
y1(t) = yio + tyio — Y20 — Eyéo’ y2(t) = Y20 + tyag

of the corresponding initial value problem both analytically “by hand” and numerically
by MATLAB (in the latter case the solution is obtained for a set of values for ¢).

The second example is the scalar equation y”+\y = 0, A > 0 with boundary conditions
y(0) = 0, y(1) = 0. The closed form nontrivial solutions are y(t) = asin(tv'\), where a # 0
is arbitrary and A = Ay = k27r2/l2, k € N. In addition to these analytical solutions the

students are asked to find numerically the first several eigenvalues A1, As, ... using the
matrix exponential exp(IM) for M = [PA (1)] , the graph of the function A + |f(\)

described above and the command fzero.

Graphical implementation. In all cases it is very instructive to construct 2D and
3D projections of phase trajectories of the corresponding dynamical system using the
graphical interface of MATLAB. This is done by the commands plot and ezplot for 2D
graphs as well as plot3 and ezplot3 for 3D graphs.

221

Conclusion. In this tutorial paper we have considered the implementation of the
matrix exponential function and the corresponding computer code expm from MATLAB
for simulation of linear high-order time-invariant models in structure engineering. The
approach proposed is much more effective than the classical approach based on the
closed-form solution of low-order models. The results may also be used in the disciplines
“Mathematical Analysis IT” and “Applied Mathematics” taught in the technical universities.

REFERENCES

[1] A. ArL-Mony, N. HicHAM. A scaling and squaring algorithm for the matrix exponential.
SIAM J. Matriz Anal. Appl., 31 (2009), 970-989.

[2] E. GaAyLORD, CH. GAYLORD, J. STALLMEYER. Structural Engineering Handbook. McGraw-
Hill, N.Y., 1997.

[3] N. HigaaM. The scaling and squaring method for the matrix exponential revisted. SIAM
J. Matriz Anal. Appl., 26 (2005), 1179-1193.

[4] M. KonstanTINOV, G. PELOVA. Autonomous generalized Sturm-Liuville problems:
Numerical solution by MATLAB. Proc. First Int. Conf. “Education, Innovations, Science”,
Pernik 2011, 147-150.

[6] D. LoLov. Application of the matrix exponential for analyzing stability problems of
mechanical systems with MATLAB (in Bulgarian) Annual Univ. Arch. Civil Eng. Geodesy
43, 44 (2004-2009), fasc. 1, 189-196.

[6] P. PETKOV, N. CHRISTOV, M. KONSTANTINOV. Computational Methods for Linear Control
Systems. Prentice Hall, NJ, 1991.

Mihail Konstantinov Petko Petkov

e-mail: mmk_fteQuacg.bg e-mail: php@tu-sofia.bg
Galina Pelova Vesela Pasheva

e-mail: gpelova@abv.bg e-mail: vvp@tu-sofia.bg
University of Architecture, Technical University of Sofia
Civil Engineering and Geodesy 8, Kl. Ohridski Blvd

1, Hr. Smirnenski Blvd 1756 Sofia, Bulgaria

1046 Sofia, Bulgaria

CIMVJIAIINA B CPEJA HA MATLAB HA MOAEJIN
OT BUCOK PEJ B CTPOUTEJ/JIHOTO NH>KEHEPCTBO

Muxann Mwuxaitnos Koucrantunos, I'anmuna Boxxunosa Ilesosa,
Ilerko Xpucros IleTrkoB, Becesna Bacunesa IlamieBa

B rtasm obpazoBaresna pabora ca pas3IiieJ[aHd HSKOM MaTEeMaTHYeCKH MOJEJN OT
BHUCOK D€Ji B CTPOUTEJHOTO MH>KeHepCTBO. [Ipe/yiosken e mojixos, OCHOBAH Ha HSKOU
prpagenn dpyukmuu B MATLAB, kaTto HanpuMep expm 3a HAJIEKIHO IIPECMSITAHE
Ha, MaTPUYHATA €KCIIOHEHTa. Pa3rjeqaHo e CbIlo IpecMsITaHeTO Ha (DYHKIIMATE MaT-
pUYEH CHHYC M MATPUYEH KOCHHYC, KAKTO W HAKOM TEXHU NpuyioxkeHus. Omucanusar
[IOJIXOJ], € M3II0JI3BaH OT aBTOPHUTE IIPH IPENoJaBaHe HA MAaTeMaTUKa U MEXaHUKA B
YHuBepcuTeTa M0 apXUTEKTypa, cTpouTecTBo u reojesust B Codusi, Texuuaeckus
yuusepcurer B Cocdus u EBponeiickust nosmrexanyecku yuusepcurer B I[lepHuk.

222

