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Basics of configuration of finite set of points in a projective plane is discussed. Us-
ing the minimal possible language concerning super abundance, a very special case of
Cayley–Bacharach Theorem is proved. Based upon these, we realize well-known clas-
sical theorems such as Pappus’ Theorem and Pascal’s Theorem as direct applications
of Cayley–Bacharach Theorem. At the end, we exhibit an explicit example related to
the Brill-Noether problem in algebraic curves.

1. A foreword and an overview. Around the time of ancient Greeks, some ge-
ometric objects such as parabola, ellipse, circle, etc., were quite well understood and
realized as conic sections. In modern mathematical point of view which we all share in
the 21st century, such objects fall into the class of algebraic varieties, i.e. one of the main
objects of study in algebraic geometry which is – in short – a study of loci of polynomial
equations in several variables.

Classical theorems in projective geometry including theorems of Pappus, Desargues
or other variations of these – which were already known to ancient Greeks – have been
studied repeatedly by several mathematicians since 18th century and almost all of them
are related to the so-called Cayley–Bacharach property of finite set of points in the
projective plane.

In this note – which reflects some of the main ingredients of the talk delivered at the
meeting – we will start with introducing the notion of super abundance with minimal
prerequisites and machineries and then proceed to go further how one can recover various
classical theorems in projective geometry by using these notions.

Finally, we will count precisely how many specific families of rational functions with
certain prescribed attributes may exist on curves (either non-singular or singular) in a
complex projective plane.

2. What did the ancient Greeks know? There are several geometrical figures in
the Euclidean plane R2 determined by a single equation of degree two in x and y such
as parabola, hyperbola, circle, ellipse and if you allow degenerate case, a union of two
distinct lines and a line counted twice fall into the same category. The ancient Greeks
realized such objects as conic sections (Fig. 1).
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Fig. 1. The kind of conic section produced by the intersection of a plane and conical surface is
determined by the angle at which the plane intersects the surface

Explicit Algebraic Example: One can algebraically realize the above conic sections
as follows. Let

T := {(x, y, z)|x2 + y2 = z2} ⊂ R3

be a cone in R3. We consider the following planes defined by several linear equations:
H1 = {(x, y, z)|x = 1}, H2 = {(x, y, z)|z = 1},
H3 = {(x, y, z)|z + y = 1}, H4 = {(x, y, z)|x+ 2y = 1}.

Then one sees easily that
T ∩H1 is a hyperbola in the plane H1.
T ∩H2 is a circle in H2.

T ∩H3 = {(x, y, z)|x2 + y2 = z2, z + y = 1}
= {(x, y, z)|x2 + y2 = (1− y)2, z + y = 1}
= {(x, y, z)|x2 = 1− 2y, z + y = 1}

is a parabola in H3 and finally T ∩H4 is an ellipse in a similar way.

Degenerate Case: With the same cone T := {(x, y, z)|x2 + y2 = z2} ⊂ R3, one also
gets several degenerate cases when moving around the plane; say

Hx = {(x, y, z)|x = 0} ∩ T is a union of two lines,
Hz = {(x, y, z)|z = 0} ∩ T= origin and
Hz−y = {(x, y, z)|z − y = 0} ∩ T is a line in the yz plane counted twice, which one

may call a double line.

Another Example: Let for another example

S := {(x, y, z)|xy − z2 = 0} ⊂ R3.

Consider the planes
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H1 = {(x, y, z)|x = 1}
H2 = {(x, y, z)|z = 1}
H3 = {(x, y, z)|x+ y = 4}.

It is easy to see that
S ∩H1 is a parabola with the equation y − z2 = 0.
S ∩H2 is a hyperbola with the equation xy = 1.
S ∩H3 becomes an ellipse: To see this, we rotate R3 45◦ around the z-axis by means

of the rigid transformation φ: x 7→ 1√
2
(x − y), y 7→ 1√

2
(x + y), z 7→ z. Then one sees

that

φ−1(H3) = {(x, y, z)|x = 2
√
2}

φ−1(S) = {(x, y, z)|1
2
(x2 − y2) = z2}.

Finally we get an ellipse

φ−1(H3) ∩ φ−1(S) = {(x, y, z)|z2 + 1

2
y2 = 4, x = 2

√
2}.

3. Projective Space, a Unifier. The conic sections can also be regarded as shadows
of the surfaces S or T considered above on various moving planes in R3 where the light
emanates from the origin. The mathematical object which formalizes this simple idea is
the notion of projective space Pr defined as follows:

Pr := Rr+1 −O/ ∼ = {dimension one subspaces of Rr+1}
In other words, Pr is a collection of (r + 1)-tuples (x0, . . . , xr) 6= (0, . . . , 0) modulo the
equivalence relation;

(x0, . . . , xr) ∼ (y0, · · · , yr) if and only if ∃ λ ∈ R∗such that xi = λyi for all i.

We note that Pr = Vr ∪ V∞ where

Vr = {(x0, . . . , xr) ∈ Pr|x0 6= 0}, V∞ = {(x0, . . . , xr) ∈ Pr|x0 = 0}.
We also note that

Vr = {(x0, . . . , xr) ∈ Pr|x0 = 1}
is a copy of Rr. Hence Pr is a space containing the usual Euclidean space Rr together
with the extra piece V∞ which is called a hyperplane at infinity.

In our first example, all the conic sections can be unified as the locus

U := {x, y, z) ∈ P2|x2 + y2 = z2} ⊂ P2,

where

U ∩ {(x, y, z)|x = 1} = U ∩ V2

is the hyperbola in the Euclidean space V2 = R2 and

U ∩ {(x, y, z)|z = 1}
is a circle in another Euclidean piece of the projective plane P2, etc.

4. Super abundance with some elementary linear algebra. Let

R[x, y, z] = {polynomials in x, y, z with real coefficients}
be the polynomial ring with three indeterminates over R and let

P (d) := {homogeneous polynomials in x, y, z of degree d} ∪ 0.
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be the space of homogeneous polynomials of degree d ∈ N, which is a vector space over

the field R of dimension

(

d+ 2

2

)

.

In particular, P (2) is the vector space with basis {x2, y2, z2, xy, yz, xz} and hence
dimP (2) = 6. We now choose a point q = (q0, q1, q2) ∈ P2, and consider a non-zero
homogeneous polynomial of degree two

Ax2 +By2 + Cz2 +Dxy + Eyz + Fzx ∈ P (2) ⊂ R[x, y, z]

as well as its zero locus

C := {(x, y, z) ∈ P2|Ax2 +By2 + Cz2 +Dxy + Eyz + Fxz = 0} ⊂ P2.

Note that

q ∈ C

m
Aq20 +Bq21 + Cq22 +Dq0q1 + Eq1q2 + Fq0q2 = 0.

and hence we see that the requirement for the point q to be included in the locus C
induces (or imposes) one non-trivial linear relation among the coefficients A, . . . , F of
homogeneous polynomials in P (2). From this observation, one can measure the dimension
of the subspace V (q) of P (2) consisting of polynomials such that its zero locus C contains
the given point q:

dimV (q) = dimP (2)− 1.

Now we choose another point s ∈ P2 and ask:

What is the value of dimV (q, s)?

Since there is a degree two homogeneous polynomial which is a product of two linear
forms vanishing at q but not at s, we see that V (q) ) V (q, s) and hence dimV (q, s) =
6− 2 = 4.

We choose a third point t ∈ P2 and keep asking what the value of dimV (q, s, t) is. In
the same vein we see that

dim V (q, s, t) = dimP (2)− 3,

just because V (q) ) V (q, s) ) V (q, s, t) and at each stage the dimension drops by one.
So far the dimension of the subspace passing through any chosen points drops by the
number of points.

If we choose a fourth point r ∈ P2, the situation gets a bit complicated. We first note
that the condition V (q, s, t) = V (q, s, t, r) is equivalent to the condition

“a conic passing through q, s, t also passes through r”.

Since there is always a conic passing through q, s, t and since r could be arbitrary in case
the three points q, s, t are not collinear, in which case V (q, s, t) ) V (q, s, t, r), we see that
q, s, t should be collinear under the assumption V (q, s, t) = V (q, s, t, r) and furthermore
the fourth point r should be on the line on which q, s, t lies. Therefore we see that

dim V (q, s, t, r) = dimP (2)− 4 ⇔ q, s, t, r are not collinear,

or equivalently

dimV (q, s, t, r) = dimP (2)− 3 ⇔ q, s, t, r are collinear.
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By using classical language in algebraic geometry, we say that four points in a pro-
jective plane fail to impose independent conditions on conics if and only if they
are collinear.

Now choose five points {q(1), . . . , q(5)} ⊂ P2 such that no three are collinear. We
claim that

dimV (q(1), · · · , q(5)) = 6− number of points = 1.

Indeed, since there is a chain of subspaces of the vector space P (2) of dimension 6, at
each step the dimension decreases at most one,

P (2) k V (q(1)) k V (q(1), q(2))) k V (q(1), q(2), q(3))

k V (q(1), q(2), q(3), q(4)) k V (q(1), . . . , q(5)).

It suffices to check that each inclusion is a strict inclusion, which is very easy by using
the fact that no three among five are collinear, e.g. in the last step one may take two
lines each passing through q(1), q(2) and q(3), q(4), respectively but not through q(5).

As we have seen,

dimV (q(1), · · · q(5)) = 6− number of points = 1,

under the assumption that no three among {q(1), · · · , q(5)} are collinear. Thus here
exists a nontrivial homogeneous polynomial in this set and any such polynomial is a
scalar multiple of the other. Let Q(x, y, z) be such a degree two polynomial and

C := {(x, y, z) ∈ P2|Q(x, y, z) = 0}
Hence C is the unique conic (a zero locus of degree two homogeneous polynomial)
containing all the five given points in (linear) general position, i.e. points such that
no three are collinear.

We pose the next question which may seem to be rather silly:

Can one draw this conic in a projective plane in a synthetic way

using only rulers and compass (possibly infinitely many times)? The answer to this
question will be provided in the next section after we go further and prepare adequate
machineries regarding super abundance on the the system of cubics.

We now consider P (3) – the vector space of homogeneous polynomials of degree 3,
with basis

{x3, y3, z3, x2y, x2z, y2z, xy2, xz2, yz2, xyz}
and

dimP (3) = 10.

We choose eight points {q(1), . . . , q(8)} in a projective plane and would like to measure
the dimension of the subspaces

dim V (q(1), . . . , q(i)) for i = 1, . . . , 8.

As before, we note that

P (3) k V (q(1), . . . , q(i)) k V (q(1), · · · , q(i+ 1))

and

(4.1) dimV (q(1), . . . , q(i)) ≥ dimP (3)− i.
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The following remark is one of the essential ingredients of what we are going to discuss
for the rest of this section.

Remark 4.1. For i = 8, the equality in (4.1) fails to hold if and only if either
(1) all the eight points lie on a conic; i.e. all the coordinates of the eight points satisfy

a single homogeneous polynomial of degree two or
(2) five points among the eight given points lie on a line.

This seemingly non-trivial fact is rather easy to prove by elementary geometric con-
figuration of points in a projective plane, whose proof may be carried out as follows.
Indeed the necessary condition is almost trivial, if all the eight given points lie on a conic
then the subspace of cubics vanishing at the eight points contains the cubic polynomials
of the form F · L, where F is an equation of the conic through the eight points and L is
an equation of any line in the projective plane. Hence the dimension of the subspace of
cubic polynomials vanishing at the eight points is at least three which is the dimension
of all the linear forms L in x, y and z.

For the sufficient condition, one may first argue that if seven of eight points fail to
impose independent conditions on cubics, then five among the seven points are collinear
and this is left as an exercise to the readers. One then may proceed as follows. Suppose
that we have eight points q(1) · · · q(8) imposing only seven or fewer conditions on cubics,
and assume that any seven of the eight points impose independent conditions, then it
follows that any cubic passing through any seven of the eight points contain all the eight.
We choose three non-collinear points q(1), q(2), q(3) and choose a conic C containing the
remaining five points. Let Lij be the line joining q(i) and q(j), i 6= j, 1 ≤ i, j ≤ 3. Since
each cubic C +Li,j contains seven points, it must contain the remaining point. However
this is only possible when the conic C contains them all, just because q(1), q(2), q(3) are
not collinear and hence the conclusion.

After this easy but elegant observation, we may push one step further which leads to
the following well-known:

Remark 4.2. Nine given points in a projective plane fail to impose independent
conditions on the space of cubics if and only if either

(i) five among the nine points are collinear,

(ii) eight among the nine are on a conic or
(iii) the set of all the nine points is a complete intersection of two distinct cubics.

Recall that the vector space of all the cubic homogeneous polynomials in x, y and z
is of dimension 10 and hence there is at least one cubic polynomial vanishing at all the
nine given points. We also remark that the condition for the given nine points failing to
impose independent conditions on the system of cubics is equivalent to the condition:

dimV (q(1), . . . , q(8), q(9)) ≥ 2.

However in case dimV (q(1), . . . q(8)) = 2, i.e. the eight points among the nine given
points impose independent conditions on the system of cubics, then

dimV (q(1), . . . , q(8)) = dimV (q(1), . . . , q(8), q(9)) = 2.

In other words, a cubic passing through eight points among nine given points necessarily
passes through the remaining point. Since we are assuming here that none of the eight
points fails to impose independent conditions on cubics, the condition

dimV (q(1), . . . , q(8), q(9)) = 2
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trivially (or tautologically) implies that all the nine points are contained in two distinct
cubics (either reducible or irreducible) hence the nine given points all together form a
complete intersection of two cubics. This elementary discussion may be considered as a
very special case the so-called Cayley–Bacharach Theorem.

Theorem 4.3 (Cayley–Bacharach). Let F and G be two projective plane curves of
degree m and n, respectively such that they meet at mn distinct points. Then any plane
curve H of degree m+n−3 passing through all but one points of the common intersection
of F and G necessarily passes through the remaining point as well.

A proof for the above general statement requires far-reaching tools and terminologies
in algebraic geometry not suitable to be presented here. Instead the readers are advised
to look up [2, pp. 671–672]. However, we may prove the very special case m = n = 3
based on our preceding discussion as follows.

Proof of Cayley–Bacharach for the case m = n = 3. Since the nine points
form the intersection of two distinct cubics C1 and C2 without common component, we
see that

dimV (q(1), . . . , q(9)) > dimP (3)− 9 = 10− 9 = 1.

Assume that a cubic C containing eight among these nine points is not a linear combi-
nation of the defining equations of C1 and C2, then C, C1, C2 are linearly independent
in P (3) and hence

dimV (q(1), . . . q(8)) ≥ 3 > dimP (3)− 8.

Then it follows from the Super Abundance result in Remark 4.1, that either the eight
points q(1), . . . q(8) all lie on a conic or five of the eight points are collinear, which is
impossible, since either one of the cubics C1 or C2 intersects with a conic in at most
6 = 3 · 2 points by the Bézout’s theorem; for example, union of three lines and a union
of two lines intersect in at most 6 points. Likewise, C1 or C2 intersect with a line in at
most three points.

Hence, we conclude that any cubic C containing eight points is of the form

C = aC1 + bC2,

and C must contain all the nine given points, just because both C1 and C2 do. �

5. Pappus’ Theorem and Pascal’s Theorem. As an easy application of the dis-
cussion in the preceding sections, we start this section with Pappus’ Theorem which has
been known to people from ancient times.

Theorem 5.1 (Pappus of Alexandria). Given lines l and m in the plane, three distinct
points A1, A2, A3 on l (but not on m), and three distinct points B1, B2, B3 on m (but
not on l), we consider the intersections C12 = A1B2 ∩ A2B1, C31 = A3B1 ∩ A1B3 and
C23 = A2B3 ∩A3B2. Then C12, C31, C23 must be collinear.

Proof. Consider the cubic F which is the union of three lines A1B2, A3B1, A2B3

and the other cubic G which is the union of the remaining three lines B2A3, B1A2, B3A1.
Then the nine points A1, A2, A3, B1, B2, B3, C12, C31, C23 are all the intersection points
of two cubics F and G. The union of the lines l, m and the line joining C12, C31 passes
through eight points of the complete intersection of F and G and thus must pass through
the remaining point C23 by the Cayley–Bacharach Theorem. Hence the points C12, C31,
C23 are collinear. �

Another similar well-known result is Pascal’s Theorem, which can be also prove by
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Fig. 2. The three points C12, C31, C23 are collinear

using Cayley–Bacharch Theorem. The proof is almost identical to the proof of Pappus’
Theorem.

Theorem 5.2 (Pascal). If six points in a plane can be inscribed in a circle(or a
conic), then the opposite sides of the hexagon meets in collinear points.

Fig. 3. Pascal’s theorem

Remark 5.3. (1) One regards a hexagon with six vertices of any order together with
corresponding six edges. In the picture in the next page, the order of the vertices of the
hexagon is A1, B2, A3, B1, A2, B3. Hence the opposite side of the edge A1B2 is A3B1,
etc.

(2) If one thinks of an ordinary regular hexagon in the Euclidean plane R2, the
opposite sides are parallel and does not meet inside the Euclidean plane. However if we
extend the Euclidean plane to the projective plane, three pairs of parallel lines meet in
the line at infinity and hence they are collinear.

(3) The usual Pappus’ Theorem is just the situation where the conic in Pascal’s
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Theorem degenerates into a pair of lines.
The inverse of Pascal’s Theorem also holds as follows.
Theorem 5.4 (Inverse Pascal’s Theorem). If opposite sides of a hexagon meet in 3

collinear points then the hexagon can be inscribed in a conic.
Proof. With the same figure above as in Pascal’s Theorem (without assuming that

all the six vertices of a hexagon lie on a conic), set

C1 = A1B2 ∪ A3B1 ∪ A2B3,

which is the union of three lines extending the edges such that none of the two are
opposite to the other or adjacent to another, and set

C2 = B2A3 ∪B1A2 ∪B3A1,

the union of three lines extending the remaining three edges. We let C3 be the unique
conic through the five points A1, A2, A3, B1, B2 and let L be the line passing through
C12, C31, C23 by the assumption. Then we see that

C1 ∩ C2 = {A1, A2, A3, B1, B2, B3, C12, C31, C23}
consists of nine points which is the complete intersection of two cubics. Note that C3∪L
contains all the nine points except possibly B3. By Cayley–Bacharach property, C3 ∪ L
contains B3 and indeed B3 ∈ C. �

We conclude this section with the following remark which gives a synthetic way to
construct the conic through any five given points in general position in a projective plane.

Remark 5.5 (Synthetic construction of a conic through five points).
(1) As we have seen at the beginning, there is a unique conic C through five
given points in general position, i.e. no three points are collinear.
(2) Given five points A,B,C,D,E in the plane in sufficiently general position, we let

N = AE ∩BD.
(3) We then pick a point P along the edge CD.
(4) Let Q = NP ∩ CE, then three points N,P,Q become collinear.
(5) LetX = AP∩BQ. Then the hexagon with six vertices in the orderA,E,C,D,B,X

has the property described in the Inverse Pascal’s
Theorem, opposite sides of a hexagon meet in three collinear points.
(6) By the Inverse Pascal’s Theorem, the last vertex X of the hexagon lies on the

conic C through five given points.
(7) Finally we vary P on CD for different points X which will eventually sweep out

all the points on the conic: here wee see that the conic is parametrized by the line CD.

Fig. 4. Synthetic construction of conic through 5 points
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6. Epilogue: an odd end with elementary Brill–Noether problem on an
algebraic curve. Given a compact Riemann surface X with g handles or a smooth
complex projective algebraic curve of genus g, it is well known that there is no non-
constant holomorphic functions on X . However there may exist some meromorphic
functions on X . A basic problem in Brill-Noether theory of algebraic curves can be
addressed as follows:

Question 6.1. Given a finite set of points on X , does there exists a meromorphic
function f on X with poles only at the given finite set of points? If so, how many?

In order to rephrase this naive but natural question more precisely, we recall and
make a note of the following notations and terminologies together with several well-
known results.

Remark 6.2. (1) A divisor D on X is a formal finite sum of points in X with integer
coefficient. In other words, a divisor is a member of the free abelian group with the
generating set X . Hence a divisor D is written as D = n1p1 + · · · + nsps where ni ∈ Z

and pi ∈ X . We set degD :=
∑

ni. A divisor D is called effective (written as D ≥ 0)

if ni ≥ 0 for all i. Given two divisors D and E, we write D ≥ E if and only if D − E is
effective.

(2) A meromorphic function f on a smooth algebraic curve has the same number
of zeros and poles if one counts their multiplicities properly; (f)0 and (f)∞ denote the
locus of zeros and poles of f , respectively. The divisor of f which is denoted by (f) is
the divisor (f)0 − (f)∞. Hence deg(f) = 0.

(3) The collection of all the meromorphic functions onX forms a field which is denoted
by M(X). Given a divisor D = n1p1 + · · · + nsps (usually with ni > 0 for all i), we
consider the collection of meromorphic functions f on X such that the divisor (f) +D
is effective. Since

(f) +D = (f)0 − (f)∞ +D,

this amounts to say that (f)0 +D ≥ (f)∞. We note that (f)0 and (f)∞ has no common
support and hence we have D ≥ (f)∞. Therefore such a meromorphic function has poles
at worst at D.

(4) Let L(D) be the collection

L(D) = {f ∈ M(X)|(f) +D ≥ 0} ∪ 0.

It is known that L(D) is a finite dimensional vector space over C and we denote the
vector space dimension of L(D) by l(D).

(5) Measuring the dimension l(D) of the vector space L(D) has been a long standing
problem in algebraic curve theory and the well-known Riemann–Roch formula gives an
answer:

l(D) = degD − g + 1 + l(K −D),

where K is a canonical divisor on X which is a zero locus of first order holomorphic
differentials on X .

(6) Since L(D) is a vector space, its associated projective space P(L(D)) is the space
parametrizing all the effective divisors which are linearly equivalent to the given divisor
D; two divisors D and E are said to be linearly equivalent if and only if they differ by a
divisor of a meromorphic function f ∈ M(X), i.e. D − E = (f) for some f ∈ M(X).

(7) Given a divisor D on X and L(D) as well, the effective divisors (f) + D with

44



f ∈ L(D) constitute all the members of P(L(D)), which one may call an effective divisor
class (under linear equivalence) corresponding to the given divisor D, which is denoted
by |D|. Obviously, the dimension of P(L(D)) as a projective space is denoted by r(D)
which is just l(D)− 1.

(8) Since a divisor of a meromorphic function has always degree zero, all the divisors
in the effective divisor class |D| have the same degree. Following classical notation, we
write

|D| is a grd if r(D) = r and degD = d

or verbally – a complete linear system(series) of dimension r and degree d.

In order to illustrate and utilize whatever we have carried out in previous sections, we
finally consider the following example and count what kind and how many linear systems
of given degree and dimension may exist on a specific curve.

Example 6.3. Let Γ be a projective plane curve of degree six with four nodal sin-
gularities (Fig. 5), a plane curve defined by a single homogeneous polynomial of degree
six with four isolated singularities whose tangent lines at the singularities are a union of
two distinct lines. Let X be a non-singular model of Γ. Since the arithmetic genus of Γ
is ten, the geometric genus of Γ and hence the genus g = l(K) of X is 10− 4 = 6 by the
Clebsch formula.

(1) We first ask if there may exists a g13 on X and ask how many. Assuming the
existence of a g13 = |D| on X , let D = q1 + q2 + q3. Recall that by the Riemann–Roch
formula,

l(D) = degD − g + 1 + l(K −D) = 3− 6 + 1 + l(K −D).

Hence

l(D) ≥ 2 if and only if l(K −D) ≥ 4 > l(K)− degD = g − 3 = 3.

Therefore it follows that l(D) ≥ 2 if and only if the divisor D imposes fewer conditions
than expected on the canonical system. Recalling that the canonical system is cut out
on X by cubics passing through four nodal points, we easily see that points q1, q2, q3
together with four nodal points p1, . . . , p4 also fail to impose independent conditions on
the space of cubics. As we have seen in the discussion of Remark 4.1, this is only possible
when five among the seven points are collinear. However this is not possible since none of
the five points among seven points, say q1, q2, q3, pi, pj (i 6= j), are collinear on a singular
sextic with four nodal points; note that a line through two singular points pi and pj
meets the curve Γ (Fig. 5) in at most 6− 2 · 2 = 2 further points, whereas we have three

Fig. 5. Plane curve of degree 6 with 4 simple nods
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points q1, q2, q3. We therefore conclude that there is no g13 ’s on X and hence our X can
never be realized as a triple covering of a projective line.

(2) We go further to see if there exists a g14 on X and would like to specify them all if
any. Let g14 = |D| on X , we may assume that the support of D consists of four distinct
points; D = q1 + q2 + q3 + q4. By the Riemann–Roch formula again,

l(D) = degD − g + 1 + l(K −D) = 4− 6 + 1 + l(K −D).

Hence

l(D) ≥ 2 if and only if l(K −D) ≥ 3 > l(K)− degD = 6− 4.

Therefore it follows that l(D) ≥ 2 if and only if the divisor D fails to impose independent
conditions on the canonical system, which is cut out onX by those cubics passing through
four nodal points. This in turn implies that four points q1, q2, q3, q4 together with four
nodal points p1, p2, p3, p4 also fail to impose independent conditions on the space of
cubics. Then by the super abundance result in Remark 4.1, we deduce that either five
among the eight points are collinear or all the eight points lie on a conic. The first case is
indeed the case where five points are the support of D plus one singular point pi. In other
words, the support of D is in the line through one of the four nodal points. Therefore
we have four different pencils such as g14 of such kind. When all the eight points lie on a
conic, i.e. our q1 · · · q4 lie on a conic through p1, · · · p4, we also have a linear system of
degree four which is cut out on X by conics through the four singularities. These five
exhaust all the g14 on X we are looking for.
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ИСТОРИЧЕСКИ ЕТЮД ВЪРХУ СВОЙСТВОТО НА
КЕЙЛИ–БАКАРАХ – СТАРИ И НОВИ ПРОБЛЕМИ

Чангхо Ким

В работата се разглеждат основни проблеми относно конфигурациите от точки
в равнината. С минимално използване на понятия като свръх обилност (super
abundance) е доказан частен случай на теоремата на Кейли–Бакарах. На тази
основа получаваме добре известните класически теореми на Пап и Паскал ка-
то следствие от теоремата на Кейли–Бакарах. Накрая демонстрираме конкретен
пример, свързан с проблема на Брил–Ньотер от теорията на алгебричните кри-
ви.
Ключови думи: Свръх обилност (super abundance), равнинни алгебрични кри-
ви, свойство на Кейли-Бакарах.
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