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We present a brief overview of results of M. Mirzakhani in the context of symplectic
and complex geometry and dynamics of moduli spaces.

1. Lighting a candle. In the early 1950-ies, the German–American mathematician
Ernst Strauss posed the illumination problem: can one illuminate a room with mirrored
walls by a single point light source? Can we always find a spot where we can put a
candle, so that everything is illuminated?

In 1958 Roger Penrose described a room with curved walls, which always has dark
regions. In the case of polygonal rooms, G. Tokarsky in 1995 and D. Castro in 1997 gave
examples of rooms, having respectively 25 and 27 walls, with the property that for every
position of the light source there is always a finite number of dark points in the room. A
related question is whether, given any two points in our room, we can always prevent the
light emitted by the first point from reaching the second point via removing (blocking)
finitely many points. While it is not possible to answer this question in all cases, it
is known that in most rooms and for most pairs of points, this is impossible. These
questions have natural interpretations as security problems or problems on (polygonal)
billiards. Yet another question in the same vein is whether, given a polygonal billiard
table, one has billiard trajectories of two types only: periodic and “table-filling”.

While such questions are easily posed, they are very hard to answer, and progress on
them is often made only as a by-product of developing sophisticated machinery. Instead
of bouncing off the wall, we have to go through the looking glass and flip over the room.
This procedure leads to the notion of “translation surface”, and we shall return to it at
the end of our exposition. For now we just observe that rather than considering problems
on one surface, one has to consider the moduli space of Riemann surfaces, an object of
interest to geometers since the middle of 19-th century.

In the focal point of our discussion here will be the work of Maryam Mirzakhani, who
has greatly influenced our understanding of the geometry and dynamics of Riemann’s
moduli space. Maryam Mirzakhani was born on May 03, 1977 in Tehran. She was
accepted in the Farzanegan school for girls in Tehran, which is part of Iran’s National
Organization for Development of Exceptional Talents (NODET). She won gold medals
at the International Mathematical Olympiads in 1994 and 1995. After completing her
BSc at Sharif University of Technology (Tehran) in 1999, she began her PhD at Harvard
University, under the direction of C. McMullen. Mirzakhani defended her PhD thesis in
2004, obtaining spectacular results, among which was a new proof of the Witten conjec-
ture. Her thesis work appeared as [15, 16, 17]. She was awarded the Clay Mathematics
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Institute Research Fellowship in 2004. She worked at Princeton University until 2008,
when she became a full professor at Stanford University. She was awarded the Fields
Medal in 2014, at the ICM in Seoul. She also received the Clay Research Award in the
same year. Mirzakhani was diagnosed with breast cancer in 2013 and died on July 14,
2017 at the age of fourty.

In this note we touch upon some key points of Mirzakhani’s work and discuss the
context into which her research fits.

2. Setting The Stage.

2.1. Hyperbolic Riemann Surfaces. By a Riemann surface X we shall mean a
(connected) complex manifold of dimension one. We are going to work with Riemann
surfaces of finite type, which means that X will be isomorphic to a closed Riemann
surface, from which a finite (possibly empty) set of points has been removed. We are
also going to encounter bordered Riemann surfaces, i.e., Riemann surfaces with (geodesic)
boundary.

The smooth surface S underlying X always admits a Riemannian metric. In a chart
(U, z = x+ iy) such a metric is given by

ds2 = Edx2 + 2Fdx · dy +Gdy2 = λ |dz + µdz̄|2 ,

where E,F,G, λ ∈ C∞(U,R) and µ ∈ C∞(U,C) with |µ| < 1. If ‖µ‖∞ < 1, the Beltrami
equation (∂z̄ − µ∂z)w = 0 has a solution and hence there exist local coordinates (u, v)
on U , such that ds2 = ρ(du2 + dv2), ρ > 0. The coordinate w = u + iv is also called
isothermal coordinate. Thus the choice of metric induces a complex structure on S.
If two oriented Riemannian structures (Sk, gk), induce Riemann surface structures Xk,
k = 1, 2, an orientation-preserving diffeomorphism f : S1 → S2 is conformal if and only
if f : X1 → X2 is a biholomorphism.

By the uniformisation theorem of Poincaré, Klein and Koebe, any simply-connected
Riemann surfaces is biholomorphic to CP1, C, or the upper half plane H. Closed Riemann
surfaces of genus g ≥ 2 are hyperbolic: one has an isomorphism X ≃ H/Γ, where
π1(X) ≃ Γ ⊂ Aut(H) = PSL2(R) is a discrete group of automorphisms of the upper
half plane. Then the hyperbolic metric ds2 = y−2(dx2+dy2) on H induces a Riemannian
metric with constant negative Gaussian curvature −1 on X , and that is unique within
the conformal class of X .

We are going to use the term hyperbolic surface to mean a smooth, connected and
orientable surface (almost always of genus g ≥ 2), equipped with complete hyperbolic
Riemannian metric of constant curvature −1.

By an n-pointed curve (n ∈ N) or n-pointed compact Riemann surface we shall mean
a compact Riemann surface X , together with a choice of n (ordered) points (p1, . . . , pn)
on X . One of our main objects is the set

Mg,n = {n-pointed compact Riemann surfaces of genus g}/ Isomorphism

Here an isomorphism (X, p1, . . . , pn) ≃ (Y, q1, . . . , qn) means an isomorphism (biholomor-
phism) f : X ≃ Y , such that f(xi) = yi for all i. In particular, we shall writeMg := Mg,0.
Finally, given L = (L1, . . . , Ln) ∈ Rn

≥0, we shall write Mg,n(L) or Mg,n(L1, . . . , Ln)
for the set of isomorphism classes of complete bordered hyperbolic surfaces of genus
g and n cusps, having geodesic boundaries of lengths L1, . . . , Ln, respectively. Thus
Mg,n = Mg,n(0, . . . , 0).
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2.2. Complex and Symplectic Geometry of the Moduli Space and the Te-

ichmüller Space. The properties of Mg have been an object of interest for geometers
since the time of Riemann. It is not merely a set, but carries plenty of additional
structures – several metrics, complex and symplectic structure – and satisfies important
functoriality properties.

The existence of a complex structure on Mg was in some way clear to Riemann,
who writes in [23] that a curve of genus g ≥ 2 depends on 3g − 3 moduli. This was later
studied by O. Teichmüller in the 1940-ies. The ideas of Teichmüller, while being bold and
original, were notoriously difficult to understand, in part due to matters of exposition
and choice of terminology. Many of his arguments were only sketched and were later
reformulated and reestablished in the works of Bers, Rauch, Ahlfors, Weil. . .

In particular, L. Bers elucidated and developed the ideas of O. Teichmüller, and ap-
plied to them the methods of Kodaira–Spencer theory. He identifiedMg with the quotient
of a bounded contractible domain in C3g−3 by the action a properly discontinuous group
of biholomorphisms. This domain, known as Teichmüller space Tg, has points which
classify surfaces with extra structure (framing or marking). The complex structure on
Mg eventually turned out to be that of a quasi-projective algebraic variety.

Teichmüller theory can be approached from many directions: analysis, hyperbolic,
Riemannian or algebraic geometry, which makes it both a fascinating and a technically
challenging subject. For a more detailed introduction see, e.g., the lecture notes [9] or
the books [10], [19].

2.2.1. Teichmüller space. Let S be a closed oriented Riemann surface of genus g ≥ 2,
and o ∈ S a point. We define the Teichmüller space of S as the set

Tg(S) =

{

ρ : π1(S, o) →֒ PSL2(R)

∣

∣

∣

∣

Im(ρ) acts freely on H

H/Im(ρ) is a compact RS of genus g

}/

PSL2(R).

This is an open subset of the representation variety and inherits from it a natural
topology.

Another description of Tg(S) is via marked Riemann surfaces. We consider the set
of pairs (X, f), consisting of a Riemann surface X and a “marking”– an orientation-
preserving diffeomorphism f : S → X . One then defines Teichg(S) = {(X, f)}/ ∼,
where (X, f) ∼ (Y, g) if g ◦ f−1 : X → Y is homotopic to an isomorphism (i.e., bi-
holomorphism). The natural bijection Tg(S) ≃ Teichg(S) [10, Theorem 1.4] is used to
topologise Teichg(S). Alternatively, one can endow Teichg(S) with the topology induced
by the Teichmüller distance [10, Chapter V].

There are other equivalent descriptions of Tg(S), see e.g., [10, Ch. I]. One can con-
sider framed hyperbolic surfaces, and declare (X, f) ∼ (Y, g) if g ◦ f−1 is homotopic
to an isometry. For a purely Riemannian description, consider Diff0(S), the group of
orientation-preserving diffeomorphisms, isotopic to the identity. The set M(S) of Rie-
mannian metrics on S is equipped with an action of Diff0(S)×C∞(S,R+), via pullback
and scaling. Then Tg(S) ≃ M(S)/Diff0(S) × C∞(S,R+). If instead of M(S) one con-
siders the metrics of constant curvature (−1), the quotient is still identified with Tg(S),
but is known as the Fricke space Fg. We recall also the classical result of [6]: two
(orientation-preserving) self-maps of a closed surface are isotopic precisely when they are
homotopic.

Bers [2] has shown that Tg(S) is homeomorphic to an open ball in R6g−6 (for g ≥ 2),
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while for g = 1 one has T1(S) ≃ H. This result, proved also by Fricke, is known as
Teichmüller’s theorem.

A very convenient description of Tg(S) in terms of hyperbolic geometry is provided
by the Fenchel–Nielsen coordinates. One can show [10, III,Proposition 3.6] that S, being
of genus g ≥ 2, can be decomposed into M = 2g − 2 pants {Pk}

M
k=1, by cutting S along

N = 3g − 3 disjoint circles C1, . . . , CN . We fix a hyperbolic structure on S, and replace
the {Ci}

N
i=1 with simple closed disjoint geodesics {γi}

N
i=1. The complex structure of each

pair of pants Pk is uniquely determined by the lengths of its three boundary components
[10, III, Theorem 3.5]. Thus, after fixing a pants decomposition on the base surface S,
one obtains 3g− 3 functions ℓi : Tg(S) → R+, which are in fact real-analytic. To recover
the hyperbolic structure on a surface from the hyperbolic structure on each pair Pk, one
needs to intorduce appropriate “twisting parameters” τi along each boundary geodesic
γi. A priori, these take values in S1, but, due to the simply-connectedness of Tg, they can

be lifted to real-valued functions. The functions (ℓi, τi)
3g−3
i=1 are known as the Fenchel–

Nielsen coordinates. They establish a homeomorphism, and in fact, a diffeomorphism,
between Tg(S) and (R+)3g−3 × R3g−3, see [10, III, Theorem 3.10].

The Teichmüller spaces of different surfaces of the same topological type are naturally
isomorphic, so we are going to write Tg, rather than Tg(S).

One can analogously define Teichmüller spaces Tg,n for Riemann surfaces of genus
g with n marked points, following the methods outlined above, but that requires some
extra care, e.g., if this is done via hyperbolic structures, one must restrict to hyperbolic
metrics of finite type. These spaces have dimension dimR Tg,n = 2(3g − 3 + n), see [2].

2.2.2. Complex-analytic structure of Teichmüller space. The existence of a natural
complex-analytic structure on Tg(S) has been claimed by Teichmüller [24]. The first
proof of this is due to Ahlfors [1], continuing the work of Rauch [22], who constructed
local analytic coordinates away from the locus of hyperelliptic curves. Other proofs were
given by Kodaira–Spencer and A. Weil [26].

L. Bers constructed, in a series of papers (see [2]) embeddings Tg →֒ C3g−3 (for
g ≥ 2), Tg,n →֒ C3g−3+n, and showed that these spaces are biholomorphic to contractible
bounded ones. Bers’ embedding provides a global holomorphic chart and gives a natural
description of the (co)tangent spaces to Teichmüller space a point [X, f ]. Namely,

TTg,[X,f ] = H1(X,TX), T∨
Tg,[X,f ] = H0(X,K2

X),

and the two formulae are linked by Serre duality. By Hodge theory, the elements of
H1(X,TX) can be identified with the “harmonic Beltrami differentials”. These, if suffi-
ciently small in the ∞-norm, give rise to a deformation of the complex structure of X
via a solution of the corresponding inhomogeneous ∂-equation.

From this viewpoint, Teichmüller metric is (the Finsler metric, arising from the dual
of) the L1-norm ‖q‖ =

∫

X
|q(z)||dz|2 on H0(X,K2

X) = T∨
Tg,[X]. Royden has identified

the Teichmüller metric with the Kobayashi metric of Tg.

While being homeomorphic to a ball, Tg is quite far from being biholomorphic to
one: it is in fact a totally inhomogeneous space. Moreover, Tg has a discrete group of
automorphisms, the mapping class group, known also as the modular group, which is
defined as Modg = π0Diff+(S), where Diff+(S) is considered as a topological group with
the compact-open topology. The action of Modg on Tg is properly discontinuous, with
finite stabilisers Stab[ρ] = Aut (H/Imρ) for [ρ] ∈ Tg.
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Similarly, for a surface S with a set P of n marked points P := {p1, . . . , pn}, one
defines the modular group as Modg,n = π0Diff+(S, P ), where Diff+(S, P ) is the group
of (orientation-preserving) diffeomorphisms, fixing P . For surfaces with boundary one
considers, analogously, Diff+(S, ∂S).

By a theorem of McCool and Hatcher–Thurston, the groupModg,n is finitely presented
for all g and n. For g = 1, n = 0 one has [9] that Mod1 = SL2(Z).

2.2.3. Symplectic structure. By a beautiful result of W. Goldman [8] the spaces Tg,
Tg,n, Tg,n(L) have canonical symplectic structures. These are induced by the embedding
of Teichmüller space in the PSL2(R) representation variety. These symplectic structures
are usually called the Weil–Petersson symplectic structure ωWP , and, by a result of
S. Wolpert [28], one has ωWP =

∑3g−3
i=1 dℓi ∧ dτi. Since ω3g−3

WP is a volume form on Tg,
one can now try to compute the volume of Tg (or Tg,n). The volumes of moduli spaces
of curves are important and interesting numbers for enumerative geometers and string
theorists, among others.

2.2.4. Riemann’s Moduli Space. Any detailed discussion of Mg, Mg,n and Mg,n(L) is
beyond the scope of the current note. This is the subject of numerous monographs and
a meeting point for many research programs.

What is important for us here is thatMg = Tg/Modg, and hence it inherits a topology,
and in fact, the structure of a complex space. This space is singular, but has finite
quotient singularities. The morphism of spaces Tg → Mg is a Modg-cover away from the
locus of curves with (excessive) automorphisms.

It should be noted, however, that for many purposes such a description is inade-
quate. For instance, one would like Mg to have a universal property (represent a certain
functor). In particular, any holomorphic family of Riemann surfaces, parametrised by a
complex space T should induce a “classifying map” T → Mg. Thus it is more appro-
priate to treat Mg as an orbifold (or, in an algebro-geometric setting, a stack). Then
Tg is identified as the orbifold universal covering of Mg, while the orbifold fundamental

group πorb
1 (Mg, [X ]) = Modg, if AutX = {e}. Similarly, the orbifold fundamental group

of Mg,n, based at ([X ], p1, . . . , pn), is identified with Modg,n, provided the base point has
no automorphisms (as a pointed curve).

In the exceptional case g = 1, we can identify M1 ≃ C (the j-line), but it is more
satisfying to think of this space as H/SL2(Z), with its two orbifold points corresponding
to elliptic curves with automorphisms Z/4Z and Z/6Z.

For a gentle introduction to these matters we suggest R. Hain’s lectures [9], W. Thurston’s
unpublished book [25], or, in an algebro-geometric setting, §2 of [18].

The space Mg,n has a compactification Mg,n, which is an irreducible algebraic variety
and a coarse moduli space for stable curves [3].

3. Simple Closed Geodesics, Weil–Petersson volumes and the Witten con-

jecture. The first result of Mirzakhani we are going to discuss here concerns the number
of simple closed geodesics on a complete hyperbolic surface X .

Primitive (or prime) geodesics – i.e., geodesics, covering precisely once their image
– are Riemannian geometers’ prime numbers. The number cX(L) of primitive closed
geodesics on X of length ≤ L has been studied classically. In particular, we know, by
the work of Delsarte, Huber and Selberg from the 1940 that cX(L) ∼ eL/L as L → ∞.
This asymptotic formula is universal, i.e., it is independent of the Riemann surface X .

Mirzakhani addressed in her Harvard thesis [14] the much more subtle question of de-
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termining the asymptotic behaviour of the number sX(L) of simple (i.e., non-intersecting)
closed geodesics of length ≤ L on X . As shown in [17], one has sX(L) ∼ CXL6g−6. More
generally, for X ∈ Mg,n the asymptotics is sX(L) ∼ CXL6g−6+2n. Not only do we have
a power law here (rather than an exponential), but, more surprisingly – this dependence
is not universal, and the behaviour depends on X – via the proportionality constant CX .

Even more unexpectedly, the answer to this question – which is a question about
geodesics on an individual surfaceX – came as a by-product of computing Weil–Petersson
volumes of moduli spaces. This circle of ideas is the subject of [15], [16] and [17].

3.1. Weil–Petersson volumes. The key result of [15] is the derivation of the Mirza-

khani volume formulas, see Theorem 1.1, ibid. There it is shown that the numbers
Vg,n(L1, . . . , Ln), defined as the Weil–Petersson volumes VolWP (Mg,n (L1, . . . , Ln)) are
in fact polynomials of degree ≤ 3g− 3+n in Li, with coefficients in Q[π]. These polyno-
mials can be computed by a recursive procedure, the Mirzakhani volume relations. For
example (see Table 1.1, ibid.) V1,1(L) =

1
24 (L

2 + 4π2). In fact, the theorem contains a
more precise statement about the coefficients of these polynomials. Prior to this work,
only a few cases were known: V0,n [30], V1,2 [21], and V1,1(L) [20]. It was also known,
by work of S. Wolpert, that Vg,n are rational multiples of π6g−6+2n. Here we write, as
usual, Vg,n := Vg,n(0).

Consider first geodesics on a once-punctured hyperbolic torus X . Every line with
rational slope determines a simple closed loop γ on X . This loop can be pushed towards
the puncture, but within [γ] ∈ π1(X) there is unique simple closed geodesic of minimal
length, ℓ(γ). This is very different from the case of the (non-punctured) torus, which is
foliated by such geodesics. McShane proved [13] that summing over all geodesics one has
∑

γ(1+e−ℓ(γ)) = 1/2. Mirzakhani showed [15] that this identity can be used to compute

V1,1 = Vol(M1,1) = π2

6 . This is done by integrating both sides of the identity over
M1,1, and converting the left side into an integral over the covering space M∗

1,1 → M1,1,
consisting of pairs (X, γ), where γ is a simple closed geodesic on X ∈ M1,1. Then one
identifies M∗

1,1 with the quotient of M1,1 by the group of Dehn twists of a simple closed
curve, and uses the simple form of ωWP in Fenchel–Nielsen coordinates to compute the
integral.

The rest of [15] is occupied with 1) generalising McShane’s identity to punctured
surfaces with geodesic boundary and 2) developing a method for integration overMg,n(L).
The method of integration involves passing to appropriate covering spaces of Mg,n(L).
For L = 0 one considers a simple closed curve γ and its Mγ

g,n → Mg,n consists of pairs
(X,α), α ∈ Oγ . The Mirzakhani relations are obtained by a detailed analysis of these
covering spaces, their symplectic geometry and their decompositions into simpler pieces.

3.2. Simple Closed Geodesics. The integration techniques on Mg,n allowed Mirza-
khani to obtain results on the asymptotics of sX(L). For a fixed simple closed geodesic
γ she introduces a counting function

sX(L, γ) = #{α ∈ Modg,n · γ|ℓα(X) ≤ L},

and studies its asymptotics. The relation of the two problems is via the identity sX(L) =
∑

γ sX(L, γ), where the sum is over the finitely manyModg,n cosets (“types of geodesics”).

Here the key role is played by the space of measured geodesic laminations MLg,n on
a surface X ∈ Mg,n [25]. This PL-space carries unique (up to scaling) Modg,n-invariant
measure, the Thurston measure µTh. After quotienting by scalars, this space gives the

53



Thurston boundary of Tg,n. Let us denote by BX the unit ball (with respect to the length
function on X) in the space of measured geodesic laminations.

The function sX(L, γ) is in fact a polynomial in L. Mirzakhani proved ([14], [17])
that, as L → ∞,

sX(L, γ)

L6g−6+2n
∼

c(γ)B(X)

bg,n
,

where c(γ) ∈ Q>0, B(X) = µTh(BX) and bg,n =
∫

Mg,n
B(X)dX < ∞. Here γ can be,

more generally, not just a single closed geodesic, but a (rational) multi-curve.

She then used these results to obtain relative frequences of different types of simple
closed geodesics. For example, the probability that a simple closed geodesic on a genus
2 surface will be separating turned out to be 1/7.

3.3. Tautological Classes and Witten’s conjecture. The rational numbers c(γ)
arise as volumes of moduli spaces of bordered hyperbolic surfaces. More precisely, they are
given as certain intersection numbers of line bundles over the moduli space of hyperbolic
structures of the surface, obtained by cutting X along γ.

We recall that Mg,n carries tautological (orbifold) line bundles (Li)
n
1 . The fibre of Li

over (X, c1, . . . , cn) ∈ Mg,n is T∨
X,ci

. EdwardWitten [27] introduced a generating function
F (t0, t1, . . .) encoding the intersection numbers of the various Li, for all g and n. This
is a formal series in infinitely many variables. Witten conjectured that F is determined
by two conditions: that ∂2

t0
F satisfies the KdV equation and that F satisfies the string

equation. This is a conjecture about a recursive formula for the intersection numbers
of the Li. The conjecture implied that Z = eF is annihilated by a certain collection
of differential operators {Ln}n∈Z satisfying the Virasoro relations. Witten’s conjecture
was based on the premise that since “gravity is unique”, partition functions arising from
different approaches to quantisation of two-dimensional gravity should coincide.

In the celebrated work [11], M. Kontsevich introduced an appropriate matrix model
and proved the Witten conjecture by relating intersection numbers to enumeration of
ribbon graphs. There exist another proof of the conjecture, due to A. Okounkov and
R. Pandharipande, using Hurwitz theory and Gromow–Witten theory on P1.

In [16] M. Mirzakhani used her volume formulas to show that F satisfies the Virasoro
constrants and to give a new proof of the Witten conjecture.

That stimulated a flurry of activity in the physics community as well, in relation to a
subject known as “topological recursion”. One can consult the works of B. Eynard and
N. Orantin for these developments.

4. Complex Dynamics. The results discussed in the previous section are rooted
in the symplectic geometry of Tg,n and Mg,n. We now discuss briefly some results of
Mirzakhani which are related to the complex geometry of these spaces.

An extremely important question in the study of dynamical systems is the question
of the behaviour of trajectories and their closures. In the best-case scenario, one is
able to make statements about generic trajectories. In most cases, however, there exist
trajectories exhibiting fractal behaviour of arbitrary complexity.

There are some notable exceptions to this. If we consider the straight-line flow on
S1×S1, we know that the closure of a trajectory will be either a copy of S1 (if the slope
of the line is rational), or all of S1×S1, if the slope is irrational. A torus acts on itself by
translation, i.e., it has a large group of automorphisms, and the fact that we can classify
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all orbits was considered a consequence of the presence of continuous symmetries. The
subject of dynamics on homogeneous spaces is full of beautiful results, but undoubtedly
one of the most interesting ones is M. Ratner’s theorem. It states that if Γ is a lattice
in a Lie group G, and if H ⊂ G is a closed subgroup, generated by unipotents (e.g.,
SL2(R)) then the closure H · p of any H-orbit in G/Γ is itself an orbit K · p, for some
subgroup H ⊂ K ⊂ G.

It came then as a surprise that a similar result holds in the world of complex dy-
namics on moduli space. This is, as A. Zorich put it, the magic wand of Eskin and

Mirzakhani [31].

Infinite geodesics in the moduli space (or in Teichmüller space) i.e., local isometric
immersions γ : R → Mg have been studied by differential geometers. By work of Masur

and Veech it is known that the Teichmüller geodesic flow is ergodic, so γ(R) = Mg for
most geodesics.

The complex analogues of geodesics are known as complex geodesics or Teichmüller

disks, and these are holomorphic isometric immersions γ : H → Mg. One could call
this setup studying geodesic flow in complex time. Already O. Teichmüller considered
these objects and showed that they are ubiquitous: through each point and in each
direction of Mg there passes a complex geodesic. A very bold and ambitious question

is to determine the closures γ(H) ⊂ Mg. One would naturally expect the presence of
arbitrarily complicated fractal-like orbit closures. On the other hand, C. McMullen [12]
showed that for g = 2 all closures are in fact algebraic subvarieties, and there are only
three possibilities for them: an algebraic curve, a Hilbert modular surface or all of M2

(a complex 3-fold).

It was thus a huge breakthrough when the work of Eskin–Mirzakhani [4], Eskin–
Mirzakhani–Mohammadi [5] and Filip [7] demonstrated that all orbit closures γ(H) ⊂ Mg

are algebraic subvarieties!

While Mg is totally inhomogeneous and Ratner’s theorem is not applicable, there is
still an SL2(R)-action behind this result – but an action on a space mapping to Mg,
rather than on Mg itself.

For starters, let us notice that while a compact Riemann surface X has no non-
constant holomorphic functions, it has the next best thing: holomorphic 1-forms. Locally,
a non-zero 1-form ω is exact, i.e., equals f(z)dz, and the holomorphic function f , wherever
nonzero, determines a coordinate chart on X . Thus we can cover X\{zeros(ω)} by
an atlas, having translations as transition functions. Thus, the hyperbolic surface X
becomes equipped with a singular flat metric.

Conversely, given non-zero vectors v1, . . . , vn ∈ R2 and a permutation σ ∈ Sn, one
forms the line segments, joining 0, v1, v1+v2,. . . , v1+· · ·+vn and 0, vσ(1), vσ(1)+vσ(2),. . . ,
vσ(1) + · · ·+ vσ(n). These segments form the boundary of 2n-gon, having pairs of parallel
sides, and we can glue these by translation to obtain a closed topological surface. For
technical reasons, one often includes the vertical direction as part of the structure and
calls such a surface translation surface. We suggest [31] and [29] as two very pleasant
introductions to translation surfaces.

A translation surface inherits a flat (singular) metric from R2, but has trivial holon-
omy, as the gluing is via translations. Thus the conical singularities (of the metric) have
cone angles, which are integer multiples of 2π, say 2π(α1+1), 2π(α2+1), . . . , 2π(αm+1),
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satisfying a Gauss–Bonet constraint α1 + · · ·+ αm = 2g − 2, where g is the genus of the
surface. The translation surface also inherits from R2 ≃ C a complex structure and
a holomorphic 1-form (descending from dz). The one-form has zeroes of multiplicities
α1, . . . , αm at the singular points of the metric.

Once the combinatorial data is fixed, one can vary the vectors v1, . . . , vn to obtain a
family of translation surfaces over (a subset of) Cn = (R2)n.

The space of pairs ([X ], ω ∈ H0(X,Ω1
X)) is a holomorphic rank g vector bundle Hg

over Mg. The multiplicities α = (α1, . . . , αm),
∑

k αk = 2g − 2 of the zeros of the 1-
forms determine stratification H(α) of Hg. The strata are not vector bundles, but just
varieties (orbifolds). The above vectors v1, . . . vn give coordinates (period coordinates)
on the respective stratum, and one can use these to determine a volume form.

The standard R-linear action of GL2(R) and SL2(R) on C gives rise to an action on
Hg. Let H1(α) be the subset of H(α), consisting of translational surfaces with unit area,
i.e., the “unit sphere bundle”.

An important result of Masur and Veech from the 1980-ies says that the strata H1(α)
have finite volume and that SL2(R) acts ergodically on each connected component of
H1(α).

The crucial part of the rigidity proof is a measure classification, given in [4]. There it
is shown that every ergodic, SL2(R)-invariant probability measure on H(α) is supported
on a complex-analytic subvariety (suborbifold). This is a monumental work, which is,
as of now, 214 pages long. The second part of the argument ([5], [4, Theorem 1.5]) is
topological, and claims that any orbit closure is an affine invariant subvariety of H1(α).
This subvariety is in fact algebraic, and moreover, it is linear in period coordinates.

These results open new horizons in the study of moduli spaces and undoubtedly there
will be numerous applications in the years to come.
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