МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2018 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2018
 Proceedings of the Forty-seventh Spring Conference of the Union of Bulgarian Mathematicians
 Borovets, April 2-6, 2018

EXTENSIONS OF BRAIDED GROUPS*

Tatiana Gateva-Ivanova

Abstract

Set-theoretic solutions of the Yang-Baxter equation form a meeting-ground of mathematical physics, algebra and combinatorics. Such a solution (X, r) consists of a set X and a bijective map $r: X \times X \rightarrow X \times X$ which satisfies the braid relations. Braided groups and symmetric groups (involutive braided groups) are group analogues of braided sets and symmetric sets. They are important for the theory of set-theoretic solutions of the Yang-Baxter equation. We introduce a regular extension of braided (respectively, symmetric) groups S, T as a braided (resp: symmetric) group (U, r) such that $U=S \bowtie T$ is the double cross product of S and T, where (S, T) is a strong matched pair and the actions of (U, U) extend the actions of S and T. We study how the properties of the extension $U=S \bowtie T$ depend on the properties of S and T.

1. Introduction.

1.1. Matched pairs of groups, braided groups, and symmetric groups. The theory of matched pairs of groups was introduced and developed by Majid and Takeuchi, [6, 9].

A matched pair of groups is a triple (S, T, σ), where S and T are groups and σ : $T \times S \longrightarrow S \times T, \quad \sigma(a, u)=\left({ }^{a} u, a^{u}\right)$ is a bijective map satisfying the following conditions $\forall a, b \in T, u, v \in S$:

ML0: $\quad{ }^{a} 1=1,{ }^{1} u=u, \quad$ ML1: $\quad{ }^{a b} u={ }^{a}\left({ }^{b} u\right), \quad \operatorname{ML2}: \quad{ }^{a}(u \cdot v)=\left({ }^{a} u\right)\left({ }^{a^{u}} v\right)$,
MR0: $\quad 1^{u}=1, a^{1}=a, \quad$ MR1: $\quad a^{u v}=\left(a^{u}\right)^{v}, \quad \operatorname{MR2}: \quad(a . b)^{u}=\left(a^{b} u\right)\left(b^{u}\right)$.
In other words, the group T acts upon S from the left by ${ }^{()} \bullet$, (ML0, ML1), S acts on T from the right by ${ }^{()}$(MR0, MR1) and these two actions obey the conditions ML2 and MR2.

A braided group is a pair (G, σ), where G is a group and $\sigma: G \times G \longrightarrow G \times G$ is a map such that the triple (G, G, σ) forms a matched pair of groups, and the left and the right actions induced by σ satisfy the compatibility condition, see [8]:

M3: $\quad u v=\left({ }^{u} v\right)\left(u^{v}\right)$, is an equality in $G \quad \forall u, v \in G$.
If the map σ is involutive $\left(\sigma^{2}=i d_{G \times G}\right)$ then (G, σ) is called a symmetric group, see [6]. Braided groups and symmetric groups are group analogues of braided sets and symmetric sets introduced in [2].

[^0]A matched pair (S, T) of groups implies the existence of a group $S \bowtie T$ (called the double cross product) built on $S \times T$ with product and unit

$$
(u, a)(v, b)=\left(u^{a} v, a^{v} . b\right), \quad 1=(1,1), \quad \forall u, v \in S, a, b \in T
$$

and containing S, T as subgroups. Conversely, suppose that there exists a group R factorising into subgroups S, T in the sense that (i) $S, T \subseteq R$ are subgroups and (ii) the restriction of the product of R to a map $\mu: S \times T \rightarrow R$ is bijective. Then (S, T) form a matched pair and $R \cong S \bowtie T$ by this identification μ.

A strong group factorisation is a factorisation in subgroups S, T as above such that R also factorises into T, S. We say that a matched pair (S, T, σ) is strong if it corresponds to a strong factorisation.

Definition 1.1. A regular extension of braided (respectively, symmetric groups) S, T is a braided (respectively, a symmetric) group (U, r) such that $U=S \bowtie T$ where (S, T) is a strong matched pair and the actions of (U, U) extend the actions of $(S, S),(T, T)$, $(S, T),(T, S)$. We denote the last of these by $\triangleleft, \triangleright$.

If the actions in the initial matched pairs extend, then

$$
{ }^{v}(u . a)={ }^{v} u\left(\left(v^{u}\right) \triangleleft a\right), \quad{ }^{b}(u \cdot a)={ }^{b} u \cdot{ }^{b^{u}} a
$$

are the only possible definitions for the actions of S, T. Hence the extended actions necessarily take the form

$$
{ }^{(v . b)}(u \cdot a)={ }^{v}\left({ }^{b} u\right) .\left(\left(v^{b} u\right) \triangleleft\left({ }^{b^{u}} a\right)\right), \quad(v . b)^{(u \cdot a)}=\left(\left(v^{b} u\right) \triangleright\left(^{b^{u}} a\right)\right) \cdot\left(b^{u}\right)^{a} .
$$

An argument similar to the proof of our analogous results for monoids, see Theorem 4.31, and Corollary 4.32 [5], verifies the following theorem.

Theorem 1.2. Let $U=S \bowtie T$, where (S, T) is a strong matched pair of braided groups $\left(S, r_{S}\right)$ and $\left(T, r_{T}\right)$. The following are equivalent:
(1) U is a regular extension of braided groups. In particular, (U, σ) is a braided group, where the braiding operator σ extends r_{S} and r_{T}.
(2) $(U, T),(S, U)$ are matched pairs extending the given actions.
(3) The following equalities hold for all $u, v \in S$ and $a, b \in T$:

$$
\begin{array}{llll}
\text { ml1a: } & { }^{a} u\left(a^{u} v\right)={ }^{a}\left({ }^{u} v\right), & \operatorname{lr} 3 \mathbf{a}: & \left.\left({ }^{a} u\right)^{\left(a^{a^{u}} v\right)}={ }^{\left({ }^{u} v\right.}\right)\left(u^{v}\right) \\
\text { mr1a : } & \left(a^{b}\right)^{u}=\left(a^{b} u\right)^{b^{u}}, \quad \operatorname{lr} 3 \mathbf{b}: & \left.\left.\left({ }^{a} b\right)^{\left(a^{b}\right.} u\right)={ }^{\left(a^{b} u\right.}\right)\left(b^{u}\right) . \tag{1.1}
\end{array}
$$

(4) Moreover, if $\left(S, r_{S}\right)$ and $\left(T, r_{T}\right)$ are symmetric groups, i.e. $\left(r_{S}\right)^{2}=1,\left(r_{T}\right)^{2}=1$, then $U=S \bowtie T$ is also a symmetric group.

Problem 1.3. Let $U=S \bowtie T$ be a regular extension of symmetric groups. Given that $\left(S, r_{S}\right)$ and $\left(T, r_{T}\right)$ satisfy some special condition, say: $(i)\left(S, r_{S}\right)$ and $\left(T, r_{T}\right)$ have finite multipermutation levels; (ii) S and T satisfy lri, (iii) S and T satisfy Raut, (iv) $(S,+, \cdot)$ and $(T,+, \cdot)$ are two-sided braces. Decide when U inherits the same condition. In particular, study the case of particular constructions like semidirect products, or wreath products of symmetric groups.
2. Semidirect products of symmetric groups. Let $\left(S, r_{S}\right)$ and $\left(T, r_{T}\right)$ be disjoint symmetric groups. Suppose the group T acts on the right on S as automorphisms, that is
there is a group homomorphism $\varphi: T \longrightarrow \operatorname{Aut}\left(S, r_{S}\right)$. Denote the right action $u \cdot \varphi(a)=$ u^{a}, then one has

$$
u^{(a b)}=\left(u^{a}\right)^{b} \quad(u v)^{a}=u^{a} \cdot v^{a}, \forall u, v \in S, a, b \in T
$$

Consider the outer semidirect product of S and T, (with respect to φ), denoted $U=$ $S \rtimes_{\varphi} T=S \rtimes T$. As a set, $S \rtimes T$ is the cartesian product $S \times T$. Multiplication of elements in $S \rtimes T$ is determined by the right action as

$$
(u, a) \cdot(v, b):=\left(u\left({ }^{a} v\right), a b\right), \quad \forall u, v \in S, a, b \in T .
$$

This defines a group in which the identity element is $\left(e_{S}, e_{T}\right)=(1,1)$ and the inverse of the element (u, a) is $\left(a^{-1}\left(u^{-1}\right), a^{-1}\right)$. The set of pairs $(u, 1)$ form a normal subgroup of U isomorphic to S, while pairs $(1, a)$ form a subgroup isomorphic to T. The full group U is an inner semidirect product of those two subgroups, so we shall use notation $u a:=(u, a)$. There is a canonical structure of symmetric group on U, moreover, U is a regular extension of S, T. Suppose there is a (nondegenerate) left action of T on S, such that U is a symmetric group. Let $u \in S, a \in T$. The compatibility condition and the multiplication law in U imply

$$
u a={ }^{u} a \cdot u^{a}=a \cdot u^{a}=\left({ }^{a}\left(u^{a}\right)\right) a,
$$

hence,

$$
{ }^{a}\left(u^{a}\right)=u={ }^{a}\left(a^{-1} u\right), \quad \forall u \in S, a \in T,
$$

which by the nondegeneracy of the action gives:

$$
u^{a}={ }^{a^{-1}} u, \quad \forall u \in S, a \in T .
$$

This equality determines canonically the left action of T on S, as

$$
{ }^{a} u:=u^{a^{-1}}, \forall u \in S, a \in T,
$$

It is easy to check that T acts on the left upon S as automorphisms, and the identities (1.1) are satisfied. Hence the bijective map $r: U \times U \longrightarrow U \times U$ defined as $r(u a, v b)=$ $\left({ }^{u a}(v b),(u a)^{v b}\right)$ is an involutive braiding operator on U, and (U, r) is a symmetric group.

We say that $(U, r)=(S \rtimes T, r)$ is a semidirect product of the symmetric groups S, T
It will be interesting to describe the socle Γ_{U} of U. By definition, Γ_{U} is kernel of the left actions

$$
\Gamma_{U}=\Gamma_{l}=\left\{\left.x \in U\right|^{x} y=y, \forall y \in U\right\}=\left\{x \in U \mid y^{x}=y, \forall u \in G\right\}=\Gamma_{r},
$$

Denote by Γ_{S}, and Γ_{T}, respectively the corresponding kernels in S, T, respectively. Recall that Γ_{U} is an r-invariant normal subgroup of U, the quotient group $\widetilde{G}=U / \Gamma$ is a symmetric group, and the map

$$
\varphi:\left(\widetilde{U}, r_{\widetilde{U}}\right) \longrightarrow\left([U], r_{[U]}\right)=\operatorname{Ret}(U, r), \quad \widetilde{a} \mapsto[a],
$$

is an isomorphism of symmetric groups, as shows the following.
Lemma 2.1. Suppose $(U, r)=S \rtimes_{\varphi} T=(S \rtimes T, r)$ is the semidirect product of symmetric groups defined as above, let $\Gamma_{U}, \Gamma_{S}, \Gamma_{T}$ be the corresponding socles.
(1) The socle Γ_{S} is an r-invariant normal subgroup of U. Moreover, $\Gamma_{S} \subseteq \Gamma_{U}$, and $\left(S, r_{S}\right) \not \not 二 \operatorname{Ret}\left(S, r_{S}\right)$ implies $(U, r) \not \equiv \operatorname{Ret}(U, r)$.
(2) The socle Γ_{U} is a union

$$
\begin{aligned}
\Gamma_{U}=\Gamma_{S} \bigcup\{x \in U \mid x=u a, u \in S,(\text { possibly } u=1) & , a \in \Gamma_{U} \\
& \left.\mathcal{L}_{a \mid S}=\mathcal{L}_{u^{-1}} \in \operatorname{Aut}\left(S, r_{S}\right)\right\}
\end{aligned}
$$

(3) The original action of T on S induces an action of T on the quotient group $S / \Gamma_{S} \simeq$ $\left([S], r_{[S]}\right)$, and a semidirect product $\left(S / \Gamma_{S}\right) \rtimes T$. The following is a sequence of surjective homomorphisms of symmetric groups:

$$
U=S \rtimes T \longrightarrow U / \Gamma_{S} \simeq\left(S / \Gamma_{S}\right) \rtimes T \longrightarrow U / \Gamma_{U} \simeq \operatorname{Ret}(U, r) \quad u a \mapsto\left([u]_{S}\right) a \mapsto[u a]_{U}
$$

Proof. First we show that Γ_{S} is a normal subgroup of U. Let $x \in U, u \in \Gamma_{S}$, then for every $v \in S$ one has

$$
{ }^{\left(x u x^{-1}\right)} v={ }^{x}\left({ }^{\left(u x^{-1}\right)} v\right)={ }^{x}\left(x^{-1} v\right)=v
$$

therefore $\left.x u x^{-1}\right) \in \Gamma_{S}$. Next we verify that Γ_{S} is r-invariant, or equivalently, it is invariant with respect to the left and to the right actions of U. We know that Γ_{S} is invariant with respect to the action of S upon itself, so it will be enough to show that

$$
{ }^{a} u \in \Gamma_{S}, u^{a} \in \Gamma_{S} \forall a \in T, u \in \Gamma_{S}
$$

Let $a \in T, u \in \Gamma_{S}$, we must show ${ }^{a} u v=v, \forall v \in S$. Let $v \in S$, and set $w=v^{a}$. Then $v={ }^{a} w$,

$$
{ }^{a} u v={ }^{a} u\left({ }^{a} w\right)=\left({ }^{a} u\right) a={ }^{a u} w={ }^{a} w=v .
$$

So Γ_{S} is invariant with respect to the left action of U, and the equality $u^{a}={ }^{a^{-1}} u \in \Gamma_{S}$ implies Γ_{S} is invariant with respect to the right action of U. This proves part (1) It follows that the canonical maps

$$
U=S \rtimes T \longrightarrow U / \Gamma_{S} \longrightarrow U / \Gamma_{U}
$$

are epimorphisms of symmetric groups. Moreover, there is a natural isomorphism of symmetric groups $U / \Gamma_{S} \simeq\left(S / \Gamma_{S}\right) \rtimes T$.

Theorem 2.2. Let $\left(S, r_{S}\right)$ and $\left(T, r_{T}\right)$ be disjoint symmetric groups, such that T acts on S as automorphisms. Suppose $(U, r)=(S \rtimes T, r)$ is the semidirect product of symmetric groups defined as above.
(1) (U, r) is a symmetric group which is a regular extension of S, T.
(2) (U, r) satisfies lri iff $\left(S, r_{S}\right)$ and $\left(T, r_{T}\right)$ satisfy lri.
(3) (U, r) satisfies condition Raut iff $\left(S, r_{S}\right)$ and $\left(T, r_{T}\right)$ satisfy Raut.
(4) (U, r) has finite multipermutation level if and only if $\left(S, r_{S}\right)$ and $\left(T, r_{T}\right)$ do so. In this case the following inequalities give exact bounds for $\operatorname{mpl}(U, r)$:

$$
\max \{\operatorname{mpl} S, \operatorname{mpl} T\} \leq \operatorname{mpl} U \leq \operatorname{mpl} S+\operatorname{mpl} T
$$

(5) The left brace $(U,+$,.) is a two-sided brace if and only if S and T are two-sided braces and

$$
(u+v)^{a+b} w+w=u^{a} w+v^{b} w \quad \forall u, v, w \in S, \mid ; a, b \in T .
$$

3．Wreath products of symmetric groups．Let A and H be（disjoint）groups and suppose H acts on a set Ω ．We recall the definition of（restricted）wreath product $A w r_{\Omega} H$ ．Let K be the direct sum

$$
K \equiv \bigoplus_{\omega \in \Omega} A_{\omega}
$$

of copies of $A_{\omega} \simeq A$ indexed by the set Ω ．The elements of K are sequences $\left(a_{\omega}\right)$ of elements in A indexed by Ω of which all but finitely many $\left(a_{\omega}\right)$ are the identity element of A ．Then the action of H on Ω extends in a natural way to an action of H on the group K by

$$
{ }^{h}\left(a_{\omega}\right)=\left(a_{h_{\omega}}\right) .
$$

Then the wreath product $A w r_{\Omega} H$ of A by H is the semidirect product $K \rtimes H$ ．The subgroup K of $A w r_{\Omega} H$ is called the base of the wreath product．

Assume now $\left(A, r_{A}\right)$ and $\left(H, r_{H}\right)$ are symmetric groups．In this case H acts on the left and on the right upon itself．We consider the wreath product $A w r H$ ，where $\Omega:=H$ ．

Note that the left and the right action of A upon itself induce in a natural way a left and a right action of K upon itself which makes K a symmetric group．The left and the right actions are define componentwise as：

$$
{ }^{\left(a_{\alpha}\right)} b_{\beta}= \begin{cases}\left({ }^{a} b\right)_{\alpha} & \text { if } \beta=\alpha \\ b_{\beta} & \text { else. }\end{cases}
$$

The right action of K upon itself is defined analogously．Then the braiding operator r_{K} is defined canonically as

$$
r_{K}\left(\left(a_{\alpha}\right)\left(b_{\beta}\right)\right)=\left(\left(\left({ }^{a} b\right)_{\alpha}\right),\left(\left(a^{b}\right)_{\alpha}\right)\right)
$$

Theorem 3．1．Let $\left(A, r_{A}\right)$ and $\left(H, r_{H}\right)$ be disjoint symmetric groups．Then the wreath product $G=A w r H$ is a symmetric group．

Let $\left(X_{0}, r_{X_{0}}\right)$ and $\left(Y, r_{Y}\right)$ be disjoint square－free solutions．The wreath product of solutions，denoted $(Z, r)=\left(X_{0}, r_{X_{0}}\right)$ 々 $\left(Y, r_{Y}\right)$ is defined in［7，Definition 8．6］．

Theorem 3．2．Let $\left(X_{0}, r_{0}\right)$ and $\left(Y, r_{Y}\right)$ be disjoint square－free solutions，and let $(Z, r)=\left(X_{0}, r_{0}\right) 乙\left(Y, r_{Y}\right)$ be their wreath product．As usual， $\mathcal{G}_{X_{0}}=\mathcal{G}\left(X_{0}, r_{0}\right), \mathcal{G}_{Y}=$ $\mathcal{G}\left(Y, r_{Y}\right)$ and $\mathcal{G}_{Z}=\mathcal{G}(Z, r)$ denote the corresponding permutation groups，we consider also the corresponding symmetric group structure on each of them．Then the following conditions hold．
（1）The wreath product $(Z, r)=\left(X_{0}, r_{0}\right) 乙\left(Y, r_{Y}\right)$ is a square－free solution．
（2）The permutation group \mathcal{G}_{Z} is a wreath product of the groups $\mathcal{G}_{Z}=\mathcal{G}_{X_{0}} 2 \mathcal{G}_{Y}$ ．
（3）Moreover，the symmetric group $\left(\mathcal{G}_{Z}, r_{\mathcal{G}_{Z}}\right)$ is a wreath product of symmetric groups：

$$
\left.\left(\mathcal{G}_{Z}, r_{\mathcal{G}_{Z}}\right)=\left(\mathcal{G}_{X_{0}}, r_{\mathcal{G}_{X_{0}}}\right)\right\}\left(\mathcal{G}_{Y}, r_{\mathcal{G}_{Y}}\right)
$$

Suppose $\left(X_{0}, r_{0}\right)$ and $\left(Y, r_{Y}\right)$ are multipermutation solutions of finite multipermutation levels， $\mathrm{mpl} X_{0}=m$ ，and $\mathrm{mpl} Y=n$ ．
（4）

$$
\mathrm{mpl} Z=\operatorname{mpl} X_{0}+\operatorname{mpl} Y-1 \quad \operatorname{mpl} \mathcal{G}_{X_{0}}=m-1, \operatorname{mpl} \mathcal{G}_{Y}=n-1
$$

(5)

$$
\mathrm{mpl} \mathcal{G}_{Z}=\operatorname{mpl} \mathcal{G}_{X_{0}}+\operatorname{mpl} \mathcal{G}_{Y}=\operatorname{mpl} Z-1
$$

Proof. Parts (3.2) and (3.2) are proven in [7, Theorem 8.7]. Parts (3.2) is straightforward. By [4, Theorem 5.15] there follow the equalities $\mathrm{mpl} \mathcal{G}_{X_{0}}=\mathrm{mpl} X_{0}-1, \mathrm{mpl} \mathcal{G}_{Y}=$ $n-1$ and $\mathrm{mpl} \mathcal{G}_{Z}=\mathrm{mpl} Z-1$. Moreover, [7, Theorem 8.7] implies $\mathrm{mpl} Z=\mathrm{mpl} X_{0}+$ $\mathrm{mpl} Y-1$. It follows that

$$
\operatorname{mpl} \mathcal{G}_{Z}=\operatorname{mpl} Z-1=m+n-2=\operatorname{mpl} \mathcal{G}_{X_{0}}+\operatorname{mpl} \mathcal{G}_{Y} .
$$

REFERENCES

[1] V. G. Drinfeld. On unsolved problems in quantum group theory. Quantum Groups. Lecture Notes Math., vol. 1510, Springer-Verlag, Berlin, 1992, 1-8.
[2] P. Etingof, T. Schedler, A. Soloviev. Set-theoretical solutions to the quantum YangBaxter equation. Duke Math. J., 100 (1999), 169-209.
[3] T. Gateva-Ivanova. A combinatorial approach to the set-theoretic solutions of the YangBaxter equation. J. Math. Phys., 45 (2004), 3828-3858.
[4] T. Gateva-Ivanova. Set-theoretic solutions of YBE, Braces and Symmetric groups. ArXiv:1507.02602v4 [math.QA].
[5] T. Gateva-Ivanova, S. Majid. Matched pairs approach to set theoretic solutions of the Yang-Baxter equation. J. Algebra, 319 (2008), 1462-1529.
[6] M. Takeuchi. Survey on matched pairs of groups. An elementary approach to the ESS-LYZ theory. Banach Center Publ., 61 (2003), 305-331.
[7] T. Gateva-Ivanova, P. J. Cameron. Multipermutation solutions of the Yang-Baxter equation. arXiv preprint 2009, arXiv:0907.4276 [math.QA], 1-60.
[8] J. Lu, M. Yan, Y. Zhu. On the set-theoretical Yang-Baxter equation. Duke Math. J., 104 (2000), 1-18.
[9] S. Majid. Foundations of quantum group theory. Cambridge Univ. Press, 1995.
[10] S. Majid. Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations. Pac. J. Math., 141 (1990), 311-332.
[11] S. Majid. Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrosspoduct construction. J. Algebra, 130 (1990) 17-64.

Tatiana Gateva-Ivanova
American University in Bulgaria
2700 Blagoevgrad, Bulgaria
and
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
1113 Sofia, Bulgaria
e-mail: Tatyana@aubg.edu

РАЗШИРЕНИЯ НА СПЛЕТЕНИ ГРУПИ И СИМЕТРИЧНИ ГРУПИ

Татяна Гатева Иванова

Уравнението на Янг-Бакстер е едно от основните уравнения на математическата физика, и по-специално - в теорията на квантовите групи. Особено интересни са теоретико-множествените решения, при чието изследване освен теоретична физика се използват интензивно некомутативна алгебра и комбинаторика. Такова решение (X, r) се състои от множество X и биективно изображение $r: X \times X \rightarrow X \times X$, което удовлетворява известното сботношение на плитките. Сплетените групи и симетричните групи (т.е. сплетените инволютивни групи) са теоретико-групови аналози на т.н. сплетени множества и симетрични множества. Модерните тенденции налагат интензивно изучаване на теорията на сплетените и симетричните групи. Всяка такава група представлява и решения на уравнението на Янг-Бакстър. Конструирането на нови решения (нови симетрични групи) е от особена важност. Ние въвеждаме понятието „регулярни разширения на сплетени групи S и $T^{\text {". }}$. И изследваме кои алгебрични своиства на S и T индуцират аналогични своиства на техни разширения $U(S, T)$.

[^0]: *2010 Mathematics Subject Classification: Primary 16T25, 16W22, 16N20, 16N40, 20F16, 81R50.

 Key words: Yang-Baxter Equation, set-theoretic solutions, braided group, symmetric group (involutive braided groups), extensions.

 The author was partially supported by Grant I $02 / 18$ of the Bulgarian National Science Fund.

