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EXTENSIONS OF BRAIDED GROUPS*

Tatiana Gateva-Ivanova

Set-theoretic solutions of the Yang–Baxter equation form a meeting-ground of
mathematical physics, algebra and combinatorics. Such a solution (X, r) consists of
a set X and a bijective map r : X ×X → X ×X which satisfies the braid relations.
Braided groups and symmetric groups (involutive braided groups) are group analogues
of braided sets and symmetric sets. They are important for the theory of set-theoretic
solutions of the Yang-Baxter equation. We introduce a regular extension of braided
(respectively, symmetric) groups S, T as a braided (resp: symmetric) group (U, r) such
that U = S ⊲⊳ T is the double cross product of S and T , where (S, T ) is a strong
matched pair and the actions of (U,U) extend the actions of S and T . We study how
the properties of the extension U = S ⊲⊳ T depend on the properties of S and T .

1. Introduction.

1.1. Matched pairs of groups, braided groups, and symmetric groups. The
theory of matched pairs of groups was introduced and developed by Majid and Takeuchi,
[6, 9].

A matched pair of groups is a triple (S, T, σ), where S and T are groups and σ :
T×S −→ S×T, σ(a, u) = (au, au) is a bijective map satisfying the following conditions
∀ a, b ∈ T, u, v ∈ S:

ML0 : a1 = 1, 1u = u, ML1 : abu = a(bu), ML2 : a(u.v) = (au)(a
u

v),

MR0 : 1u = 1, a1 = a, MR1 : auv = (au)v, MR2 : (a.b)u = (a
bu)(bu).

In other words, the group T acts upon S from the left by ( )•, (ML0, ML1), S acts on
T from the right by •( ) (MR0, MR1) and these two actions obey the conditions ML2

and MR2.
A braided group is a pair (G, σ), where G is a group and σ : G × G −→ G × G is a

map such that the triple (G,G, σ) forms a matched pair of groups, and the left and the
right actions induced by σ satisfy the compatibility condition, see [8]:

M3 : uv = (uv)(uv), is an equality in G ∀u, v ∈ G.

If the map σ is involutive (σ2 = idG×G) then (G, σ) is called a symmetric group, see [6].
Braided groups and symmetric groups are group analogues of braided sets and symmetric
sets introduced in [2].
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A matched pair (S, T ) of groups implies the existence of a group S ⊲⊳ T (called the
double cross product) built on S × T with product and unit

(u, a)(v, b) = (u.av, av.b), 1 = (1, 1), ∀u, v ∈ S, a, b ∈ T

and containing S, T as subgroups. Conversely, suppose that there exists a group R
factorising into subgroups S, T in the sense that (i) S, T ⊆ R are subgroups and (ii)
the restriction of the product of R to a map µ : S×T → R is bijective. Then (S, T ) form
a matched pair and R ∼= S ⊲⊳ T by this identification µ.

A strong group factorisation is a factorisation in subgroups S, T as above such that R
also factorises into T, S. We say that a matched pair (S, T, σ) is strong if it corresponds
to a strong factorisation.

Definition 1.1. A regular extension of braided (respectively, symmetric groups) S, T
is a braided (respectively, a symmetric) group (U, r) such that U = S ⊲⊳ T where (S, T )
is a strong matched pair and the actions of (U,U) extend the actions of (S, S), (T, T ),
(S, T ), (T, S). We denote the last of these by ⊳, ⊲.

If the actions in the initial matched pairs extend, then
v(u.a) = vu((vu) ⊳ a), b(u.a) = bu.b

u

a

are the only possible definitions for the actions of S, T . Hence the extended actions
necessarily take the form

(v.b)(u.a) = v(bu).((v
bu) ⊳ (b

u

a)), (v.b)(u.a) = ((v
bu) ⊲ (b

u

a)).(bu)a.

An argument similar to the proof of our analogous results for monoids, see Theorem
4.31, and Corollary 4.32 [5], verifies the following theorem.

Theorem 1.2. Let U = S ⊲⊳ T , where (S, T ) is a strong matched pair of braided
groups (S, rS) and (T, rT ). The following are equivalent:

(1) U is a regular extension of braided groups. In particular, (U, σ) is a braided group,
where the braiding operator σ extends rS and rT .

(2) (U, T ), (S,U) are matched pairs extending the given actions.

(3) The following equalities hold for all u, v ∈ S and a, b ∈ T :

(1.1)
ml1a :

au(a
u

v) = a(uv), lr3a : (au)(
a
u

v) = (a
u
v)(uv)

mr1a : (ab)u = (a
bu)b

u

, lr3b : (ab)(
a
b

u) = (a
b
u)(bu).

(4) Moreover, if (S, rS) and (T, rT ) are symmetric groups, i.e. (rS)
2 = 1, (rT )

2 = 1,
then U = S ⊲⊳ T is also a symmetric group.

Problem 1.3. Let U = S ⊲⊳ T be a regular extension of symmetric groups. Given
that (S, rS) and (T, rT ) satisfy some special condition, say: (i) (S, rS) and (T, rT ) have
finite multipermutation levels; (ii) S and T satisfy lri, (iii) S and T satisfy Raut, (iv)
(S,+, ·) and (T,+, ·) are two-sided braces. Decide when U inherits the same condition. In
particular, study the case of particular constructions like semidirect products, or wreath
products of symmetric groups.

2. Semidirect products of symmetric groups. Let (S, rS) and (T, rT ) be disjoint
symmetric groups. Suppose the group T acts on the right on S as automorphisms, that is
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there is a group homomorphism ϕ : T −→ Aut(S, rS). Denote the right action u.ϕ(a) =
ua, then one has

u(ab) = (ua)b (uv)a = ua.va, ∀u, v ∈ S, a, b ∈ T.

Consider the outer semidirect product of S and T , (with respect to ϕ), denoted U =
S ⋊ϕ T = S ⋊ T. As a set, S ⋊ T is the cartesian product S × T . Multiplication of
elements in S ⋊ T is determined by the right action as

(u, a).(v, b) := (u(av), ab), ∀u, v ∈ S, a, b ∈ T.

This defines a group in which the identity element is (eS , eT ) = (1, 1) and the inverse

of the element (u, a) is (a
−1

(u−1), a−1). The set of pairs (u, 1) form a normal subgroup
of U isomorphic to S, while pairs (1, a) form a subgroup isomorphic to T . The full
group U is an inner semidirect product of those two subgroups, so we shall use notation
ua := (u, a). There is a canonical structure of symmetric group on U , moreover, U is a
regular extension of S, T . Suppose there is a (nondegenerate) left action of T on S, such
that U is a symmetric group. Let u ∈ S, a ∈ T . The compatibility condition and the
multiplication law in U imply

ua = ua.ua = a.ua = (a(ua))a,

hence,
a(ua) = u = a(a

−1

u), ∀u ∈ S, a ∈ T,

which by the nondegeneracy of the action gives:

ua = a−1

u, ∀u ∈ S, a ∈ T.

This equality determines canonically the left action of T on S, as
au := ua−1

, ∀u ∈ S, a ∈ T,

It is easy to check that T acts on the left upon S as automorphisms, and the identities
(1.1) are satisfied. Hence the bijective map r : U × U −→ U × U defined as r(ua, vb) =
(ua(vb), (ua)vb) is an involutive braiding operator on U , and (U, r) is a symmetric group.

We say that (U, r) = (S ⋊ T, r) is a semidirect product of the symmetric groups S,T

It will be interesting to describe the socle ΓU of U . By definition, ΓU is kernel of the
left actions

ΓU = Γl = {x ∈ U | xy = y, ∀y ∈ U} = {x ∈ U | yx = y, ∀u ∈ G} = Γr,

Denote by ΓS , and ΓT , respectively the corresponding kernels in S, T , respectively.
Recall that ΓU is an r-invariant normal subgroup of U , the quotient group G̃ = U/Γ is
a symmetric group, and the map

ϕ : (Ũ , r
Ũ
) −→ ([U ], r[U ]) = Ret(U, r), ã 7→ [a],

is an isomorphism of symmetric groups, as shows the following.
Lemma 2.1. Suppose (U, r) = S ⋊ϕ T = (S ⋊ T, r) is the semidirect product of

symmetric groups defined as above, let ΓU , ΓS, ΓT be the corresponding socles.

(1) The socle ΓS is an r-invariant normal subgroup of U . Moreover, ΓS ⊆ ΓU , and
(S, rS) ≇ Ret(S, rS) implies (U, r) ≇ Ret(U, r).
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(2) The socle ΓU is a union

ΓU = ΓS

⋃
{x ∈ U |x = ua, u ∈ S, (possibly u = 1), a ∈ ΓU ,

La|S = Lu−1 ∈ Aut(S, rS)}.

(3) The original action of T on S induces an action of T on the quotient group S/ΓS ≃
([S], r[S]), and a semidirect product (S/ΓS) ⋊ T . The following is a sequence of
surjective homomorphisms of symmetric groups:

U = S⋊T −→ U/ΓS ≃ (S/ΓS)⋊T −→ U/ΓU ≃ Ret(U, r) ua 7→ ([u]S)a 7→ [ua]U .

Proof. First we show that ΓS is a normal subgroup of U . Let x ∈ U, u ∈ ΓS , then
for every v ∈ S one has

(xux−1)v = x((ux
−1)v) = x(x

−1

v) = v,

therefore xux−1) ∈ ΓS . Next we verify that ΓS is r-invariant, or equivalently, it is
invariant with respect to the left and to the right actions of U . We know that ΓS is
invariant with respect to the action of S upon itself, so it will be enough to show that

au ∈ ΓS , u
a ∈ ΓS ∀a ∈ T, u ∈ ΓS .

Let a ∈ T, u ∈ ΓS , we must show
auv = v, ∀v ∈ S. Let v ∈ S, and set w = va. Then

v = aw,
auv =

au(aw) = (au)aw = auw = aw = v.

So ΓS is invariant with respect to the left action of U , and the equality ua = a−1

u ∈ ΓS

implies ΓS is invariant with respect to the right action of U . This proves part (1) It
follows that the canonical maps

U = S ⋊ T −→ U/ΓS −→ U/ΓU

are epimorphisms of symmetric groups. Moreover, there is a natural isomorphism of
symmetric groups U/ΓS ≃ (S/ΓS)⋊ T . �

Theorem 2.2. Let (S, rS) and (T, rT ) be disjoint symmetric groups, such that T
acts on S as automorphisms. Suppose (U, r) = (S ⋊ T, r) is the semidirect product of
symmetric groups defined as above.

(1) (U, r) is a symmetric group which is a regular extension of S, T .

(2) (U, r) satisfies lri iff (S, rS) and (T, rT ) satisfy lri.

(3) (U, r) satisfies condition Raut iff (S, rS) and (T, rT ) satisfy Raut.

(4) (U, r) has finite multipermutation level if and only if (S, rS) and (T, rT ) do so. In
this case the following inequalities give exact bounds for mpl(U, r) :

max{mplS,mplT } ≤ mplU ≤ mplS +mplT.

(5) The left brace (U,+, .) is a two-sided brace if and only if S and T are two-sided
braces and

(u+ v)a+bw + w = uaw + vbw ∀u, v, w ∈ S, |; a, b ∈ T.
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3. Wreath products of symmetric groups. Let A and H be (disjoint) groups
and suppose H acts on a set Ω. We recall the definition of (restricted ) wreath product
AwrΩH. Let K be the direct sum

K ≡
⊕

ω∈Ω

Aω

of copies of Aω ≃ A indexed by the set Ω. The elements of K are sequences (aω) of
elements in A indexed by Ω of which all but finitely many (aω) are the identity element
of A. Then the action of H on Ω extends in a natural way to an action of H on the group
K by

h(aω) = (ahω).

Then the wreath product AwrΩH of A by H is the semidirect product K ⋊ H . The
subgroup K of AwrΩH is called the base of the wreath product.

Assume now (A, rA) and (H, rH) are symmetric groups. In this case H acts on the
left and on the right upon itself. We consider the wreath product AwrH , where Ω := H .

Note that the left and the right action of A upon itself induce in a natural way a left
and a right action of K upon itself which makes K a symmetric group. The left and the
right actions are define componentwise as:

(aα)bβ =

{
(ab)α if β = α

bβ else.

The right action of K upon itself is defined analogously. Then the braiding operator rK
is defined canonically as

rK((aα)(bβ)) = (((ab)α), ((a
b)α))

Theorem 3.1. Let (A, rA) and (H, rH) be disjoint symmetric groups. Then the wreath
product G = AwrH is a symmetric group.

Let (X0, rX0
) and (Y, rY ) be disjoint square-free solutions. The wreath product of

solutions, denoted (Z, r) = (X0, rX0
) ≀ (Y, rY ) is defined in [7, Definition 8.6].

Theorem 3.2. Let (X0, r0) and (Y, rY ) be disjoint square-free solutions, and let
(Z, r) = (X0, r0) ≀ (Y, rY ) be their wreath product. As usual, GX0

= G(X0, r0), GY =
G(Y, rY ) and GZ = G(Z, r) denote the corresponding permutation groups, we consider
also the corresponding symmetric group structure on each of them. Then the following
conditions hold.

(1) The wreath product (Z, r) = (X0, r0) ≀ (Y, rY ) is a square-free solution.

(2) The permutation group GZ is a wreath product of the groups GZ = GX0
≀ GY .

(3) Moreover, the symmetric group (GZ , rGZ
) is a wreath product of symmetric groups:

(GZ , rGZ
) = (GX0

, rGX0
) ≀ (GY , rGY

)

Suppose (X0, r0) and (Y, rY ) are multipermutation solutions of finite multipermutation
levels, mplX0 = m, and mplY = n.

(4)

mplZ = mplX0 +mplY − 1 mplGX0
= m− 1,mplGY = n− 1.
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(5)

mplGZ = mpl GX0
+mpl GY = mplZ − 1

Proof. Parts (3.2) and (3.2) are proven in [7, Theorem 8.7]. Parts (3.2) is straight-
forward. By [4, Theorem 5.15] there follow the equalities mplGX0

= mplX0−1,mplGY =
n − 1 and mplGZ = mplZ − 1. Moreover, [7, Theorem 8.7] implies mplZ = mplX0 +
mplY − 1. It follows that

mpl GZ = mplZ − 1 = m+ n− 2 = mpl GX0
+mplGY . �
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РАЗШИРЕНИЯ НА СПЛЕТЕНИ ГРУПИ И СИМЕТРИЧНИ ГРУПИ

Татяна Гатева Иванова

Уравнението на Янг-Бакстер е едно от основните уравнения на математичес-
ката физика, и по-специално – в теорията на квантовите групи. Особено инте-
ресни са теоретико-множествените решения, при чието изследване освен теоре-
тична физика се използват интензивно некомутативна алгебра и комбинатори-
ка. Такова решение (X, r) се състои от множество X и биективно изображение
r : X×X → X×X, което удовлетворява известното съотношение на плитките.
Сплетените групи и симетричните групи (т.е. сплетените инволютивни групи)
са теоретико-групови аналози на т.н. сплетени множества и симетрични мно-

жества. Mодерните тенденции налагат интензивно изучаване на теорията на
сплетените и симетричните групи. Всяка такава група представлява и решения
на уравнението на Янг-Бакстър. Конструирането на нови решения (нови симет-
рични групи) e от особена важност. Ние въвеждаме понятието

”
регулярни раз-

ширения на сплетени групи S и T“. И изследваме кои алгебрични своиства на S

и T индуцират аналогични своиства на техни разширения U(S, T ).
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