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OF ORIENTATION-PRESERVING TRANSFORMATIONS
WITH RESTRICTED RANGE"

Ilinka Dimitrova, Jorg Koppitz, Kittisak Tinpun

In this paper, we determine the relative rank of the semigroup OP(X,Y) of all
orientation-preserving transformations on a finite chain X with restricted range
Y C X modulo the semigroup O(X,Y’) of all order-preserving transformations on
X with restricted range Y.

Let S be a semigroup. The rank of S (denoted by rank.S) is defined to be the minimal
number of elements of a generating set of S. The ranks of various well known semigroups
have been calculated [4, 5, 6, 7]. For a set A C S, the relative rank of S modulo A,
denoted by rank(S : A), is the minimal cardinality of a set B C S such that AU B
generates S. The relative rank of a semigroup modulo a suitable set was first introduced
by Ruskuc [10] in order to describe the generating sets of semigroups with infinite rank.
But also if the rank is finite, the relative rank gives information about the generating
sets. In the present paper, we will determine the relative rank for a particular class of
transformation semigroups.

Let X be a finite chain, say X = {1 <2 < --- < n} and denote by 7(X) the monoid
(under composition) of all full transformations on X. A transformation o € T(X) is
called order-preserving if x < y implies za < ya, for all z,y € X. We denote by O(X)
the submonoid of 7 (X) of all order-preserving full transformations on X. We say that a
transformation o € T(X) is orientation-preserving if there are subsets X7, Xo C X with
0 # X1 < Xo, (le. 21 < xg for 27 € X; and 25 € X3), X = X; U X, and za < ya,
whenever either (z,y) € X{ U X3 with # < y or (z,y) € X2 x X1. Note that Xo = ()
provides @ € O(X). We denote by OP(X) the submonoid of 7(X) of all orientation-
preserving full transformations on X. An equivalent notion of an orientation-preserving
transformation was first introduced by McAlister in [9] and, independently, by Catarino
and Higgins in [1]. It is interesting to note that the relative rank of OP(X) modulo O(X)
as well as the relative rank of 7(X) modulo OP(X) is one (see [1, §]).

Let Y = {a1 < az < -+ < an} be a nonempty subset of X, and denote by 7 (X,Y)
the subsemigroup {a € T(X)|Xa C Y} of T(X) of all elements with range (image)
restricted to Y. In 1975, Symons [11] introduced and studied the semigroup 7(X,Y),
which is called semigroup of transformations with restricted range. In [2], Fernandes,
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Honyam, Quinteiro, and Singha determine the rank of the order-preserving counterpart
O(X,Y) of T(X,Y). Recently, the regularity, the Green’s relations, and the rank of
the semigroup OP(X,Y) of all orientation-preserving transformations in 7 (X,Y") were
studied by the same authors in [3]. Recall, the rank of 7(X,Y) is the Sterling number
S(n,m) of second kind with |X| =n and |Y| = m. On the other hand, rank O(X,Y) =
—1
(n 1) + |Y#‘ , where Y7 denotes the set of all y € Y with one of the following
m—
properties: (i) y has no successor in X; (ii) y is a no successor of any element in X; (iii)
both the successor of Y and the element whose successor is y belong to Y. Moreover in

[3], Fernandes et al. show that rank OP(X,Y) = (Z) . In [12], Tinpun and Koppitz show

that rank(7(X,Y) : O(X,Y)) = S(n,m) — (:1_11

the set Y. In this paper, we determine the relative rank of OP(X,Y’) modulo O(X,Y).

Let o« € OP(X,Y). The kernel of « is the equivalence relation ker o with (x,y) € ker
if xae = ya. It corresponds uniquely to a partition on X. This justifies to regard ker «
as partition on X. We will call a block of this partition a ker a-class. In particular,
za = {y € X : ya = a}, for € Xa, are ker a-classes. We say that a partition P
is a subpartition of a partition @ of X if for all p € P there is a ¢ € @ with p C q.
A set T C X with |T N :cofl| =1 for all z € Xa, is called a transversal of ker . Let
A C X. Then a4 : A — Y denotes the restriction of a to A and A will be called convex
if x <y <z with z,2 € A implies y € A.

Let [ € {1,...,m}. We denote by P; the set of all partitions {A;,..., A;} of X such
that Ay < Az < --- < A; are convex sets (if [ > 1) and A; is the union of two convex
sets with 1,n € Ay. For P € P,, with the blocks A;,As < --- < A, let ap be the
transformation on X defined by

) +a, where a € {0,1} depending on

rap = a;, whenever x € A; for 1 <i<m
in the case 1 ¢ Y orn ¢ Y and
PN Qit1, ifzeA;forl<i<m
L ifze A,
in the case 1,n € Y. Clearly, kerap = P. With X; := {1,...,maxA4,,}, Xy =
{maxA4,, + 1,...,n} and X; = {1,...,maxA,,_1}, Xo = {maxA4,,—1 + 1,...,n},
respectively, we can easy verify that ap is orientation-preserving. Further, let n €
T(X,Y) be defined by
Q541 if ai§x<ai+1 forl1<i<m
Tn = aq if r=an with T':= {
ar otherwise
in the case 1 ¢ Y orn ¢ Y and
i1 if a; T < Wig1, 2<i<m

1 if 1¢Y
2 otherwise,

xn = ai if z=a,=n
as if x<ay
in the case 1,n € Y. In fact, n € OP(X,Y) and 7]y is a permutation on Y, namely
nly = ( @ Gmet Am ) We will show that A := {ap : P € P} U {n} is a
as “ o A a1
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relative generating set of OP(X,Y) modulo O(X,Y).

Lemma 1. For each o € OP(X,Y) with ranka = m, there is an @ € {ap : P €
PmtUO(X,Y) with ker a = ker a.

Proof. Let « € OP(X,Y) and let X1, X5 C X as in the definition of orientation-
preserving transformation. If Xy = () then @ € O(X,Y). Suppose now that X5 # 0 and
let Xjo = {x1 < -+ < x.} and Xoa = {y1 < --- < ys} for suitable natural numbers
r and s. We observe that X;« and Xz« have at most one joint element (only z1 = ys

could be possible). If 21 # ys then kera = {z107' < - < o' <yt < -0 <

1 —1 —1 —1
e Trax @ Yst )eO(X,Y).If

ysa '} =kera with a =
ai Qyr a/T'+1 a/T'+S
r1 =ys then 1,n € ria = ysoz_1 and ker o« = kerap with P = {acla_l, Toa L < <

ol <yiat << ys_la_l} epP,,. O

Lemma 2. OP(X,Y) = (O(X,Y), A).

Proof. Let § € OP(X,Y) with rank 8 = m. Then there is § € {ap : P € P} U
O(X,Y) with ker 8 = ker § by Lemma 1. In particular, there is r € {0,...,m — 1} with
a107! = a, 187, Then it is easy to verify that 8 = 65", where n° := ™.

Suppose now that i := rank 8 < m and that ker 5 € P;, say ker § = {41, A2 < --- < A;}
with 1,n € A;. Then there is a subpartition P € P, of ker 5. We put 6 := ap, a :=
min X 3, and let T' be a transversal of ker §. In particular, we have Y = {z(0|7)n* : x € T’}
for all k& € {1,...,m}. Since both mappings 8|7 : T — Y and 5|y : ¥ — Y are
bijections, there is k € {1,...,m} with a;((8]7)n")™'8 = a and a1 ((8]7)n*™) ™18 # a.
Moreover, since (|7)n* is a bijection from T to Y and both transformations #n* and g
are orientation-preserving, it is easy to verify that f* := ((8]7)n*)~*8 can be extended
to an orientation-preserving transformation f defined by

arf* i rz<a

zf =< a;f* if g, <zr<agi, 1<i<m
amf* if A < z,

ie. f and f* coincide on Y. Moreover, aif = ai1f* = a1((8]7)n*)"18 = a. In order
to show that f is order-preserving, it left to verify that nf # a. Assume that nf = a,
where n > an,. Then nf = anf* = anf, ie. (n,a,) € ker f and nn = a;,n = a;. So,
there is z* € T such that z*((8|7)n") = am, i.e. £* = a,mn((8]7)n*) L. Now, we have a =
nf = amf* = an((0l7)7") 7' 8 = am®*ly) " (Olr) 78 = ar(nly) T 0Fly) T (Olr) 1B =
a1 ((0]7)n* 1) "18 # a, a contradiction.

Finally, we will verify that 8 = 6n*f € (O(X,Y), A). For this let z € X. Then there
is € T such that (z,Z) € ker 8. So, we have z0n* f = z0n"* f* = Z0n*((0]7)n*) 18 =
7B = 2.

Suppose now that ker § ¢ P; and let X3 = {by,...b;} such that b1~ < --- < b,
Then we define a transformation ¢ by z¢ := a; for all x € bj_lﬁ_l and 2 < j <i+1.
Clearly, ¢ € O(X,Y). Further, we define a transformation v € T(X,Y") by

Ty { bj ifaj <-x§aj+1, 2<53<
b; otherwise.

Since f is orientation-preserving, there is k € {1,...,i} such that k =i or b; < --- <
b—1 > b < -+ < b;. Then X; := {a1,...,ap+1 — 1} and X5 := {ag41,...,n} give
a partition of X providing that v is orientation-preserving. Clearly, rankrv = ¢ and
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lv = nv = b;. Thus, it is easy to verify that kerv € P;. Hence, v € (O(X,Y), A) by the
previous case and it remains to show that 8 = pv € (O(X,Y), A). For this let z € X.
Then x € bj571 for some j € {1,...,i}, le. zpv = a;piv =b; =z8. O

The previous lemma shows that A is a relative generating set for OP(X,Y’) modulo
O(X,Y). It remains to show that A is of minimal size.

Lemma 3. Let B C OP(X,Y) be a relative generating set of OP(X,Y) modulo
O(X,Y). Then Py, C {kera : o € B}.

Proof. Let P € P,,. Since ap € OP(X,Y) = (O(X,Y), B), there are §; € O(X,Y)U
B and 6, € OP(X,Y) with ap = 6102. Because of rankap = m, we obtain kerap =
ker 6;. Since lap = nap, we conclude that 6; ¢ O(X,Y), i.e. 61 € B with kerf; =
kerap =P. O

In order to find a formula for the number of elements in P,,, we have to compute the
number of possible partitions of X into m + 1 convex sets. This number is (nm 1>.

Remark 4. |P,,| = nol

Now we are able to state the main result of the paper. The relative rank of OP(X,Y)
modulo O(X,Y) depends of the fact whether both 1 and n belong to Y or not.

Theorem 5. If 1 ¢Y orn ¢Y then rank(OP(X,Y): O(X,Y)) = (n B 1>,
m

Proof. It is easy to verify that P :=kern € P,,, and n = ap. Thus, A ={ap: P €
Pm} is a generating set of OP(X,Y) modulo O(X,Y’) by Lemma 2, i.e. the relative rank

—1
of OP(X,Y) modulo O(X,Y) is bounded by the cardinality of P,,, which is (nm )

by Remark 4. But this number cannot be reduced by Lemma 3. [

Theorem 6. If {1,n} CY then rank(OP(X,Y): O(X,Y)) =1+ (nml

Proof. Let B C OP(X,Y) be arelative generating set of OP(X,Y) modulo O(X,Y).
By Lemma 3, we know that P,,, C {kera : @« € B}. Assume that the equality holds. Note
that 1n = a1n > am,n = nn, i.e. kern ¢ P, and 7n is not order-preserving. Hence, there
are 01,...,60; € O(X,Y) U B, for a suitable natural number [, such that n = 6;---6;.
From rankn = m, we obtain ker ¢; = kern and rank; = m for i € {1,...,l} and thus,
{1,n} C Y implies (1,n) ¢ ker6; for ¢ € {2,...,1l}. This implies 05,...,6; € O(X,Y).
Since kerf; = kern ¢ P, we get 6; € O(X,Y), and consequently, n = 6162---6; €
O(X,Y), a contradiction. So, we have verified that |P,,| < |B|, i.e. the relative rank of

-1 -1
OP(X,Y) modulo O(X,Y) is greater than <n > But it is bounded by 1+ (n >
m m

due to Lemma 2. This proves the assertion. [
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B'BbPXY OTHOCUTEJIHUA PAHT HA TIOJIVI'PVIIATA OT BCNYKU
SAITABBAIIIN OPUEHTAIINATA ITPEOBPABOBAHUA C
OI'PAHMNYEHO MHOXKECTBO OT OBPA31

NMaunka Jdumurposa, Uopr Konui, Kutucak Tunmyn

Heka S e nonyrpyna u A e nogmuoxkectsBo Ha S. Omrocumener paHz Ha MOJIYTPY-

nara S 1o Moy A ce HapUYa Hal-MaJIKOTO KapIMHAIHO YUCJIO HAa MHOXKecTBO B C S,
rakoBa ue A U B nopaxza S. Osnagasa ce ¢ rank(S : A). Heka X e xpaiina Bepura,
manpumep X = {1 < 2 < --- < n}. MoHORBJa OT BCHMYKH I'bJIHUA NPEOOPA3OBAHUS
HA MHOYKeCTBOTO X OTHOCHO OIIePAIlUsiTa KOMIIO3UIUsSI Ha NMPeobpa3oBaHusl ce O3Ha-
gasa ¢ T (X). Exno npeobpasosanue o € T (X) ce mapuya sanassauo napedbama,
ako or x < y ciaensa, 4e xa < ya 3a Beako x,y € X. C O(X) ce o3HauaBa mosryr-
pynaTa OT BCHYKH 3amasBaliy Hapebara npeobpasosanus Ha X . [IpeobpaszoBanuero
a € T(X) ce Hapuya 3ana36aUW0 OPUECHMAUUAMA, AKO CHIIECTBYBAT OIMHOXKECTBA
X1,X2 € X cne croiierBata ) # X1 < X2, X = X3 U X2 v za < ya 3a BCAKO
(z,y) € X7 U X3 U X x X;. Tlosyrpynara or BCHYKHI 3aIa3BaIi OPHEHTAIIASATA, TIpe-
obpasoBanus Ha X ce oznadaBa ¢ OP(X).
Heka Y = {a1 < a2 < -+ < am} e Henpasno nogmuoxkecrso Ha X. C T(X,Y) ce
osnadasa nognosyrpynara {a € 7(X)|Xa C Y} na 7(X) or Bcuuku mbjHu 1peob-
pasoBanus Ha X C MHOXKECTBO OT 06pa3u, ChbpxKamio ce B Y. OGeKT Ha pasriexjaHe
B Hacrosmara pabora e noixyrpynara OP(X,Y) or BcMukyu 3ama3Baiy OpUEHTAIN-
siTa Mpeobpa3oBaHusi HA X € MHOXKECTBO OT 00pasu, chbpKamo ce B Y. Hamepen
e oTHOCUTENHUAT panr Ha noxyrpynara OP(X,Y) no moxyn moayrpynara O(X,Y)
OT BCHYKHM 3ala3Baliu HapejgbarTa npeobpaszoBanus Ha X C MHOXKECTBO OT 00Opa3sw,
ChIbpKaIo ce B Y.
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