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Machine Learning algorithms keep finding their place in the modern software
engineering and development. Although they manage to solve different tasks in the
modern world, they seem to have a lack of speed. Moreover, they seem to not be
capable in dealing with every possible nature of the input data. What this means
is that the input must always be filtered and, if needed, normalized. This is adding
complexity on actually standard and sometimes abstract tasks, where we could look at
the incoming data as a vector of input values. Therefore, the quantum representation
of the machine learning algorithms seems to be the next step forward. Looking even
further into the technology, the research would lead to a better and closer transition
to the world of the quantum mechanics. This will definitely place the question how
the algorithms for machine learning will be represented if the quantum entanglement
is in effect. The purpose of this paper is to look into those possibilities and propose an
abstract answer of the question above by a short summary of the currently available
methods.

1. Introduction. The main purpose of the machine learning research is to constantly
analyze and provide different ways and methods not only to automate simple tasks, that
are usually handled by men, but also to make the computer think for itself, e.g. to take an
autonomous decision. Depending on the chosen topic of the machine learning there are
different ways to do so – with supervision, without supervision and with reinforcement.
All of them tend to find applications in real-life and they seem to manage in executing
even more complex tasks – speech recognition, pattern recognition, classification, sensor
management and etc. In application as these, we can easily see that the issues are handled
with simple implementation of a given algorithm. Even for larger sets of data the current
computing powers are sufficient.

But this is just a partial representation of the machine learning usage. When we take
a look in the input with the characteristics of time series (or even time series itself),
then the machine learning could be observed in a brighter sense and could be useful
for finding seasoning, trends, edge-cases or even unexpected values in the incoming data.
Such kind of researches are conducted, but they prove, that evaluation time is big and the
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likelihood is not always satisfying [2]. This immediately leads to the reason for continuing
the research of the quantum machine learning methods. Initially they step on the idea,
that if the incoming data is represented in a format like in a quantum system and treated
as such, this would lead to algorithms’ speed-up – this gets explained in a detail below.
Furthermore, the quantum entanglement is a phenomenon in the physics and an entity
in the mathematics of the quantum mechanics, which cannot be ignored. Its sole purpose
is to represent a system of particles, which have to be taken as a whole and not each
particle as a separate one.

Such kind of an information representation is new in the quantum machine learning
field and still not throughly analyzed. Although the entanglement in certain hardware
setups (as in Nuclear Magnetic Resonance) is proved to be impossible already, the
entanglement “boost” is still not a lost cause, because new implementations could arise
[5]. This gives the opportunity for the above mentioned techniques to become even more
advanced and enhancements in the further machine learning development to be applied.
In order to proceed with this suggestion there must be an explanation of the translation
of conventional machine learning algorithms to the quantum ones. Afterwards it must be
analyzed and observed what the role of the quantum entanglement would be if it is used
as an important communication resource [9]. This phenomenon is not available in the
classical machine learning, so therefore this could end up being one of the best features
for the quantum machine learning. In this paper we suggest a novel approach towards
the quality measurement of quantum clustering by means of the Silhouette coefficient
and proceed with a short description of what the benefit of having a quantum-entangled
system would be, for the final machine learning algorithm.

2. Methods. Before we start with the main concepts of the quantum representation
transformation actions, we need to summarize the three concepts existing in the Quantum
Mechanics, that could be counted as prerequisites to the current research. In the first place
this is the quantum parallelism [12], which unites the superposition principle [12] and the
linearity of the quantum world in order to evaluate a single function simultaneously on
arbitrarily many inputs. Immediately follows the quantum interference [12], that makes
possible the logical paths from a given execution to affect each other in a positive way.
This is actually a welcomed, so-to-say, output, because the influence between the positive
outputs could affirm one another and the negative would fall out at certain point. This
self-rearrangement of the system is typical expectation of the machine learning, especially
when it comes to evaluations of algorithms over big data [2]. But there are also quantum
states that are multi-particle, which cannot be described by the independent state of a
single particle. Correlation between these states cannot be examined the classical way
and therefore it is required to postulate the main source of the quantum information
analysis and a powerful communication resource – the quantum entanglement [12].

In short the quantum-enhanced versions of classical machine learning algorithms
include least-squares fitting, support vector machines, principal component analysis and
deep learning [3]. In addition, the adiabatic quantum machine learning seems to work
for some classes of optimization problems, and the stochastic models such as Bayesian
decision theory or HMM find an elegant translation into the language of open quantum
systems [11]. Still the main challenge is not only to transform these algorithms from
classical to quantum world, but also to represent the classical input data in a correct
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way and pass it to a given quantum device or method. The reason is that the quantum
information theory must provide an understanding of how fundamental laws of nature
impact the ability of physical agents to learn. In order to explain the quantum represen-
tation of the algorithms there must be first an explanation of the main entities and
concepts in a quantum system:

A. Quantum bit (or q-bit) is the quantum representation of the classical term bit. The
difference is that the q-bit exists in a superposition of states – a given electron could
be at the same time in two different orbits of the same atom. Using the Dirac’s
notation we could note this as: |ψ〉 = α|0〉+ β|1〉 (with α, β ∈ C and |0〉, |1〉 in the
two-dimensional Hilbert space H2), where α and β are the amplitudes of classical
states |0〉 and |1〉, maintaining the property of probability conservation given by
|α|2 + |β|2 = 1.

B. Measured state |ψ〉 – this means that either |0〉 or |1〉 is observed with probability
|α|2 or |β|2, respectively. This process is irreversible, because the system “collapses”
to one of the proposed values and thus looses the previous value of α and β. All
other operations in the quantum mechanics are reversible and are represented with
the so-called gates.

C. Quantum gate – the main unit in the quantum logical circuit. Sometimes these gates
have both classical and quantum representation as the Toffoli gate, for example.
Each gate using a k-number of q-bits requires 2k × 2k unitary matrix and the
number of the input and output q-bits must be the same. The gate’s function for
a specific quantum states is evaluated through a multiplication of the state vector
and the gate’s matrix:

1. for one q-bit: V0|0〉+ V1|1〉 → [V0;V1]
2. for two q-bits: V00|00〉+V01|01〉+V10|10〉+V11|11〉 → [V00;V01;V10;V11], where

the|ab〉 is the basis of the vector and the first q-bit is in |α〉 state and the second
– in |β〉.

D. Quantum random access memory (or QRAM) [7] is using n q-bits to address any
quantum superposition of N memory cells. For a memory call O(logN) switches
need to be thrown instead of the N used in conventional (classical or quantum)
RAM designs. This yields a more robust QRAM algorithm, as it requires in general
entanglement among exponentially less gates, and leads to an exponential decrease
in the power needed for addressing.

E. Quantum function computation [1] – a unitary function f is computed by the
quantum circuit C, as presented in Fig. 1. By definition it must be reversible, so
it is not possible to go from |x〉 to |f(x)〉, but there must be a mapping – |x, b〉 to
|x, b+ f(x)〉, where the addition is performed in an appropriate finite group and
the second input is a quantum register of sufficient size:

Fig. 1. An example of a quantum logical circuit
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This would be required for the definition of each sub-function of a given machine
learning routine. Obviously the translation process is dictated by the given classical
algorithm. Our main goal would be to improve it, e.g. make it work faster, when it is
transferred in the quantum world. With the usage of the the current components of a
quantum circuit we should now be able to produce the logical transfer from classical
to the quantum world, but only on a smaller scale, e.g. for simple logical functions
and algorithms. In addition, the complex computer parts or even the computer systems
themselves are not so easily transformed. The combination of quantum subsystems to
bigger systems is not a simple task and cannot be based on the classical-physics rep-
resentation, because of the quantum nature itself. The composite quantum system is
not created only from subsystems from the same type, but they could also differ in
their possible state vectors. For example, an atom is a combination of nucleons and
electrons, where both of these groups of particles could be considered a separate quantum
system in their own. If this is so, then we must consider that the quantum computer
systems should have the ability to merge with each other in bigger ones and create more
complex structures. The above mentioned quantum entanglement is exactly the “way”,
that describes such kind of compositions and knowing its rules we should be able to
correctly scale up a given quantum computer system at least in the world of mathematics.

Having all these instruments we should be able to create, analyze and observe the
theoretical suggestion that a larger quantum computer system could exist, but this raises
another important question: Where and when does the quantum computer stop being
quantum and become classical? The answer is unfortunately not that simple, because
whatever is described by the quantum field theory in a given experiment, could also be
described in the classical world observations, but taking into account that as the size
and the complexity of the experiment (the system) increases, its state will deviate less
and less from their expectation values [13]. Their predictions will approach those of the
Newton mechanics due to the Ehrenfest theorem (1):

(1)
d

dt
〈A〉 = 1

ih
〈[A,H ]〉+

〈

∂A

∂t

〉

,

where H is the Hamiltonian of the system, A is a given quantum mechanical operator
and 〈A〉 is its expectation value [12]. We will not use (1) for now.

Obviously, there could not be a clear limit, e.g. some constant number of scaling
levels, which will define how much a given system should be scaled up, although the
Ehrenfest equation could be re-evaluated for each case and thus could help marking
the level, where the quantum system becomes pointless. In addition there has to be a
clear definition of what a quantum machine learning system is, having in mind that
the quantum entanglement phenomenon is happening only between two particles, but
it is possible to have quantum entanglement between many q-bits, for example – the
Greenberger–Horne–Zeilinger state [12]. The product of their entanglement will be their
entangled states, e.g. the composed system’s state-space, which is the tensor product of
the state-spaces of at least two particles (2):

(2) Sab = Sa ⊗ Sb.

Proceeding further, the entanglement of two q-bits would result in:

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 = |ψ1ψ2〉 = α1α2|00〉+ α1β2|01〉+ β1α2|10〉+ β1β2|11〉
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In addition to this problem, there are a few more that should be considered in the
first place in order to have the quantum machine learning initiated [11]: The algorithms
should be able to execute correctly the tasks for pattern classification, pattern recognition

– to assign labels correctly to a given input set or finding a shape of patterns; pattern

completion – adding missing values in the input dataset; associative memory – retrieving
one of a number of stored memory vectors upon an input. Let us focus currently on
the first one: If we take a look at the classification and clustering problems in the
classical machine learning, it will be clear that the main concern is in finding the efficient
calculations of the classical distances on a potential quantum computer. This is obviously
required for the similarity measurement of two feature vectors. For the classical represen-
tation the Euclidian or the Hamming distances are used. For the quantum world there are
few suggestions from [11] and [1]. All of them are basing their similarity measure on the
overlap or fidelity |〈a|b〉| of two quantum states |a〉 and |b〉, respectively. The swap test
is proposed, where |a, b, 0anc〉 state with the two wave-functions and one ancilla register
– described in [1], set to 0 is initially provided and fed to a Hadamard gate (Fig. 2):

Fig. 2. Swap test logical circuit presentation

The following Hadamard transformation sets the ancilla into a superposition
1√
2
(|0〉 + |1〉). The SWAP-gate on a and b swaps the two states if the ancilla is in

|1〉. The second Hadamard gate results in state:

(3) |ψsw〉 =
1

2
|0〉(|a, b〉+ |b, a〉) + 1

2
|1〉(|a, b〉 − |b, a〉)

for which the probability of measuring the ground state is given by:

P (|0anc〉) =
1

2
+

1

2
|〈a|b〉|2.

The probability of 1/2 means that the two states do not overlap (they are orthogonal),
while probability 1 indicates that they have maximum overlap.

3. Revisiting experiments. Proceeding further we focus our experiment on the
clustering algorithms – k-means to be precise, because it uses the distance measure we
discussed above. It is also easy to be represented mathematically both in classical and
quantum machine learning. The method is NP-hard, which means it is computationally
difficult, which gives further stimulation to the quantum approach – this will be discussed
later. The algorithm is alternating constantly between two main steps – assign step and
update step:

– Assign each observation xp to the cluster whose mean has the least squared

Euclidean distance (nearest mean) – the observation is assigned to exactly one S(t):

(4) S
(t)
i = {xp :‖ xp −m

(t)
i ‖2≤‖ xp −m

(t)
j ‖2 ∀j, 1 ≤ j ≤ k}
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– Update (minimize the average distance) the means to be the centroids of the
observations in the new clusters:

(5) m
(t+1)
i =

1

|s(t)i |

∑

xj∈S
(t)
i

xj .

It stops, when the assignments do not change any longer. The main idea is to partition
N observations into k clusters. In the end the data space is partitioned in Voronoi cells.
If the measurement space is D dimensional the time complexity of the algorithm would
be O(D), where each step takes time O(N2D). Having the observations in 2. above it
would be expected, that the algorithm takes O(N log(ND)). Both times N is required at
least once, because every vector is tested individually for the reassignment at each step
[1]. Let us construct the state:

(6) |ψ〉 = 1√
2



|~x〉|0〉+ 1√
N

N
∑

j=1

|~ySj 〉|j〉



 ,

where S is the current cluster for a set of N reference vectors {|ySj 〉} of length P and
input vector |~x〉. The formulation of this equation results from (3) [10]. The distance can
be efficiently calculated within error ǫ = O(ǫ−1 logNP ). Getting back to the swap test
and applying it over (6) we construct the following:

(7) |φ〉 = 1√
Z



|x||0〉 − 1√
N

N
∑

j=1

|ySj ||j〉



 , where Z = |x|2 +
(

1

N

)

∑

j

|yj|2.

The computation (7) is repeated for each cluster until a desired confidence is reached,
which is usually noted by the person, working with the system. This situation could be
avoided by means of an algorithm, that evaluates this confidence and marks the final
iteration of the quantum k-means. Such method is the Silhouette method, which we
already used in [2] and proved, that the k-means assigns well the received data and has
a high confidence. The formula is the following:

(8) s(i) =







1− a(i)/b(i), if a(i) < b(i)
0, if a(i) = b(i)
b(i)/a(i)− 1, if a(i) > b(i)

,

where a is the average distance of i to the points in its cluster and b – the minimal average
distance of i to points in another cluster, e.g. b is the average dissimilarity between point
i and the points in the closest cluster to its cluster. From (3) and [4] we conclude that
the average distance is actually the average fidelity between the points in the cluster, in
our case the average fidelity between the state of the i-th variable in the n-sized cluster,
which brings us to:

(9) a(i) =
1

nc

nc
∑

j∈c,j=1

〈F (ρ, ρ′j)〉ρ0 ,

(10) b(i) = min
1

s

s
∑

c=1

1

ns

ns

i/∈Sc,j=1

〈F (ρ, ρ′j)〉ρ0 .

Remembering that: the fidelity of two states is 〈F 〉 = 〈F (ρ, ρ′)〉ρ0 , where ρ and ρ′ are
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the density matrices of the i-th variable and any other one, respectively over all initial
states ρ0. Further: s is the number of clusters, while c is the current one, nS is the number
of elements in the cluster S, where i does not belong to them, e.g. in Sc for the context
of (10). From (8) the calculation of the Silhouette coefficient for all elements of ~x would
be:

(11) s(i) =
b(i)− a(i)

max(a(i), b(i))
, for ∀i ∈ ~x.

4. Results and additional work. As observed above in 3. the complexity of the
algorithm would be a combination of the k-means and the Silhouette routines, which
takes (7) and (11) into account. We also mentioned in the explanation of (4) and (5),
that the computation is difficult for big data – for high-dimensional data, which is obvious
from the steps themselves. This means that the clustering algorithm will be useless with
its current form, but additional studies provide workarounds [6]. The quantum approach
though provides a computational complexity of O(IN logND), where I is the number
of executions of the step. Because of (10) the Silhouette routine has at least O(IN2)
complexity in the classical world, but for the QRAM execution we expect O(N).

The overall evaluation complexity would be O(I(N + N logND)) = O(IN logND).
From the rules of asymptotic analysis we are removing the summation with N , but for
the purposes of the current consideration we keep the multiplication by I. It is obvious
that the evaluation is dependent on a smaller number of iterations, which is directly
related to the faster discovery of the Silhouette coefficient closest to 1 for the given i.
This is easier, when one takes into account the analysis in Section 2 and most importantly
(2). The quantum entanglement between two q-bits will allow a simultaneous calculation
of four operations – 2n, where n is the number of q-bits. So for the algorithm of this
paper the entangled environment will boost the overall evaluation to a fully logarithmic
complexity, where the classical representation will be at least O(N2) as discussed above.
Additional analysis will follow in the future for the relationship between the number of
the entangled q-bits and the quantum algorithm complexity.

5. Conclusion. We presented an overview of the basic concepts in the unsupervised
machine learning and their translation for quantum computers. The main properties of
the quantum computation were described. A review of the basic quantum system parts
was conducted and their entities’ attributes were discussed. The quantum entanglement is
being marked as the future in the scaling-up of the quantum systems, but this phenomenon
is also helpful in the low-level algorithm implementations. Two classical machine learning
algorithms, which take place in the pattern recognition problems, were translated to their
quantum representation. The quantum Silhouette usage is a novel approach and could be
used for quality measurement of the quantum clusters in runtime of the given clustering
routine. It is also independent from the clustering algorithm, which makes it useful for
other machine learning algorithms, when needed. The proposition of an entanglement-
based environment will provide a faster computation, because of the hardware architecture
itself. The performance achieved is theoretically better and there is an expectation for
the existence of such quantum computer systems in the near future, so this analysis will
proceed.
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АНАЛИЗ НА АЛГОРИТМИ И МЕТОДИ ЗА МАШИННО

ОБУЧЕНИЕ В СРЕДА С КВАНТОВИ СПЛИТАНИЯ

Тази статия представя кратък обзор на начините за преобразуване на класи-
чески алгоритми за машинно обучение в квантова среда и описва нововъведен
метод за оценка на качеството на клъстери в квантовата среда. Анализът е част
от дисертация по специалността

”
Системи с изкуствен интелект“ във Факултета

по компютърни системи и технологии в ТУ–София.
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