
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2018
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2018

Proceedings of the Forty-seventh Spring Conference
of the Union of Bulgarian Mathematicians

Borovets, April 2–6, 2018

ARCHITECTURAL SELF-ADAPTATION
AND DYNAMIC RECONFIGURATION IN jADL*

Tasos Papapostolu, Dimitar Birov

During the last decade there is a rapid growth of new internet technologies like
Internet of Things (IoT), mobile services and cloud and service computing. Software
architecture is the modelling tool for describing such widely used internet applications
focused primarily on their quality attributes like security, self-adaptability, self-∗,
etc. In this paper, we outline a new Architecture Description Language (ADL)
jADL, through a case study of a self-adapting load balancer architecture. jADL
is a modern ADL which, up to now, supports the creation and validation of
dynamic and mobile architectures. Numerous studies have highlighted the absence
of industrial usage of ADLs because of two reasons: language constructs represent
too formal theoretical concepts which are incomprehensive to stakeholders and the
lack of tools transforming high level architectural models to software artifacts.
The jADL architecture description language is based on a Milner’s version of an
asynchronous process pi-calculus, called applied pi-calculus, for studying concurrency
and process interaction. It provides intuitive semantics behind of the architectural
elements and communication, which makes architectural description self-explanatory,
supports dynamical architectural reconfiguration and allows for self-adaptation which
is discussed in this paper.

1. Introduction. Software architecture [6] is “the set of structures needed to reason

about a software system, which comprise software elements, relationships among them and

properties of both”. It is used to define the behaviour of a software system during runtime
using abstractions and notations in order to facilitate the communication between the
stakeholders. In pursuance of the best and most detailed definition of a software system
and due to their high complexity, there are three perspectives defined in software architec-
ture: the static, the dynamic and the allocation perspective, each one with a number of
views. In this paper we are concerned with the dynamic perspective, where the important
views are the Component -and -Connector views (C&C ). The C&C views are comprised
of two sets of architectural elements: components and connectors. The components are the
computational and data store elements and the connectors represent the communication
between them. The components have declared ports whose interfaces are used when
communicating with other elements. The jADL architecture description language defines
shaped by interfaces ports and roles. Port interfaces, differ from the traditional interfaces

*2010 Mathematics Subject Classification: 68N01, 68M14, 68Q85.

Key words: software architecture, ADL, dynamic reconfiguration, self-∗, load balancer.

168



in programming, since here they define the shape of the communication. The connectors
define roles with which they participate in the communications. Same as ports, they have
interfaces which shape the communication. The communication between the elements
occurs when a role is attached to a port.

The architectural elements, their interconnections and the constraints concerning
them compose the topology of the software architecture. The communication, the data
flow and the component-connector interactions describe the behaviour of the software
architecture according to the topology. If the topology or the behaviour changes during
run-time, the architecture is referred to as dynamic or mobile. When these changes are
performed without a human assistance the architecture is called autonomic, or self-

adaptable, or self-∗. Self-∗ systems can be defined as systems capable of managing
themselves, where the ∗ character stands for a number of properties: self-configuration,
self-adaptation, self-diagnose, self-repair, etc.

The architectural dynamism is a natural feature of current social media applications,
IoT, mobile computing, cloud and other advanced distributed applications. The formal
expression of all this variety of computing structures in software architecture is through
the use of ADLs. The ADLs can express the architecture from a higher level focusing
both on functional requirements and quality attributes. They can provide the formal
basis for the tools generating software artifacts such as implementation code stubs, lower
level models, etc.

This paper illustrates the capabilities of jADL, a new ADL, which describes quality
attributes of a software system and software architecture properties. The lack of support
and tools from the majority of the available ADLs is the main reason for introducing
jADL, which aims to provide these capabilities integrated in the language and therefore
promoting the use of ADLs in industrial software implementations processes. It is designed
to describe static, dynamic and mobile architectures, focusing on providing the flexibility
and expressiveness required in order to express the dynamic reconfigurations (foreseen
and unforeseen) of software intensive systems. Its architectural elements, syntax and
various statements are presented and explained in more details in [14]. The syntax of
jADL is influenced by good practices such as ACME [9], π-ADL [5] and PADL [1].

Based on the case study of defining a Load Balancer Architectural Pattern (LBAP)
[7] we exhibit the main features of jADL and aim to demonstrate its expressiveness and
formal support of software architectural properties and its capabilities to define dynamic
and self-adaptable architectures. The rapid expansion of distributed applications (mainly
micro-service architectures impose handling of heavy loads of component communication),
which now provide any type of service (purchases, payments etc.) led to techniques for
handling the traffic. An example is load balancing – a number of low-cost servers and/or
micro-service containers is used to distribute the incoming requests amongst them.

2. Load balancer architectural pattern. In this section we present how a Load
Balancer Architectural Pattern (LBAP) [7] can be defined using jADL. It is comprised
of a client, a load balancer server and a couple of dedicated servers. This pattern is
applicable for server-less technologies like micro-services after simple modifications. In
the example below we use for simplicity 3 servers, but in section 4 we extend it to N. We
outline the main software architect activity for modifying and extending the LBAP, in
order to trade off the stakeholders’ requirements for performance and self-adaptability,
through scalability of servers.

169



Fig. 1. Architecture of a simple load balancing system

The jADL is a scripting language, so in order for the architecture to be created an
initialization script needs to be executed after the definition of the elements (code snippet
5). jADL assumes a usual situation where the architectural elements are executed in
different processes and multiple threads of execution.

The client (C) shown in Fig. 1 represents one component, abstracting the client’s
interface and behavior (clients could be any mobile devices, traditional desktop browsers,
smart phones, etc.). In jADL all components are connected to each other through connectors.
The architectural schema (Fig. 1) defines two kinds of connectors; a secure connector for
the client – load balancer communication and a simple one for the load balancer – server
communication.

Code snippet 1. Client description in jADL

The client component communicates with the Load Balancing System as if it “sees”
a single server. It has 2 interfaces of communication which are represented with two
ports. Through its requires port send, it sends a request and awaits for the response
at its provides port wait. When a provides port (or role) is defined, jADL specifies
configurations that describe its behaviour. During the compilation of the script, this
requirement is checked and if it is not fulfilled the compiler produces an error. This static
inspection of the script code prevents modeling errors of an application which could occur
during run-time.

The behavior of ports and roles is defined through the use of the config statement,
inside the brackets { }. This definition consists of services. They are the same like the
ones defined in the interfaces of the ports/roles, but they “contain” the behavior, which

170



Code snippet 2. Server description in jADL

is defined under the form of statements. The config statement can be used at runtime
as well, for dynamically assigning a behavior. This means that we can reconfigure a port
behavior and this is one of the mechanisms of jADL to support reconfigurability of the
architectural elements during runtime.

Furthermore, the first line (code snippet 1) defines that our architecture is parameteriz-
ed by the data type of the data exchanged during the communication of the participating
elements. Type in this example could be instantiated with various standard data types
(string etc.).

The architecture presented here is a distributed software architectural pattern. Com-
ponents represent variations of server(s) abstracting their interface and behavior. The
server component has two ports. The first port (req) accepts the clients’ request and the
other sends the response. These two ports are created at runtime with the instantiation
of a new CTraitS (code snippet 2) communication trait. Each server has two attributes;
curLoad – the current server’s load, and maxNum – the maximum number of requests
allowed. These two attributes are used to define the server’s behavior under the control of
the select statement. This statement is used to manipulate the behavior of an architectural
element. In the server component, we use its complex form (the when condition is optional
as shown in code snippet 4). If curLoad reaches the limit (maxNum), the delay statement
is executed and the server stops accepting new requests. While the first condition is true,
the process keyword is used to define that the server is working in a normal state. The
delay statement is used to block further execution of the server (using a condition – code
snippet 2, or by explicit declaration – code snippet 4).

The two connectors are used for data passing between the components. Ports and
roles are unified in order to ensure the correct data flow between the client and the load
balancing system creating a communication channel. The significant difference between
them is the attributes in Conn1; they are defined because the public communication
between a client and a server should be encrypted and secure. The other connector
(Conn2) used for the communication between the servers is only for internal communi-
cation.

Communication trait is a new structured architectural element in jADL [14] that
can group together ports and roles. Each trait can hold only ports or only roles of

171



Code snippet 3. Connectors description in jADL

both kinds. Traits are included in a component or a connector using the keywords
trait and aggregate. After that they can be instantiated and used by the element. The
compiler will check if there is a behavior assigned for each of the declared provides

ports (if any). By being encapsulated in a separate structure the ports/roles can be
dynamically instantiated/configured/etc. at runtime, an innovation proposed by jADL.
This complex structure enhances significantly the flexibility and expressiveness of jADL,
especially when it comes to describing dynamic and self-adapting architectures like the
one presented in section 3.

The component lbServer is responsible for choosing the appropriate server to forward
the current request. Once it is received, the lbServer has the following options: to forward
it to one of the servers or to wait (if none of the servers is responding). In order to select
the least loaded server, the load of each one of them is requested and they are compared.

Code snippet 4. Load Balancer Server description in jADL

172



Code snippet 5. Instantiation and creation of the architecture in jADL

A new port is created, using the communication trait CTratitLB, for each of the three
servers. The requests are forwarded through these ports to the appropriate server. If
all of the servers are down and no response is received the load balancer waits before
attempting to forward the request again. Eventually, when a server sends its response, it
is forwarded back to the client through its replyC port.

In order for the architecture to be created code snippet 5 needs to be executed.
First we instantiate our components and connectors using the new keyword and next
we define the attachments between the various elements using their ports and roles. A
communication channel is established between a component and a connector when a role
is attached to a port. The attach statement in jADL expresses this communication and
represents the unification of a role with a port.

3. Self-adaptive architecture of a load balancing system. We extend the
architecture previously described by allowing for dynamism and self-adaptability when
it comes to the number of servers available depending on the current load from the
dynamically changing number of clients. The Load Balancer server can add or remove
servers based on the total load during runtime, thus allowing the dynamic reconfiguration
of the system and making it self-adaptable. The new architecture can be seen in Fig. 2
below.

The first difference here is that we define an additional trait for the load balancer which
holds the port for sending the response to a client. Additionally, three data structures
(hashmap) are defined for managing the servers. The first one (requests) holds the requests
from the clients and their assigned trait. The hashmap servers holds the traits created for
each server and its status (active – processing and accepting requests, inactive – does not
accept requests). The last one (conns) holds the traits of each server and the connector
used for their communication.

When a new request arrives at the reqC port a new trait is created and stored in the
requests hashmap. Then, the average load of the servers is calculated (findAvgLoad – code
snippet 6). The keyword abstract defines that an algorithm should be implemented there
by developers, splitting this way the architecting activities from the implementation/de-

173



Fig. 2. Architecture of a self-adapting load balancing system

velopment part. If the average load is below 20% of the allowed one it sends the request
to the least loaded server and changes its status to inactive so that no new requests will
be sent to this server. If the average load is above 80% a new server is instantiated and
attached to the load balancer. Its status is changed to active and the request is forwarded
to it. Finally, if the average load is between 20% and 80% the request is just forwarded
to the least loaded server.

Inside the infinite loop (code snippet 6, lines 55-62) the load balancer continuously
checks the load of the servers with status inactive. When any of these servers finishes
processing its last request and there are more than 1 available servers, the server is
detached from the load balancer. This is defined in jADL with the use of the detach

statement, which is used for destroying the communication channel (attachment) between
a role and a port. It is the “opposite” of the attach statement and it accepts two arguments
– the port and the role that will be detached (or two traits). These statements, attach

and detach, can be used both when defining the architecture and at runtime (dynamic
reconfiguration of the architecture).

4. Related Work. The ACME language [8, 9] started as a multi-style ADL framework
providing the opportunity of using it as a common interchange platform for multiple
ADLs. It does not provide a specific model to describe system behavior, functional
properties or any other aspect of the system, so it allows the annotation with properties
that represent this descriptive information. It provides explicit configurations and hence
facilitates understandability and readability. It supports architectural styles, and provides
a template mechanism for their implementation [11]. The need for dynamic reconfiguration
grew over the years and since it was not “integrated” in ACME the help of additional
tools is needed (e.g. Plastik [2]). Despite the various extensions ACME’s support is still
limited when it comes to dynamic reconfiguration. Also, for dynamically reconfiguring the
behavior general formal languages must be used, while jADL offers these opportunities
integrated. The ACME language supports user defined constraints on its elements (Armani

174



Code snippet 6. Dynamic Load Balancer Server Description in jADL

[13]), which are automatically validated by the ACME Studio.The latter is an extension
to Eclipse and provides explicit visualization support.

The π−ADL language [5] is a formal ADL designed to address the description of
dynamic and mobile architectures. It provides the constructs to express both structural
and behavioral viewpoints and has a textual and a graphical representation as well.
It comes with a complete set of tools [5] under the ArchWare European Project. It
can adequately express dynamic architectures and, as evaluated in [4], can support
(using tools or other languages like π-AAL [12]) both foreseen and unforeseen dynamic
reconfigurations. jADL, also provides these opportunities and extends them with the
addition of the communication traits, which allows for bigger flexibility and expressiveness,
especially when it comes to self-adaptable systems.

The PADL [1] is a process algebraic ADL with high expressiveness and analyzability.
This language is equipped with TwoTowers, an open-source software tool for the functional
verification, security analysis, and performance evaluation of software systems modelled
in the ADL Æmilia [10]. But, the options provided for dynamic reconfiguration are limited
compared to jADL. The PADL offers a class of predefined connectors for the architect to

175



choose from, whilst jADL considers them as first class entities. The PADL2Java software
tool [3] is built to translate PADL models into Java implementation code stubs. It
provides a library of software components for adding architectural capabilities to the
targeted programming language.

5. Conclusion. In this paper, we have presented the implementation of a Load
Balancer Architectural Pattern in jADL, as a case study, in order to exhibit jADL’s
architectural constructs for support of dynamism and self-adaptability architectural qua-
lity attributes. The jADL provides the necessary constructs for adequately expressing the
behavior of this system – both its functional and non-functional requirements. With this
case study it is shown that the software architecture, through ADLs, can be a useful
tool for architects and various stakeholders. The next step for the evolution of jADL is
to create a model for the assessment of the system concerning the embodiment of the
quality attributes and constraints into the script as well as a model for translating it into
compilable implementation code stubs.

REFERENCES

[1] A. Aldini, M. Bernardo, F. Corradini. A Process Algebraic Approach to Software
Architecture Design, Springer, 2009.

[2] T. Batista, A. Joolia, G. Coulson. Managing dynamic reconfiguration in component-
based systems. In: Software Architecture, vol. 3527 of LNCS, 439–480, Italy, 2005.

[3] E. Bonta. Automatic Code Generation: From Process Algebraic Architectural Descriptions
to Multithreaded Java Programs, Universita di Bologna, Padova, 2008.

[4] J. Buisson, T. V. Batista, L. Minora, F. Oquendo. Issues of Architectural Description
Languages for Handling Dynamic Reconfiguration, 2012.

[5] E. Cavalcante, F. Oquendo, T. Batista. π-ADL: A Formal Description Language for
Software Architectures. Technical Report, UFRN-DIMAp-2014-102-RT, 2014.

[6] P. Clements, F. Bachmann, L. Bass et al. Documenting Software Architecture Views
and Beyond, 2nd Edition, Addison-Wesley, 2011.

[7] T. Erl, R. Puttini, Z. Mahmood. Cloud Computing: Concepts, Technology &
Architecture. Published by Prentice Hall, 1st Edition, ISBN-13: 978-0-13-338752-0, 2013.

[8] D. Garlan, R. Monroe, D. Wile. Acme – Architectural Description of Component-
Based Systems, In Foundations of Component-Based Systems, Cambridge University Press,
47–68, 2000.

[9] D. Garlan, R. Monroe, D. Wile. ACME: An Architecture Description Interchange
Language, Proceedings of CASCON 97, Toronto, 169–183, 1997.

[10] http://www.sti.uniurb.it/bernardo/twotowers/, 2006.

[11] A. W. Kamal, P. Avgeriou. An Evaluation of ADLs on Modelling Patterns for Software
Architecture. In Proceedings of the 4th International Workshop on Rapid Integration of
Software Engineering Techniques (RISE 2007). Springer, Heidelberg, 2007.

[12] R. Mateescu, F. Oquendo. π-AAL: An Architecture Analysis Language for Formally
Specifying and Verifying Structural and Behavioural Properties of Software Architectures.
ACM Software Engineering Notes, 31, No 2 (2006), 1–19.

[13] R. Monroe. Capturing software architecture design expertise with ARMANI. Technical
Report CMU-CS-163, Carnegie Mellon University, 1998.

[14] A. Papapostolu, D. Birov. Structured Component and Connector Communication, In
Proceedings of BCI’17, Skopje, Macedonia, doi: 10.1145/3136273.3136291, 2017.

176



Tasos Papapostolu
e-mail: papapostol@fmi.uni-sofia.bg
Dimitar Birov
e-mail: birov@fmi.uni-sofia.bg
Faculty of Mathematics and Informatics
Sofia University “St. Kliment Ohridski”
5, James Bourchier Blvd
1164 Sofia, Bulgaria

АРХИТЕКТУРНА САМОАДАПТИВНОСТ И ДИНАМИЧНА

РЕКОНФИГУРАЦИЯ В jADL

Тасос Папапостолу, Димитър Биров

В последните години се наблюдава ускорен процес на развитието на нови тех-
нологии, като Internet of Things (IoT), мобилни и компютърни услуги и др. Соф-
туерните архитектури предоставят модели от високо ниво на абстракция, с чиято
помощ се описват интернет-базирани приложения, като се вземат предвид техни-
те качествени атрибути – сигурност, самоадаптивност, надеждност, бързодейст-
вие и други. В статията представяме базовите архитектурни конструкции на нов
език за описание на архитектури (ADL), jADL, като използваме експеримента-
лен пример на самоадаптируем load balancer архитектурен стил. Езикът jADL е
модерен език за описание на архитектури, който до момента описва и валидира
динамични и мобилни архитектури. Многобройни статии показват отсъствието
на промишлена употреба на ADLs поради две причини: (i) архитектурните езици
предоставят теоретични формализми, които са удобни за извличане на опреде-
лени свойства на архитектурите, но не са лесно разбираеми от стейкхолдери и
(ii) липсата на инструменти, които да трансформират архитектурните модели от
високо ниво към софтуерни артефакти, свързани с реализацията на софтуера.
Езикът jADL е базиран на приложен pi-calculus, версия на Milner за асинхронно
процесно смятане за изучаване на конкурентостта и взаимодействията между
процесите. Този език предоставя интуитивна семантика на архитектурните еле-
менти и комуникациите, което прави архитектурното описание разбираемо, дава
възможност за моделиране на динамична архитектурна реконфигурация и поз-
волява самоадаптивност на софтуерната архитектура, представена в статията.

177


