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ON BERGE’S MAXIMUM THEOREM WITH CONCAVE

FUNCTION OF UTILITY IN THE SECOND VARIABLE*

Zdravko D. Slavov, Christina S. Evans

In the present paper we show a new property of Berge’s Maximum Theorem with
concave utility functions. It is proven that the maximum multifunction is convex-
valued and continuous when the action multifunction is compact-valued, convex-
valued and continuous, and the utility function is continuous and concave in its second
variable.

1. Introduction. The well-known Berge’s Maximum Theorem has become one of
the most useful and powerful theorems in optimization theory and its applications in the
different fields in mathematics. In particular, in [5] and [6], Slavov and Evans discuss
two applications of this theorem in multi-objective optimization. In [1], [4], [8] and [9],
the authors consider many different applications of Berge’s Maximum Theorem in game
theory and mathematical economics.

The original variant of Berge’s Maximum Theorem is essentially as follows:

Theorem 1 ([3], [7, Theorem 9.14]). Let X ⊂ Rn and Y ⊂ Rm, u : X × Y → R be a

continuous function, and D : X ⇒ Y be a compact-valued and continuous multifunction.

Then, the function h : X → R defined by h (x) = max {u (x, y) |y ∈ D (x)} is continuous

on X, and the multifunction S : X ⇒ Y defined by S (x) = {y ∈ D (x) |u (x, y) = h (x)}
is compact-valued and upper semi-continuous on X.

According to Walker’s terminology [9] we say that X is a set of environments, Y is
a set of actions, u is a utility function, D is an action multifunction, h is a marginal
function, S is a maximum multifunction, D(x) is the set of feasible actions available in
environment x, and S(x) is the set of optimal actions in environment x.

It is important to note that Berge’s Maximum Theorem gives conditions under which
marginal function h and maximum multifunction S are continuous and upper semi-
continuous, respectively.

Berge’s Maximum Theorem is often used in a special situation when the action
multifunction D is convex-valued and the utility function u is quasi-concave or strictly
quasi-concave in its second variable in addition to the hypotheses of Theorem 1.

Now, we focus our attention on the classical variant of Barge’s Maximum Theorem,
also called the Maximum Theorem.
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Theorem 2 ([2, Maximum Theorem] [5, Theorem 2] [7, Theorem 9.17 and Corollary
9.20]). Let X ⊂ Rn and Y ⊂ Rm, u : X × Y → R be a continuous function, and

D : X ⇒ Y be a compact-valued and continuous multifunction. Define h and S as in

Theorem 1.
(a) Then h is a continuous function on X, and S is a compact-valued and upper

semi-continuous multifunction on X.

(b) If u(x, ·) is quasi-concave in y for each x ∈ X, and D is convex-valued, then S is

convex-valued.

(c) If u(x, ·) is strictly quasi-concave in y for each x ∈ X, and D is convex-valued,

then S is a continuous function on X.

(d) If u is concave on X×Y , and D has a convex graph, then h is a concave function

on X and S is a convex-valued multifunction on X.

(e) If u is strictly concave on X × Y , and D has a convex graph, then h is a strictly

concave and continuous function on X, and S is a continuous function on X.

The key goal of this work is to present a new property of the Maximum Theorem, that
is, the maximum multifunction is continuous when the action multifunction is convex-
valued and the utility function is concave in its second variable.

2. Preliminaries. For a better understanding of the paper, we recall some useful
definitions and notations. Let ‖ · ‖ be the Euclidean norm on Rn, d(x, y) = ‖x− y‖ be
the Euclidean distance between x, y ∈ Rn and τ be the Euclidean topology induced by
d. It is known that the Euclidean norm is strictly convex.

Let us consider a multifunction F : X ⇒ Rm where the feasible domain X ⊂ Rn

is nonempty. Note that the image of each point by a multifunction is nonempty. Recall
some standard topological definitions and their equivalent statements for a continuous
multifunction.

(1) F is called upper semi-continuous (briefly usc) at a point x ∈ X if and only if for
each open set V ⊂ Rn such that F (x) ⊂ V , these exists a set U of τ containing x such
that y ∈ U ∩X implies F (y) ⊂ V . This is equivalent to “F is upper semi-continuous at
a point x ∈ X if and only if {xk}

∞

k=1
⊂ X and {yk}

∞

k=1
⊂ F (X) are a pair of sequences

such that lim
k→∞

xk = x and yk ∈ F (xk) for all k ∈ N , then there exists a convergent

subsequence of {yk}
∞

k=1
whose limit belongs to F (x)”. F is usc on X if and only if F is

usc at each point x ∈ X .
(2) F is called lower semi-continuous (briefly lsc) at a point x ∈ X if and only if for

each open set V ⊂ Rn such that F (x)∩V 6= ∅, there exists a set U of τ containing x such
that y ∈ U ∩X implies F (y) ∩ V 6= ∅. This is equivalent to “F is lower semi-continuous
at a point x ∈ X if and only if {xk}

∞

k=1
⊂ X is a sequence convergent to x and y ∈ F (x),

then there exists a sequence {yk}
∞

k=1
⊂ F (X) such that yk ∈ F (xk) for all k ∈ N and

lim
k→∞

yk = y”. F is lsc on X if and only if F is lsc at each point x ∈ X .

(3) F is called continuous at a point x ∈ F if and only if F is both usc and lsc at
point x ∈ X . F is continuous on X if and only if F is continuous at each point x ∈ X .

Note that a function being continuous is equivalent to it being upper or lower semi-
continuous as a multifunction; therefore, if X ⊂ Rn, s : X → Rm is a function and
S : X ⇒ Rm is a multifunction defined by S(x) = {s(x)}, then the following statements
are equivalent: (i) s is continuous on X . (ii) S is upper semi-continuous on X . (iii) S is
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lower semi-continuous on X . As a result we get that continuous functions are a special
class of continuous multifunctions. In our case this means that if |S(x)| = 1 for all x ∈ X ,
then S is a continuous function on X , see Theorem 2(c) and 2(e).

Remark 1. Consider the original variant of the Maximum Theorem. The following
important two facts hold [7, Examples 9.15 and 9.16]:

(1) S is only upper semi-continuous, and not necessarily also lower semi-continuous.
(2) The continuity of u on X × Y cannot be replaced with u(·, y) is continuous on X

for each fixed y ∈ Y and u(x, ·) is continuous on Y for each fixed x ∈ X .

It is known that quasi-concavity and concavity of the functions play a special role in
optimization theory and we use the Maximum Theorem under convexity as a mathematical
tool in convex optimization. Recall the definitions of quasi-concave and concave functions
in the usual sense.

Definition 1. A real function g : X → R on a convex subset X ⊂ Rn is called:

(a) quasi-concave on X if and only if for any x, y ∈ X and t ∈ [0, 1], then

g (tx+ (1− t) y) ≥ min(g (x) , g (y)).

(b) strictly quasi-concave on X if and only if for any x, y ∈ X, x 6= y and t ∈ (0, 1),
then g (tx+ (1− t) y) > min(g (x) , g (y)).

(c) concave on X if and only if for any x, y ∈ X and t ∈ [0, 1], then g (tx+ (1− t) y) ≥
tg (x) + (1− t)g (y).

(d) strictly concave on X if and only if for any x, y ∈ X and t ∈ (0, 1), then

g (tx+ (1− t) y) > tg (x) + (1− t)g (y).

It is easy to show that concavity implies quasi-concavity and strict concavity implies
strict quasi-concavity, but in general the converse does not hold.

Remark 2. It is known that for each x ∈ X :
(1) a function g being quasi-concave is equivalent to its upper contour set {y ∈

X |g(y) ≥ g(x)} being convex.
(2) if a function g is strictly quasi-concave, then its upper contour set {y ∈ X |g(y) ≥

g(x)} is strictly convex, but in general the converse does not hold.

Let us define the closed linear segment {ty+ (1− t)x|t ∈ [0, 1]} by [x, y] for x, y ∈ Rn

and x 6= y, and define the open linear segment ]x, y], analogously, ]x, y] = {ty+(1−t)x|t ∈
(0, 1)}. Note that the definition of quasi-concave or concave function allows for linear
segments (closed or open) in the boundary of its upper contour set. But, the definition
of strictly quasi-concave or strictly concave function does not allow for linear segments
(closed or open) in the boundary of its upper contour set.

Remark 3. If g is a quasi-concave or concave function, then the set of maximizers
is convex, and if g is strictly quasi-concave or strictly concave, then the maximizer is
unique.

Remark 4. Consider a real continuous function g on X ⊂ Rn. Let g be a concave
function on closed linear segment [x, y] ⊂ X such that g(x) < g(y). For A(x) = {p ∈
[x, y]|g(p) ≥ g(y)} it is easy to show that there exists a unique point z ∈ A(x) such that
d(x, z) = d(x,A(x)) and x 6= z, because set A(x) is compact and convex, and we use the
Euclidian distance. Note that d(x, z) ≤ d(x, y) and g(x) < g(z) = g(y). Now consider
function g on closed linear segment [x, z] and a function f on closed linear segment [0, 1]

180



such that f(t) = g(x+ t(z − x)) for t ∈ [0, 1]. From concavity of function g on [x, z] and
g(x) < g(y) it follows that function f is strictly increasing on [0, 1].

3. Main result. In this section we present the basic theorem of this paper.
Theorem 3. Let X ⊂ Rn and Y ⊂ Rm, u : X × Y → R be a continuous function,

and D : X ⇒ Y be a compact-valued and continuous multifunction. Define h and S as

in Theorem 1. If D is convex-valued and u(x, ·) is concave in y for each x ∈ X, then S
is a compact-valued, convex-valued and continuous multifunction on X.

Proof. From Theorem 2(a) and 2(b) we have that S is a compact-valued, convex-
valued and upper semi-continuous multifunction on X

We want to prove that S is lower semi-continuous on X . It will be shown that if
x0 ∈ X , {xk}

∞

k=1
⊂ X is a sequence convergent to point x0 ∈ X and y0 ∈ S (x0),

then there exists a sequence {yk}
∞

k=1
⊂ D(X) such that yk ∈ S (xk) for all k ∈ N and

lim
k→∞

yk = y0, i.e. multifunction S is lower semi-continuous at point x0 ∈ X .

Now, fix an arbitrary point x0 ∈ X . Let {xk}
∞

k=1
⊂ X be a sequence convergent to x0

and y0 ∈ S (x0). From D is lower semi-continuous on X it immediately follows that there
exists a sequence {zk}

∞

k=1
⊂ D(X) such that zk ∈ D(xk) for all k ∈ N and lim

k→∞

zk = y0.

For each k ∈ N , if zk ∈ S(xk), then let yk = zk and if zk /∈ S(xk), then it can be easily
seen that there exists a unique point yk ∈ S(xk) such that d(zk, yk) = d(zk, S(xk)). Note
that S(xk) ⊂ D(xk) is a nonempty, compact and convex set, and we use the Euclidian
distance.

Consider points (x0, y0) ∈ X×Y and (xk, zk) ∈ X×Y for k ∈ N . From lim
k→∞

xk = x0

it follows that lim
k→∞

zk = y0, lim
k→∞

(xk, zk) = (x0, y0) and lim
k→∞

u(xk, zk) = u(x0, y0) =

h(x0). For each k ∈ N we know that h(xk) = u(xk, yk) ≥ u(xk, zk) and lim
k→∞

h(xk) =

h(x0). This means that u(xk, yk) − u(xk, zk) = h(xk) − u(xk, zk) and we conclude
that lim

k→∞

(u(xk, yk) − u(xk, zk)) = lim
k→∞

(h(xk) − u(xk, zk)) = h(x0) − h(x0) = 0, i.e.

lim
k→∞

d(u(xk, yk), u(xk, zk)) = 0.

Now we will prove that lim
k→∞

yk = y0.

Let us denote A = {k ∈ N |zk ∈ S(xk)} and B = {k ∈ N |zk /∈ S(xk)}.
It is interesting to point that A∩B = ∅, A∪B = N , lim

k→∞

zk = y0, k ∈ A is equivalent

to zk = yk, and k ∈ B is equivalent to zk 6= yk.

Actually, there are the following possible cases: A is infinite or k ∈ A is infinite, or
both.

Case 1. Let us assume that A be infinite and let k ∈ A. Trivially, we have that
lim
k→∞

yk = y0.

Case 2. Let us assume that B be infinite and let k ∈ B. In this case, u(xk, yk) >
u(xk, zk) and we will consider the function u on closed linear segment [(xk, zk), (xk, yk)].
Obviously, u(xk, yk) > u(xk, p) > u(xk, zk) for all p ∈ (zk, yk) because u(x, ·) is concave
on [(xk, zk), (xk, yk)] and {yk} = S(xk) ∩ [zk, yk]. This allows us to define a function
b : [zk, yk] → [u(xk, zk), u(xk, yk)] by b(p) = u(xk, p) for p ∈ [zk, yk], see also Remark 4.
Since b(zk) = u(xk, zk), b(yk) = u(xk, yk) and continuity of b on segment [zk, yk] imply
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b([zk, yk]) = [u(xk, zk), u(xk, yk)]. For this function we also obtain b(yk) > b(p) > b(zk)
for all p ∈ (zk, yk).

Let us fix an arbitrary point p ∈ [zk, yk). It is obvious that if q ∈ (p, yk), then
u(xk, yk) = b(yk) > u(xk, q) = b(q) > u(xk, p) = b(p) because u(x, ·) is concave on
segment [(xk, p), (xk, yk)] and {yk} = S(xk) ∩ [zk, yk], see Remark 4.

Let us assume that p, q ∈ [zk, yk] and p 6= q. There are two cases: either q ∈ (p, yk)
or p ∈ (q, yk). So, if q ∈ (p, yk), then b(yk) > b(q) > b(p), but if p ∈ (q, yk), then
b(yk) > b(p) > b(q). As a result we obtain b(p) 6= b(q), i.e. b is bijective.

Function b is continuous and bijective on compact set [zk, yk]; therefore, b−1 is contin-
uous too. As a result we find that lim

k→∞

d(u(xk, zk), u(xk, yk)) = 0 is equivalent to

lim
k→∞

d(b−1(u(xk, zk)), b
−1(u(xk, yk))) = 0,

lim
k→∞

d(b−1(u(xk, zk)), b
−1(u(xk, yk))) = 0

is equivalent to lim
k→∞

d((xk , zk), (xk, yk)) = 0 and lim
k→∞

d((xk, zk), (xk, yk)) = 0 is equiva-

lent to lim
k→∞

d(zk, yk) = 0.

At the end of this case, since 0 ≤ d(yk, y0) ≤ d(yk, zk) + d(zk, y0), lim
k→∞

zk = y0 and

lim
k→∞

d(zk, yk) = 0, we also conclude that lim
k→∞

yk = y0.

Case 3. Let us assume that A and B are both infinite. Using cases 1 and 2, we conclude
that lim

k→∞

yk = y0 for k ∈ N .

In conclusion, we obtain lim
k→∞

yk = y0 for k ∈ N , i.e. the multifunction S is lower

semi-continuous at point x0 ∈ X . Hence, we get that S is continuous on X . �

Continuing with this analysis, we also see that in Theorem 2 the maximum multi-
function S is lower semi-continuous on X , see Remark 1.
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ВЪРХУ ТЕОРЕМАТА ЗА МАКСИМУМА НА БЕРГ С ВДЛЪБНАТА

ФУНКЦИЯ НА ПОЛЕЗНОСТ ВЪВ ВТОРАТА СИ ПРОМЕНЛИВА

Здравко Славов, Христина Еванс

В настоящата статия представяме едно ново свойство на Теоремата за макси-
мума на Берг с вдлъбната функция на полезност. Доказано е, че максималната
мултифункция е непрекъсната и с изпъкнали стойности, когато активната мул-
тифункция е непрекъсната и с компактни и изпъкнали стойности, а функцията
на полезност е непрекъсната и вдлъбната във втората си променлива.
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