MATEMATUKA U MATEMATUHECKO OBPA3OBAHWE, 2018
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2018
Proceedings of the Forty-seventh Spring Conference

of the Union of Bulgarian Mathematicians
Borovets, April 2-6, 2018

SECURITY PATTERNS FOR MICROSERVICE
COMMUNICATION"

Tihomir Tenev, Dimitar Birov

Distribute application, used in many cases as cloud solution, has sufficient complex-
ity toward communication. This intricacy implies security problems as eavesdrop-
ping and tampering of sensitive information. Many guides contribute with methods
on how to determine vulnerable points, and part of them aim to help developers
by advising with proper resolution. However, such guides are either rather com-
mon or describe different security problems. Based on these findings, we decided
to make a step forward in constructing thorough classification of security patterns,
which strongly relates to microservice architecture. Our classification consists of four
sections as “Communication”, “Deployment and host management”, “Data Manage-
ment” and “Accounts and Identity”. Here we represent the first section “Communica-
tion”, which, for more clarity, we split in two subsets: “Inter-process communication”
and “Messages”. Moreover, we describe briefly each of the selected patterns toward
microservice architecture style and then relate them to relevant abbreviation of the
STRIDE model and list of security properties. This approach facilitates users in
better finding of appropriate pattern depend on their scenario.

1. Introduction. Nowadays security is one of the main concerns in developing dis-
tributed system, since it operates, in many cases, with sensitive information. Therefore,
working toward mitigating of security gaps, at earlier phase of application constructing,
prevents sequential problems. In that context, we made a classification of security pat-
terns [1], which helps in choosing a proper pattern for securing communication between
distributed components based on microservice architecture [5]. We split that classifica-
tion into two subsets, where each of them is categorized so as to simplify the process of
choosing the appropriate pattern. The first subset is toward “Inter-process communica-
tion” and the second is toward “Messages”.

Microservice is an architecture style organized by atomic independent components
called microservices. Each microservice should be as decoupled and cohesive as possible
[5]. These constraints lead to importing at least one connector at each microservice.
That architecture style might be used in diverse solutions as server side applications,
mobile applications, cloud applications etc., where each of them can be built as a set of
components. In this paper, we decided to work toward mitigating security issues with
cloud solution.

*2010 Mathematics Subject Classification: 68N01, 68M14, 68M15.
Key words: software architecture, cloud, microservices, security patterns, pattern classification.

190

The cloud system is a functional part of a distributed system [5] and has the ability
to grow with contemporary activities, which rapidly increases its complexity. The Na-
tional Institute of Standards and Technology (NIST) [3] categorizes the cloud context
in the meaning of three service models: Software as a Service (SaaS), Platform as a
Service (PaaS) and Infrastructure as a Service (IaaS). The significant model, that we
consider here, is the Platform as a Service. It provides a platform for deploying customer
application, and excludes the support of any hardware assets.

Here, we shall consider only connectors, which bind microservices and to exclude the
rest of the connectors, which bind “API Gateway” [5] to microservices. Depending on
communication styles, each connector can be either synchronous or asynchronous. We
describe them in section 2 and give examples with different message types, which flow
through a connector.

Essentially, security patterns [1] are described as a solution for a problem, which
occurs frequently in a certain case. Furthermore, each security pattern should take into
account certain software constraints to implement its resolution accordingly.

There are many classifications [2], [11], but we could not find any toward microser-
vice architecture. For that reason, we decided to make a step forward to building a
security pattern classification based on microservice architecture style. The whole clas-
sification consists of “Communication”, “Deployment and host management”, “Data
Management” and “Accounts and Identity”. In this paper, we present the first section,
which concerns the secure “Communication”.

For better understanding, we describe each of the selected patterns toward micro-
services and then relate them to a relevant threat category of the so called STRIDE
model [6]. Here STRIDE stands for Spoofing, Tampering, Repudiation, Information
disclosure, Denial of service, Elevation of privilege. We describe these threat categories
in Section 3. In addition, to increase the comprehensibility, we relate each of the STRIDE
threat categories to corresponding security property as Authentication, Data Integrity,
Non-repudiation, Confidentiality, Availability and Authorization. We describe them in
details in Section 3.

The paper is structured as follows: Section 2 describes various communications and
message types between microservices. Section 3 explains in details how we filter the
proper security patterns and how we construct our classification. Section 4 shows two
subsets of security patterns, where the first relates to “Inter-process communication”,
and the second relates to “Messages”. Section 5 shows other papers in that matter.
Section 6 derives conclusion and place the next steps for future work.

2. Communication between microservices. A significant problem with micro-
service architecture concerns a large number of connectors within an application. Unlike
most of software architectures, where application objects communicate in-memory and
share data through pointers or object references, in microservice architecture each mi-
croservice runs under a different process. In that context, the communication occurs only
via external calls. This in turn creates prerequisites for disclosing of sensitive information.

There are many fashions for building connectors, however, here we represent only
two of them: the Representational State Transfer (REST) [7] and Message Bus [4]. The
REST is used to bind two microservices in synchronous way with one-to-one connector.
Whereas, Message Bus can be used to bind at least two microservices in asynchronous
way with one-to-many connector. Both connectors can exchange two data types: human

191

readable as JSON and XML, and machine readable as binary. We provide more details
in the next subsections.

2.1. REST and synchronous communication. The architecture of REST is re-
vealed by Roy Fielding in his PhD dissertation [7]. It describes a resource-oriented
architecture style for network systems, which encapsulates a set of constraints for a syn-
chronous communication.

Essentially, synchronous communication has a request/response-based mechanism [8].
A client sends a request and waits for immediate responds afterwards. Moreover, such
a communication occurs only between two components. Some authors [9] entitle this
communication as Point-to-Point.

Depending on the scenario, some of the connectors can be used to transmit sensitive
information. They require special attention and should be treated in different fashion.
The Secure Channels [1] pattern helps in solving such a scenario by securing only these
connectors, which transmit sensitive information.

2.2. Asynchronous communication. The asynchronous communication mecha-
nism is message-based [8], [9] and represents a broadcasting method with single caller
and many listeners. Respectively, a caller does not expect to receive any answer in time.
If a listener wants to establish connection with a caller, he firstly should subscribe himself
to that event. Once a caller has at least one listener he then can proceed with message
broadcasting. There are several open source providers for asynchronous tools, which
can be used in combination with microservice: RabbitMQ [25], Apache Kafka [26], and
Apache ActiveMQ [27].

The problem with asynchronous connectors comes from the opportunity multiple
listeners to bind with one message bus. Thus, some listeners can break confidentiality
and disclose sensitive information. The Multiple Secure Observers [18] pattern works
against that problem.

2.3. Data types. There are two common data types, used by the microservices to
exchange data between one another [10]: human readable (XML and JSON) and machine
readable (binary).

XML is a markup language, which consists of set of rules for reading both by human
and machine. JSON is similar to XML, but is represented in a lightweight and simplified
manner.

The binary flow can be used to transport a data such as files and data broadcasting.
Many of the most famous languages embed libraries to allow developers in implementing
of these standards easily.

All these data types have metadata, which reveals information about the owner. This
in many cases might be used to find the exact location of certain microservice. Hidden
Metadata [22] pattern helps to protect metadata against interception.

Knowing more about communication methods implies proper adoption of security
patterns. “Inter-Process communication” table (Table 1) shows patterns, which can be
used either with Synchronous or with Asynchronous communication, and “Messages”
table (Table 2) shows patterns for each of the message types represented above. We
describe both tables in Section 3.

3. Classification. By design, Security patterns originate from plenteous experience
of developers, engineers and researchers. All policies and methodologies that they offer
are used as a template in modelling of a secure system. Moreover, such patterns can be

192

enforced with microservices in building completed cloud solution.

Each security pattern has its own structure. In many cases, it consists of several
sections — Intent, Context, Problem, Solution, Structure, Implementation, Consequences
and Known uses. However, we decided to narrow them to only three points, viz. Context,
Solution and Known uses. They mostly reveal the essential of each pattern and contribute
to better selecting. Context describes the nature of a situation, which includes domain
assumption and expectation of a system environment. Solution guides a consumer how
to solve a problem by providing a decision. Known uses gives example on where a certain
pattern is already implemented.

After estimating an appropriate reading method, we had to filter patterns suitable
from communication perspective. Based on that, we collected two sets of security pat-
terns, which we present in Table 1 and Table 2. The first table deals with “Inter-Process
Communication”, and the second — with “Messages”.

The next step, after filtering the security patterns, is classifying them in threat models
approach. Such a combination gives more clarity to a security pattern, which in turns
helps in better understanding.

In fact, threat modelling facilitates security experts by estimating vulnerable points.
In this regards, binding vulnerable points with the most suitable pattern is a good way for
building a secure application without eavesdropping or tampering sensitive information.

After thorough research, we decided to use threat modelling approach based on
STRIDE [6]. This approach advises readers to split a software into several components
for identifying the types of attacks that they may encounter.

Here is a more detailed description of the six threat categories:

e Spoofing is a type of fraud where a violator tries to gain access to a user’s system
or information by pretending to be the user. For example, when a certain user waits for
an event, and the event is triggered by another user with malicious purpose, usually this
leads to irrelevant proceeding. The best way to prevent such a threat is to build guard
method. Furthermore, that method closely relates to Authentication and implies using
of security patterns in this regard.

e Tampering means making illegal changes of data flow when a user should not. In
many cases, tampering leads to adjusting the content of a file, memory unit or data,
transferred over network. Nobody wants to receive or read information, which persists
with incorrect data. To prevent such a threat, keeping data in consistent state with
correct content is a must. Therefore, Tampering closely relates to security property
called Data Integrity.

e Repudiation is in meaning of rejecting to accept something. An example of such a
situation is when a user did something, but claims he did not touch it. This in many
cases can leads to less responsibilities. Such threat can be handled with logging of each
activity went over a system. Enforcing Non-repudiation related patterns imply preventing
of repudiation claims.

e Information Disclosure is in situation when an unauthorized user can see informa-
tion, which is forbidden for disclosing. The source of data might come from a running
process, storage or data flow. The best way to mitigate that risk is to enhance the
Confidentiality.

e Denial of Service mostly relates to exhausting of a certain part within a system. This
kind of attack works against memory, CPU or data store and mostly leads to software

193

inaccessibility. Moreover, it may fill up network bandwidth and inflict high degree of
time responding. The option to mitigate Denial of Service is to look how to increase
Awvailability.

e Flevation of Privilege means allowing user to execute a command without required
access rights for that. Nobody, except Administrator user, should operate with major
processes. Otherwise, somebody may bring a system in corruption state. Authorization
is the property, which gives someone permission to do or to own something and supports
preventing Elevation of Privilege.

As can be seen, we extend each STRADE category by linking it with a certain se-
curity property, which mostly fits in that context. The properties are Authentication,
Data Integrity, Non-repudiation, Confidentiality, Availability and Authorization. Such
an approach implies injection of greater perceptiveness in selecting appropriate security
pattern and leads to more intuitive classification.

Table 1. Inter-Process Communication

- . Repudiation| Information | Denial of | Elevation of
Spoofing/ | Tampering /

Patterns Authentication| Integrity /Non.— Disclosu-rc‘/ Sc.rvic.c./ Privil.cgc./
repudation | Confidentiality | Availability | Authorization
Input Guard [19] X
Multiple Secure Observers [18] X
Output Guard [19] X
Secure Channels [1] X X
Secure Communication [17] X
Security Association [17] X X
XML Firewall [21] X X
Authoritative Source of Data [23] X
Content—independent Processing [24] X X

Table 2. Messages

Spoofing/ | Tampering / Repudiation ln.formation Deniral of Ele‘va‘tion of
Patterns Authentication| Integrity /Non- Disclosure / | Service/ | Privilege/
repudation | Confidentiality | Availability | Authorization
Anonymity Set [22] X
Cryptographic Protocol [SRO1] X
DATA INTEGRITY IN P2P-SYSTEMS
[SY10] X X
Hidden Metadata [22] X
Layered Encryption [22] X
Morphed Representation [22] X
XML Encryption Syntax and
Processing [21] X X

Part of the patterns run into more than one STRIDE category, however, this can only
facilitate the right choice. For example, Secure Channels [1] and Content—independent
Processing [24] protect microservice architecture against Tampering and Information
Disclosure.

4. Enforcing Security Patterns. As part of distribution architecture, microservice
has several drawbacks: tough deployment process with many microservices, complexity of
testing process, external communication between each microservice, etc. We decided to

194

focus on communication between all microservices. It happens via external calls rather
than internal invoking of an object or a method. This is at least a prerequisite for
eavesdropping of sensitive information. To solve such threats, we suggest using security
patterns.

In next several paragraphs we explain each pattern from Table 1 and Table 2 in regard
to securing microservices. Therefore, the ones that come from Table 1 are:

If only an input microservice communication needs to be guarded, the Input Guard
security pattern [19] will handle it. Otherwise, the Output Guard [19] does the same,
but with exiting information. Both work in way of keeping the Integrity

the Secure Channel [1] represents secure manner in data exchanging between two
microservices (Microservice 1 and Microservice 2). Only sensitive data should be secured
by channel encrypting. Otherwise, in case of transferring non-sensitive data or reducing
some overhead, such a channel does not need to be encrypted. Therefore, a Secure Chan-
nel is written in regard to preventing two STRIDE aspects Tampering and Information
Disclosure. The Structure perspective is shown in Figure 3.

ChunkVerifier
e ChunkHash()
o ChunkList()
<P idess <uses/sends> § <uses/sends>
rovides : :
Key exchange mecha- Shared encryption key
H <uses/sends>
nism :
........ » = A 4
H Microservice 1 Microservice 2 Microservice n
A A
H i <uses®
‘USBSDE [ey, : T —wants to distributel T
H : send/access> ;
Microservice 1 Microservice2 : <wants to distribute/ <wants to distribute/
' send/access> 2 2 send/access>
Data
ChunkGenerator)
<usesias/generates> * ChunkAmayo
H
- EELEEE TR -
<uses> é ; <uses> : <wants/send/receive>
Encryption mecha- H
nism =uges> ' Microservice Con-
ETTLTTIL T LI ILLLL I sumer <usesireceive>
. 5 . : «
Fig. 3. “Secure Channel” security pattern Figure 4 “DATA INTEGRITY IN

P2P-SYSTEMS” security pattern

The Secure Communication [17] pattern describes a manner of securing the traffic
between two sets of microservices. This pattern does not depend on whether the parties
are already secured or not. The main purpose is to increase the Confidentiality.

The Security Association [17] might be combined with Secure Communication [17] or
another pattern, which has as main task to do encryption of a connector either between
two microservices or between two sets of microservices. Such a combination accelerates
overloaded communication by excluding re-negotiation process when the encrypted con-
nection is already established. Such a pattern operates toward Spoofing and Tampering.

The XML Firewall [21] can be applied on a connector, which is used in transferring
XML messages. This Firewall intercepts messages and understands whether a content

195

is applicable for a certain microservice or a rejection process should be invoked. This
pattern works against Spoofing and Tampering.

Content—independent Processing [24] has context of splitting transferred data into at
least two channels, where each of them handles only one type of data. It works against
Tampering and Information Disclosure.

The Authoritative Source of Data [15] protects a microservice against receiving un-
expected messages. This may come in many cases right after deploying a new version
of a microservice, which has additional parameters at its message content. Adjusting
a content may lead to misunderstanding on the part of the receiver, due to a lack of
readiness to consume it. This pattern increases the Integrity part of Security properties.

The Multiple Secure Observers [18] pattern works against the problem with asyn-
chronous connector and the ability multiple listeners to bind with one message bus.
Some of the listeners can break Confidentiality and Disclose Information.

The rest patterns concern the securing Messages (Table 2). Mostly they relate to
Information Disclosure part of STRIDE model, which is toward Confidentiality:

The Cryptographic Protocol [20] applies cryptographic algorithms and mechanisms
to protect messages transferred between microservices. It concerns the Confidentiality
increasing.

Encrypting the entire message is not the only thing that facilitates messages. The
Hidden Metadata [22] ensures anonymity of data content written in packet headers. For
instance, sender and receiver metadata may consist of microservice IP addresses and some
identity entries. That information should be consumed only by both parties. Otherwise,
the Confidentiality might be broken by a malicious user.

DATA INTEGRITY IN P2P-SYSTEMS [23] holds another scenario, where data con-
tent is split into several microservices (Microservice 1 to Microservice “n”) with limited
resources. Applying this security pattern allows for retrieving a data from at least two
holders in secure way by preventing Tampering attacks and Information Disclosing. The
structure perspective can be seen in Figure 4.

The XML Encryption Syntax and Processing specification [13] represents a standard,
where only sensitive information within a XML should be encrypted, but the rest stays
untouched. Encrypting only certain information increases Integrity and Confidentiality.

The Anonymity Set [22] describes a manner for data protecting by inserting sender’s
and receiver’s metadata within a set of another set of data. This kind of arranging works
against Information Disclosure by confusing malicious users in finding the right location
of a microservice instance.

The Layered Encryption [22] works with several microservices connected in chain.
They encrypt and decrypt information in each pair. However, the consumers are only
the innermost and the outermost microservices. The rest of them serve as intermediate
to increase the Confidentiality by eliminating the direct link.

The Morphed Representation [22] has similar logic as the Layered Encryption [22],
but it doesn‘t encrypt information and uses only one microservice as mediator just to
eliminate direct access. This pattern can be used in low latency scenario to protect
against Information Disclosure.

5. Related Works. Hafiz et al [2] show a similar method, however, their categoriza-
tion presents an approach, which follows “one pattern per one STRIDE point”. Here it
is not the same, because a pattern may participate in more than one STRIDE point.

196

Furthermore, current collection is split into two directions, which match “Inter-process
communication” and “Messages” constrains toward microservices.

In [12], Roman Malisetti reviews a secure method, which relies on REST communica-
tion. The patterns he enforces are: Transport level security (TLS/SSL), which provides
secure peer-to-peer authentication; OAuth, which enables consumers to access services
through UI API, without using service credentials; Token-based authentication, which
can be applied with OAuth together and can be used for exposing services over REST
or SOAP. However, authentication and authorization methods are out of scope in our
paper.

Similar to [12], Anivella Sudhakar [14] represents techniques for REST securing. He
describes differences between securing of REST and HT'TP. Such mechanisms are: HTTP
Authentication Schemes, which consist of Basic Authentication Scheme and Digest Au-
thentication Scheme; Token-Based Authentication, which supports the authenticating of
REST services; Transport Layer Security (TLS) and Secure Socket Layer (SSL); OAuth
and OpenlID. His paper shows patterns for Authentication and Authorization, which
don‘t relate to the current work.

The focus in [15] is mainly against securing of web applications. Its author distinguish
security patterns in two directions: procedural and structural. Structural patterns can be
applied in an already completed product, while procedures are aimed in phase of planning
and writing software. Many of the listed patterns do not match our paper. However,
“Authoritative Source of Data” is borrowed to enrich “Inter-process communication”
table.

Fern et al [16] consider only three security patterns: Authorization, Role-Based Access
Control, and Multilevel Security. They argue that these are the only three basic patterns
that can be applied at each level of the entire system. Unfortunately, there are many
scenarios, which require specific patterns. For example, the Hidden Metadata [22] pattern
ensures anonymity data content written in packet headers.

6. Conclusion. There are many publications, providing approaches to how to en-
hance security [2], however, the current paper is slightly different. It aims to show how
security patterns can help in developing secure cloud system, since that system can be
built via microservice architecture style.

We reveal two points of cloud systems, which cover communication between micro-
services. The first point is “Inter-process communication”, which describes two connector
types as synchronous and asynchronous. The second is “Messages”, which describes the
types of transported data within a connector. This division helps in better associating
of security patterns.

Our next step is to look for an appropriate way of reading security patterns. Initially,
they consist of several sections and we decided to use only three of them, viz. Context,
Solution and Known uses.

After estimating the appropriate reading method, we filtered two sets of security
patterns, which closely relate to each of both communications points. Additionally, we
categorize them toward the threat model named STRIDE. This in turn led to a more
intuitive classification.

For simplicity, we associated each category of STRIDE with six security properties:
Authentication, Data Integrity, Non-repudiation, Confidentiality, Availability and Autho-
rization. This implies understandability of the current approach and facilitates developers

197

in choosing appropriate security pattern in building cloud decision. Applying at least
one pattern from each of both tables enhance the security.

Further works will deal with research of other security patterns, which match the rest
aspects of the security pattern classification lean on Microservice architecture: “Deploy-
ment and host management”, “Data Management” and “Accounts and Identity”. The
entire classification will help in enhancing the security at earlier phase of building a cloud
decision based on microservice architecture style.

(1]

198

REFERENCES

M. SCHUMACHER, E. FERNANDEZ-BUGLIONI, D. HYBERTSON, F. BUSCHMANN, P. Som-
MERLAD. Security Patterns Integrating Security and Systems Engineering, 2006.

M. Hariz, P. ApAMCZYK, R. JOHNSON. Growing a pattern language (for security). On-
ward!, 2012, 139-158.

P. MELL, T. GRANCE, The NIST Definition of Cloud Computing, Special Publication
800-145.

V. EMEAKAROHA, P. HEALY, K. FATEMA, J. MORRISON. Cloud Interoperability via Mes-
sage Bus and Monitoring Integration. Workshop on Dependability and Interoperability in
Heterogeneous Clouds (DIHC13), At Aachen, Germany, 2013.

M. RICHARD. Software Architecture Patterns. O’Reilly Media Inc., 2015, 27-35.

A. SHOSTACK. Threat Modeling: Designing for Security 1st Edition, WILEY, 2014.

R. FIELDING. Representational State Transfer (REST). 2000, Chapter 5.

C. RICHARDSON, F. SMITH. Microservices: From Design to Deployment. NGINX Inc.,
2016.

G. HouPE, B. WOOLF. Enterprise Integration Patterns, 2003.

S. NEWMAN. Buiding Microservices, NGINX, 2015.

A. Morn, B. HamiD, A. LANUSSE, J. BRUEL. Guiding the selection of security patterns
based on security requirements and pattern classification. ACM Transactions on EuroPLoP
2015, July 2015.

R. MALISETTI. Securing RESTful Services with Token-Based Authentication. CA Technol-
ogy Exchange, 1 (2011), 43-48.

W3C, XML Encryption Syntax and Processing, 10 December 2002, http://www.w3.org/
TR/xmlenc-core/

A. SUDHAKAR. Techniques for Securing REST. CA Technology Exchange, 1 (2011), 32—40.
S. ROMANOWSKY. Security Design Patterns Part 1, Morgan Stanley Online, September
2001.

E. FERN, R. PAN. A pattern language for security models. PLoP 2001 Conference, 2001.
B. BLAKLEY. Heath, and members of The Open Group Security Forum. Security Design
Patterns. The Open Group, Apr. 2004.

V. GonDI. Multiple secure observers using j2ee. Proceedings of the Conference on Pattern
Languages of Programs, 2010, 1-13.

T. SARIDAKIS. Design patterns for fault containment. Proceedings of the European Con-
ference on Pattern Languages of Programs. UVK — Universitaetsverlag Konstanz, 2003,
493-520.

M. SCHUMACHER, U. ROEDIG. Security engineering with patterns. Proceedings of the Con-
ference on Pattern Languages of Programs, 2001, 1-17.

[21] S. R. NELLY DELESSY-GASSANT, E. B. FERNANDEZ, M. M. LARRONDO-PETRIE. Patterns
for application firewalls. Proceedings of the Conference on Pattern Languages of Programs,

[22)
23]
[24]
[25]

[26]
27]

2004, 1-19.

M. HAFI1Z. A collection of privacy design patterns. Proceedings of the Conference on Pattern

Languages of Programs, New York, NY, USA, ACM, 2006, 1-13.

B. SCHLEINZER, N. YOSHIOKA. A security pattern for data integrity in p2p systems. Pro-

ceedings of the Conference on Pattern Languages of Programs, Oct. 2010.

M. HAF1z, R. E. JOHNSON, R. AF. The security architecture of qmail. Proceedings of the

Conference on Pattern Languages of Programs, 2004, 1-9.
https://wuw.rabbitmq.com/
https://kafka.apache.org/
http://activemq.apache.org/

Tihomir Tenev

e-mail: tenevtih@gmail.com

Dimitar Birov

e-mail: birov@fmi.uni-sofia.bg
Faculty of Mathematics and Informatics
Sofia University “St. Kliment Ohridski”
5, J. Bourchier Blvd

1164 Sofia, Bulgaria

MOJEJIN 3A CUTYPHOCT 3A MUKPOCBHBPBUCHA
KOMYHUKAIINA

Tuxomup Tenen, Aumurnbp Bupos

JucTpubyTHBHO MPUIOKEHNE, KOETO C€ M3IMOJI3Ba B MHOIO OT CJIyYauTe KaTo 00-
AQGYHO pPeuweHue, UMa CJIOKHOCT 110 OTHOIIEHHWE Ha KOMYHMKAIMsTa. 1a3u CJI0KHOCT
peJrosara IpobjgeMn ChbC CUIYPHOCTTA KaTo IOJCYIIBaHE W yIpaBjeHUe Ha KOH-
dunennuanna wapopMmarms. Vima MHOTO pbKOBOJCTBA, KOUTO IPEJIAraT METOIH, C
KOHUTO MOKeE JIa Ce OIPEJIeJIM 3aCTpallleHa TOYKa U HAYMHU 3a CIIpaBsiHe ¢ Hesl. Bbipe-
KU TOBa, TAKUBa P'bKOBOJICTBA CA WJIM TBbP/Ie OOIIN, WA OMKUCBAT PA3JIUIHU IPOOIIe-
Mu CbC curypHocTTa. OCIaHSAMKN Ce Ha T€3W OTKPUTHsI, HUE PEITuXMe J1a HAIPaBUM
CT'bIIKA HAIIPEJI B HAIpaBaTa Ha MOJPOOHA KJIACU(MUKAIAA OT MOIEIN 33 CUTYPHOCT,
KOSITO MMa TsICHA B3aMMOBPB3Ka C MUKPOCHbPBUCHATA apxXuTeKTypa. llianysanara ot
Hac KJacuUKaI|sa ce ChCTOM OT deTupu Touku: ,Komynukamus“, , lemmoitsane™ u
yIpaBjieHue Ha XocToBe“, , VIpaBjeHue Ha CbXxpaHeHa uHdopmanus® u , AkayHTt u
uAeHTHIHOCT . B Tasu crarus HHMe mpejcTaBsMe I'bpBaTa TOYKa ,, KomyHukarms“,
KOSITO 38 IO-TOJISIMa sICHOTa CM€ Pa3JIe/IUIN Ha JBE MOJATOYKHU: ,, BbTpe-mporiecHa Ko-
myuukamua“ u ,Cbobmenus”. OcBeH TOBa HUE JaBaMe IPUMEDP 3a BCEKHM €JUH OT
mo0paHuTe MOJIEN 38 CUTYPHOCT K'bJle ITO-TOYHO MOYKEe JIa C€ M3IMOJI3Ba B €JIHa MUK-
pocbpBucHA apxuTekTypa. Cjesl ToBa o CBbp3BaMe ChC ChOTBETHATA KATETOPHUST OT
MeTona 3a momenupane Ha samtaxure STRIDE u monbianuTeen ciuchbK OT CBOACTBA
Ha, CUTYPHOCTTa. 103U MOJXOJ, MOJAIOMAara IUTATETUTE TO-JIECHO JIa, HAMEPSIT MTOIXO0-
JISIIIMST 38 TSIX MOJIENT 38 CHUTYPHOCT.

*B IT-kouTekcr deployment obxBala MpolecuTe, Ype3 KOUTO HOB copTyep UK Xap/Iyep 6uba mpuse-
JIeH B MIPABUJIHO PAbOTEINO CHCTOSHUE B JAJIEHO OOKPbYKEHUE, BKIIIOYBAIIY WHCTAJIAINS, KOH(DUTypaIus,
IpOGHO IyCKaHe W IpaBeHe Ha HeoOxozmmmure npoMmeHn (Ger. pex.).

199

