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EXISTENCE OF INFINITELY MANY SOLUTIONS
OF PROBLEMS FOR p-LAPLACIAN DIFFERENTIAL

EQUATIONS VIA VARIATIONAL METHOD*

Stepan Tersian

We study the multiplicity of weak solutions for second-order one-dimensional p-
Laplacian differential equations. Some historical notes on critical point theory, vari-
ational method and Clark’s theorem are given.

1. Introduction. In this paper we present some historical notes on the critical
point theory and variational method for solvability of problems for differential equa-
tions. First, in Section 2, we consider preliminary notes on the cathegory of Lusternik
and Schnirelman [7] and the genus of Krasnoselskii [6]. Then, we introduce the Palais-
Smale (PS)-condition and formulate the critical point theorem of D. Clark [2] and its
generalization due to Heinz [5]. We formulate also its recent extension due to Liu and
Wang [8]. In Section 3 we consider an application of extended Clark’s theorem for the ex-
istence of infinitely many weak solutions for the Dirichlet’s problem (P ) for second-order
one-dimensional p-Laplacian equation

(1.1) (ϕp (u
′(x)))

′ − a(x)ϕp (u(x)) + f(x, u(x)) = 0 , x ∈ [0, T ]

with the boundary conditions

(1.2) u(0) = u(T ) = 0.

Here ϕp (t) = |t|p−2t, t ∈ R for p > 1 and f(x, u) is a nonlinear term which satisfies some
growth conditions. The partial case p = 2 is known as stationary Fisher-Kolmogorov
equation (see [4], [10], [11] and references therein).

Let the function F (x, u) be the potential of the function f(x, u)

F (x, u) =

∫ u

0

f(x, s)ds.

Let Lp(0, T ) be the usual Lebesque’s space with norm ‖u‖p =

(

∫ T

0

|u(x)|pdx
)1/p

.
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For the function a, we suppose

(A) a ∈ C([0, T ]× R) and there exist positive constants a1 and a2 such that a1 ≤
a(x) ≤ a2.

Next, we assume the growth conditions for nonlinear term f(x, u):

(F1) f ∈ C((0, T ) × R) and there exist constants q, 1 < q < p and functions

b ∈ Lr(0, T ), where r =
p

p− q
, such that

|f(x, u)| ≤ b(x)|u|q−1,

for all (x, u) ∈ (0, T )× R.

(F2) There exists an open bounded interval J ⊂ (0, T ) and q positive constants c

and such that

F (x, u) ≥ c|u|q,
for all (x, u) ∈ J × R.

(F3) f(x, u) = −f(x,−u), for all (x, u) ∈ (0, T )× R.

To treat the solvability of problem (P) we introduce the following Banach space

X := W
1,p
0 (0, T ) = {u ∈ W 1,p(0, T ) : u(0) = u(T ) = 0}

where W 1,p(0, T ) is the Sobolev space

W 1,p = {u ∈ Lp(0, T ) : u′ ∈ Lp(0, T )}
with the norm

‖u‖W 1,p =

(

∫ T

0

(|u′(x)|p + |u(x)|p)dx
)1/p

.

By assumption (A) the last norm is equivalent to the norm

‖u‖ =

(

∫ T

0

(|u′(x)|p + a(x)|u(x)|p)dx
)1/p

.

We define the functional I : X → R

I(u) :=
1

p

∫ T

0

(|u′(x)|p + a(x)|u(x)|p)dx−
∫ T

0

F (x, u(x))dx,

The functional I is C1 differentiable under assumptions (F1)− (F2) and (A) and

〈I ′(u), v〉 =
∫ T

0

(ϕp(u
′(x))v′(x) + a(x)ϕp(u(x)v(x) − f(x, u(x))v(x))dx,

where u, v ∈ X and 〈·, ·〉 denotes the duality brackets between the spaces X∗ and X .
The critical points of I, i.e. the points u for which 〈I ′(u), v〉 = 0 for all v ∈ X are the
weak solutions of the problem (P ). Our main result is as follows:

Theorem 1.1. Let p > 1 and the functions f and a satisfy assumptions (F1), (F2) and
(A). Then the problem (P ) has at least one nontrivial weak solution. If in addition the
assumption (F3) holds, then the problem (P ) has infinitely many pairs of weak solutions
(um,−um) such that um 6= 0 and lim

m→∞
max

x∈[0,T ]
|um(x)| = 0.

Remark 1.2. We show an example of a function f which satisfies the assumptions
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(F1)− (F3). Let p =
5

2
, q =

3

2
, T = π, J = (0, 1) and

f(x, u) =
| cosx|
x1/3

|u|−1/2u.

Then r =
5

2
, and b(x) =

| cosx|
x1/3

∈ L5/2(0, π) by b(x) ≤ 1

x1/3
and

∫ π

0

(
1

x1/3
)5/2dx =

∫ π

0

1

x5/6
dx = 6 6

√
π. We have

F (x, u) =
2| cosx|
3x1/3

|u|3/2

and for (x, u) ∈ J × R

F (x, u) ≥ 2

3
cos 11/3|u|3/2,

which satisfies (F2) with c =
2

3
cos 11/3.

The paper is organized as follows. In Section 2 we give notes on above mentioned
critical point theorems and variational formulation of the problem. In Section 3 we
present an existence result for the problem (P) and give it’s proof.

2. Preliminaries. Critical point theory and variational method deal with problems
for which there exists a smooth functional whose critical points are the solutions of
considered problems. The minimax method characterizes a critical value c of a functional
J on a Banach space E as a mini max value over a certain class of sets A of E

c = inf
A∈A

max
u∈A

J(u).

Perhaps one of first examples using a mini max method due to E. Fisher (1905) for
characterization of eigenvalues of a real symmetric n× n matrix M

λk = inf
Xk−1

max
x⊥Xk−1,|x|=1

〈Mx, x〉,

where E = Rn, Xj is a subspace of E with dimension j.

A theory of mini max was elaborated in early 1930 by L. Lusternik and L. Schnire-
laman [7] in the study of manifolds. They introduce the Lusternik-Schnirelaman (LS)
cathegory Cat(Y ) of a topological space Y , as the least number n, such that there is a
cover of n+ 1 open subsets of Y , each of them contractible to a point of Y .

For instance Cat(Sn) = 1,Cat(T) = 2 where S
n is the sphere in R

n+1 and T = S× S

is the torus in R
3.

A simpler notion the LS-cathegory is that of genus due to M. Krasnoselskii [6] and
the equivalent definition of Coffman [3]. Let E be a real Banach space and Ξ denotes
the family of sets A ⊂ E such that A is closed and symmetric with respect to the origin
0, i.e. x ∈ A iff −x ∈ A. For A ∈ Ξ, the genus γ(A) is defined as the smallest integer n,
such that there exists a continuous map ϕ : A → R

n \ 0.
One can see that for n ≥ 1 and A homemorphic to S

n, γ(A) > 1 by intermediate
value theorem. Moreover γ(Sn) = n+ 1 follows by Borsuk-Ulam theorem (see [9]).

After the work of Lusternik and Schnirelman [7] many authors studied the existence
of multiple critical points of functionals on manifolds and infinite dimensional Banach
spaces using compactness conditions known as Palais-Smale (PS) or (C) conditions. Let
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E be a Banach space and J ∈ C1(E,R).
The functional J satisfies (PS)-condition if any sequence un ⊂ E, such that J(un) is

bounded and J ′(un) → 0 as n → ∞ contains a strongly convergent subsequence (whose
limit as a consequence is a critical point of J .)

Clark [2] in 1972 used the (PS)-condition in a localized form as (A)-condition:
Any sequence un ⊂ E, such that J(un) < 0, J(un) is bounded and J ′(un) → 0 as

n → ∞ has a strongly convergent subsequence.
Brezis and Nirenberg [1] in 1991 used a variant of (PS)-conditions known as (PS)c

and (C)c conditions:
Any sequence un ⊂ E, such that J(un) → c and J ′(un) → 0 as n → ∞ contains a

convergent subsequence.
J satisfies (C)c condition if whenever un ⊂ E is a sequence, such that J(un) → c and

J ′(un) → 0, then c is a critical value of J .
(PS)-conditions is equivalent to (PS)c condition for any c ∈ R. (PS)c condition

implies (C)c condition but not converse. For instance the function f(x) = cos(x), x ∈ R

satisfies (C)c but not (PS)1 condition.
D. Clark [2] in 1972 used (A) condition, Krasnoselskii genus in a multiple critical

point theorem, known recently as Clark’s theorem. We present it’s variant proved in the
paper of. H. Heinz [5], 1986. Let Σ be the class of closed subsets A of E \ {0} which are
symmetric with respect to origin, i.e. A = −A. The Lusternik-Schnirelman levels cj of
J ∈ C1(E,R) are defined by

cj = inf
A∈Σ

sup
u∈A

J(u), j ≥ 1.

Theorem 2.1 (Clark’s theorem, [2], [5]). Let E be a Banach space, J ∈ C1(E,R).
Suppose that J satisfies the assumptions:

(i) J is bounded below on E, J is even and J(0) = 0,
(ii) J satisfies (PS)− condition,
(iii)m For some integer m, there exists a set K ∈ Σ such that γ(K) = m and

sup
u∈K

J(u) < 0

Then, there exist antipodal pairs (uj ,−uj) of critical points of J such that J(uj) = cj
for 1 ≤ j ≤ m.

As a consequence we have
Proposition 2.2. If J satisfies hypotheses (i), (ii) and (iii)m for every m ∈ N, then

we have lim
j→∞

cj = 0.

Rabinowitz [12], p.53 gave a simpler formulation as follows
Theorem 2.3 ([12]). Let E be a Banach space, J ∈ C1(E,R) with J is even, bounded

below and satisfying (PS). Suppose J(0) = 0, there is a set K ⊂ E such that K is
homeomorphic to S

j−1 by an odd map, and sup
K

J < 0. Then J possesses at least j

distinct pairs of critical points.
Theorem 2.3 was applied in [11] for the study of extended Fisher-Kolmogorov equa-

tions.
Theorem 2.1 was recently extended by Z. Liu and Z. Wang [8] in 2015. They consider

the question, when the critical points uj of Proposition 2.2 satisfy the condition uj → 0
as j → ∞. Their basic result is formulated as follows:
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Theorem 2.4 (Generalized Clark’s theorem, [5], [8]). Let E be a Banach space,
J ∈ C1(E,R). Assume that J satisfies the (PS) condition, it is even, bounded from
below and J(0) = 0. If for any k ∈ N, there exists a k−dimensional subespace Ek of E
and ρk > 0 such that sup

Ek∩Sρk

J < 0, where Sρ = {u ∈ E , ‖u‖E = ρ}, then at least one of

the following conclusions holds:

1. There exists a sequence of critical points {uk} satisfying J(uk) < 0 for all k and
lim
k→∞

‖uk‖E = 0.

2. There exists r > 0 such that for any 0 < α < r there exists a critical point u such
that ‖u‖E = α and J(u) = 0.

Realize that Theorem 2.4 implies the existence of many pairs of critical points
(um,−um), um 6= 0 such that J(um) ≤ 0, lim

m→+∞
J(um) = 0 and lim

m→+∞
‖um‖E = 0.

We present also the minimization theorem which will be used in the proof of the main
result Theorem1.1 (see [4], [9],[10]).

Theorem 2.5 (Minimization theorem). Let J : E → R be a weakly sequentially lower
semi continuous functional on a reflexive Banach space E and let J has a minimum on
E, i.e., there exists u0 ∈ E such that J(u0) = inf

u∈E
J(u). If J is differentiable, then u0 is

a critical point of J .
We have the usual Wirtinger and Sobolev inequalities and compact embedding X →֒

C([0, T ]), (see [9], [10]).
Lemma 2.6. If u ∈ X, then
(i)

∫ T

0

|u(x)|pdx ≤ T p

∫ T

0

|u′(x)|pdx,

(ii)

‖u‖∞ := max|u(x)| ≤ T
p−1

p

(

∫ T

0

|u′(x)|pdx
)

1

p

.

3. Proof of the main result. Before the proof of Theorem 1.1 we formulate lemma
as follows.

Lemma 3.1. Assume that assumptions (A) and (F1) hold. Then the functional
I : X → R is bounded from below and satisfies (PS) condition.

Proof of Lemma 3.1. We have by (F1)

|F (x, u)| ≤ 1

q
b(x)|u|q.

Then, for Hölder inequality and assumption (A)

(3.1)

∫ T

0

F (x, u(x))dx ≤ C1‖b‖ p
p−q

‖u‖q,

where C1 is a positive constant. By Lemma 2.6 we have

I(u) ≥ 1

p
‖u‖p − C1‖b‖ p

p−q
‖u‖q
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which implies by 1 < q < p, that I is a coercive functional, i.e. I(u) → ∞ as ‖u‖ → ∞
and bounded from below. The statement that the functional I satisfies the PS-condition
is following the arguments in [10] and we omit the details. �

Proof of Theorem 1.1. The conditions of minimization Theorem 2.5 are satisfied
and the functional I : X → R has a minimum point u0 which is a weak solution of the
problem (P ). It can be shown by (F2) that u0 is a nonzero solution. Let v ∈ W

1,p
0 (J)∩X

be such that v(x) = 0, x ∈ [0, T ]\J be a nonzero function and ‖v‖∞ ≤ 1. Then for t > 0
by (F2)

I(tv) =
tp

p
‖v‖p −

∫ T

0

F (x, tv(x))dx =
tp

p
‖v‖p −

∫

J

F (x, tv(x))dx

≤ tp

p
‖v‖p − ctq

∫

J

|v(x)|qdx.

By the last inequality it follows that for sufficiently small t, I(tv) < 0 because 1 < q < p.
Then I(u0) = min{I(u) : u ∈ X} < 0 and u0 is a nonzero weak solution because
I(0) = 0.

Next, we show that under conditions (F1) − (F3) and (A), the functional I satisfies
conditions of Theorem 2.4. Let J = (a, b) ⊂ (0, T ) and for n ∈ N take n disjoint open

intervals Jk = (xk−1, xk), k = 1, . . . , n where xk = a+
k

n
(b− a), k = 0, 1, . . . , n. We have

∪{Jk : k = 1, . . . , n} ⊂ J . Next, we choose functions vk ∈ C∞
0 (Jk) such that ‖vk‖∞ < ∞

and ‖vk‖ = 1. Let Xn be the n−dimensional subspace of X

Xn := span{v1, v2, . . . , vn}
and

Sn := {u ∈ Xn : ‖u‖ = 1}.

For u =
n
∑

k=1

λkvk ∈ Xn we have

‖u‖p =

∫ T

0

(|u′(x)|p + a(x)|u(x)|p)dx

=

n
∑

k=1

|λk|p
∫

Jk

(|v′k(x)|p + a(x)|vk(x)|p)dx

=

n
∑

k=1

|λk|p

and

(3.2) ‖u‖qq =
n
∑

k=1

|λk|q
∫

Jk

|vk(x)|qdx.

Since the norms ‖ · ‖ and ‖ · ‖q are equivalent on the finite dimensional space Xn there
are positive constants d1n and d2n such that for u ∈ Xn :

(3.3) d1n‖u‖ ≤ ‖u‖q ≤ d2n‖u‖.
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Then, for u ∈ Sn by (3.2) and (3.3) we have:

I(tu) =
tp

p
‖u‖p −

∫ T

0

F (x, tu(x))dx =
tp

p
‖u‖p −

n
∑

k=1

∫

Jk

F (x, tλkvk(x))dx

≤ tp

p
‖u‖p − ctq

n
∑

k=1

|λk|q
∫

Jk

|vk(x)|qdx

=
tp

p
‖u‖p − ctq‖u‖qq ≤

tp

p
‖u‖p − c1t

qd
q
2n‖u‖q.

By the last inequality and 1 < q < p it follows that I(v) < 0 for v ∈ St
n := {tu : u ∈ Sn}

with t sufficiently small. Finally, the functional I satisfies all conditions of Theorem 2.4
and the assertion follows. �
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СЪЩЕСТВУВАНЕ НА БЕЗБРОЙНО МНОГО РЕШЕНИЯ НА
ЗАДАЧИ ЗА р-ЛАПЛАСОВИ ДИФЕРЕНЦИАЛНИ

УРАВНЕНИЯ ЧРЕЗ ВАРИАЦИОНЕН МЕТОД

Степан Терзиян

В статията се изучава съществуването на безкрайно много решения на задача

на Дирихле за едномери р-Лапласови уравнения. Дадени са исторически бележ-

ки за теорията на критични точки, вариационен метод и теорема на Кларк.
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