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The following problems in the quantitative pharmacology are very important and
interesting from applied mathematics point of view:

− Protein folding problem;
− Docking problem;
− Quantitative ligand-receptor interaction.

All of the above problems have been investigated by the members of the “Center for
Advanced Bioinformatics Research” of the South-West University “Neofit Rilski” in
Blagoevgrad.
In this article, the novel results in the area of the three problems mentioned above

will be presented.

Introduction. The quantitative pharmacology is based on receptor occupation
theory and formally the main problem is to find the dependence on the physiological
effect from concentration of the ligand or on the ligand acting on the given type of
receptors.

The steps between ligand-receptor interactions and subsequent biological effect are
to some extent unknown and are subject to mathematical and computer modelling.
Schematically this is presented in Figure 1.

In this article, it will be considered the mathematical models of the problems men-
tioned in Figure 1 obtained by the members of the Center for Advanced Bioinformatics
Research (CABR) at SWU “Neofit Rilski”, Blagoevgrad (http://bioinfo.swu.bg).

The problems and results formally could be divided into the following three groups:
mathematical models, algorithms and computational results of protein folding, docking
problem and quantitative ligand-receptor interaction.

Further, it will be used some terminology which is explained below:
− receptors are the protein molecules which contain more than 100 amino acid residues;
− ligand could be peptides (which contain less than 100 amino acid residues) or non-

peptides (any chemical structure that could bind receptor);
− conformation is one of the infinite number of possible 3D arrangements of atoms

in peptide (protein) molecule.

*2010 Mathematics Subject Classification: 93A30, 65K05, 05C85, 90C90, 90C11.

Key words: mathematical models, folding, docking, optimization, computational biology, in silico,

QSAR.
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Fig. 1. Mechanism of ligand-receptor interactions

1. Folding problem. The protein and ligand functions depend on their tertiary
structure, which in turn depends on their primary structure.

The folding problem (prediction of tertiary structure) of a given ligand or receptor
could be formulated as follows:
− Let F (x) be a scoring function estimating qualitatively a conformation x of a ligand

or a receptor X defined by its primary structure.
− Let M(X) be the set of all conformations of the ligand or receptor X .

− The problem is:

(1)
F (x)→ extr(max,min)

x ∈M(X)

So, predicting the tertiary structure – it is to find the optimal solution x∗ ∈M(X) of
problem (1).

It is a common practice for solving problem (1) to use models that simplify the
possible conformations search space (i.e. M(X)). These models reflect the different
global characteristics of the protein structure.

The Hydrophobic-Polar (HP) model [17] describes the protein sequence based on the
fact that hydrophobic amino acids must have less contact with water as opposed to
the polar amino acids. This leads to the formation of hydrophobic core in the tertiary
structure of the proteins.

In the HP models, the amino acids are situated in vertices of the 2D or 3D rectangular
lattice.

The optimal conformation of protein folding in the HP model is the optimal solution
x∗ of (1) with scoring function F (x).

It is proved that the protein folding problem in the HP model for 2D and 3D is
NP-hard [8].

Folds in HP model. The processes, related to the protein folding, are very complex
and only a minority of them are explained and understood by scientists. For this rea-
son, the simplified models, such as Dill’s HP model, have become one of the main tools
for study of the proteins [17]. The HP model is based on the observation that the hy-
drophobic interaction between the amino acids is the driving force in the protein folding
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process. In this model, the 20 amino acids are reduced to two types – H (hydropho-
bic) and P (hydrophilic). The energy of the conformation is defined as the number of
contacts between hydrophobic amino acids (H-H contacts), which are not neighbours in
the protein sequence. The optimal conformation is the conformation with lowest energy
value, defined as a negative of the number of H-H contacts, i.e. it is x∗ ∈ M(X) which
minimizes F (x). In these models M(X) is the set of foldings in 2D or 3D lattices and
these folding are named “self-avoiding paths”.

Conformations of the proteins in the HP models are limited to self-avoiding paths in
the lattice models. The self-avoiding path is a sequence of moves in the lattice, which
do not pass through the same position more than once. In a cubic lattice, such a path is
simply a sequence of moves from (x, y, z) node to one of the six neighbour nodes. The
goal is to find the path that minimizes the energy.

Let us mention again that, the HP model of protein folding consist of:

− A given amino acid sequence, S = s1, s2, . . . , sn (sequence of letters over the {H,
P} alphabet):

− Assignment: Each amino acid must occupy one lattice point.

− Non-overlapping: No two amino acids may share the same lattice point.

− Connectivity: Every two amino acids that are consecutive in the protein’s sequence
must also occupy adjacent lattice points.

− Find a solution of problem (1). This solution is a path satisfying assignment,
non-overlapping and connectivity.

For solving the protein folding problem by the HP model, it is proposed a number of
optimization algorithms, including Evolutionary algorithms [34], Monte Carlo algorithms
[36], and Ant-Colony Optimization algorithms (ACOs) [55].

An integer programming formulation of HP models. The key ingredients
of the problem are as follows: a sub lattice (arbitrary) and a sequence of H, P letters
are used below for creating a problem on graphs, which could be solved as an integer
programming problem or by means of graph theory only [In the 2D case, the sublattice
is a square, and for 3D, a cube with nodes painted in black (set Vb) and white (set Vw)
alternately]. Let Gc = (Vc, Ec) be a graph with Vc = Vb ∪ Vw = {1, 2, . . . ,m}, where
node i corresponds to the ith node of the sublattice (under an arbitrary numeration of
the sublattice nodes) and the edge (i; j) ∈ Ec if i and j are neighbours in the sublattice.
The simple paths (each node is visited at most once) in Gc are called self-avoiding paths.

Let S be a sequence of n letters on {0, 1} alphabet (0 – for P, and 1 – for H). Let
GS = (VS , ES) be a graph associated with S with a node set VS = {1, 2, . . . , n} and
(i, j) ∈ ES if and only if |i− j| > 2 and S[i] = S[j] = 1. Let G = GS ∪Gc be a complete
bipartite graph with node set VS ∪Vc. The matching (in this case one-to-one mapping of
VS to Vc) M = {e1, e2, . . . , en} with |M | = n is feasible if the covered nodes in Vc define
a self-avoiding path. Define function z(ei, ej) = zikjl = 1 if (i, j) ∈ ES , (k, l) ∈ Ec, and
zikjl = 0 otherwise. Finally, define

(2) v(M) =
∑

ei,ej∈M

z(ei, ej).

37



Let M̃ be the set of feasible matchings. Then, the problem of finding the optimal
folding over the chosen lattice is as follows:

Folding problem on graph: For M ∈ M̃ find v = max v(M).

Converting the HP problem to an optimization problem on graphs allows building
various integer programming models. Most of them involve introducing binary variables,
let’s say xik for modelling the feasible matchings from above as 0–1 solutions to simple
linear constraints:
(Assignment)

(3)

m∑

i=1

xik = 1, k = 1, . . . , n.

(Non-overlapping)

(4)
n∑

k=1

xik ≤ 1, i = 1, . . . ,m.

The objective function could be expressed by linearization of zijkl = xikxjl and/or by
partitioning the sum of z in subsums in different ways. We will not present all possible
integer programming models, but for the sake of completeness, we add the following
constraints to finish modelling the self-avoiding paths:

(5)
xik ≤

∑

j∈n(i)

xjk+1,

i = 1, . . . ,m, k = 1, . . . , n− 1.

where n(i) is the set of neighbours of the ith node.

Getting back to the HP folding problem and its conversion to a problem of finding
matching that maximizes the number of overlapping edges, one could find a lot of simi-
larity with another problem known as Contact Map Overlap that is (in our case): for a
given two graphs GS , Gc find an embedding (matching) of VS in Vc that maximize the
number of common (overlapped) edges.

A suitable platform for building integer programmingmodels is the so called alignment
graph G = (Vc ⊗ VS , E) with E = {i, k, j, l}, (i, j) ∈ Ec, (k, l) ∈ ES . By decomposing
the sum (2), we could obtain different integer programming models like the next one:
without loss of generality assume that the set EVEN is of smaller cardinality and they
are assigned to Vb. Let yij ∈ {0, 1}, i ∈ Vb, j ∈ Vw, corresponds to the sum of z arcs
between rows i and j. Thus the problem is to maximize:

(2′)
∑

yij ,

subject to additional (to (3), (4), (5)) constraints allowing yij to be equal to 1:

vi =
∑

k ∈EVEN

xik, i ∈ Vb,(6)

vj =
∑

k ∈ODD

xjk, j ∈ Vw,(7)

vj ≥ yij ≤ vi.(8)
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The model above is a mixed linear integer programming problem with xik binary and by
using appropriate solvers like

CPLEX (www.ibm.com/software/products/en/ibmilogcpleoptistud) or

GUROBI (http://www.gurobi.com/documentation/)
it allows finding optimal folds for sequences of up to 100 elements on a computer with
average capabilities. A challenge for the reader is to prove that the number of binary
variables could be reduced from 0.5 to 0.25 nm.

A new classifier for protein fold class recognition. The proteins are large
biomolecules, which play a key role in many vital functions in living organisms. Up to
date, the number of experimentally determined 3D protein structures in Protein Data
Bank (www.rcsb.org) is > 125 000 and the comparison of protein structures or protein
fold classification and identification is becoming a hot topic in computational biology.
The proteins can be classified into one of four major structural classes: α, β, α/β, α+ β
[35]. The structure classification of proteins (SCOP) groups the proteins according to
their structures and amino acid sequences, thus providing detailed information about
the structural relationship between all recognized proteins [19, 44]. According to SCOP,
the four structural classes are divided into folds. The protein fold classification process
determines the fold that the query protein belongs to.

Proteins can be classified according to their structural classes and folds. Classification
according to the structural classes is called first level classification, and classification
according to folds is called second level classification. There are many studies related
to the first level classification [4, 18], but in this article we focus on the second level
one, namely protein folds classification. One of the basic studies related to the fold
classification was performed by Ding and Dubchak [18].

Definition of classifier problem. Suppose that a target function f : X ⊂ R
n →

Y = {1, 2, . . . , k} is partially known on subset X ⊂ X of instances (training examples).
The set X is referred to as feature space and the elements of Y as labels. Now let f
be a function that is consistent with f , i.e. f(x) = f(x), x ∈ X. The case f 6= f(x),
x ∈ X is often called a generalization error. Thus, the classification problem could be
mathematically defined as a problem of finding f with minimum generalization errors.
Problems with k = 2 are sometimes called binary classification and for k > 2 multi
group classification. For a finite label set Y , we can w.l.o.g. restrict the class of function
to be the step function like defined on a set of mutually exclusive sets Ai. Formally

f =
∑

i
χAi(x), where χAi(x) = 1 if x ∈ Ai and 0 otherwise.

Thus, the problem of learning f(x) is a geometrical problem of finding suitable (con-
sistent) sets Ai with less computational burden.

At the end of this part of the present article, the more important results of the
members of the CABR will be mentioned very briefly:

− new efficient heuristic algorithm for HP model, presented as original integer pro-
graming model [57];

− new mixed integer programing formulation of the problem (1) as HP model, exact
algorithm and two heuristic algorithms [59];

− new multi group classifier with better true positive results for protein fold clas-
sification. The time complexity of the classifier allows obtaining results for huge
dimension (8000) of the feature space in affordable time [60].
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2. Docking problem. Protein-protein interactions and protein-ligand interactions
are a critical step in the study of the biological function of proteins. Molecular docking
is a significant technique in structural biology and computer-aided drug discovery.

Determination of the protein structure by experimental methods often has limitations.
For that need computational approach as molecular docking play a vital role [58].

The docking problem could be defined as follows:

− Let X be a ligand and M(X) be the set of all possible conformations x of X ;

− Let Y be a receptor, ỹ be the homology structure of Y and y be crystallographic
structure.

− Let F (x, y) be a scoring function estimating (characterizing) quantitatively the
ligand-receptor interaction.

− The problem is:

F (x, y)→ extr (max,min)
x ∈M(X), y ∈ {y, ỹ}

The members of the CABR has been working for many years in the field of opioid
receptors and the main tasks in the course of this research are the design and synthesis
of selective ligands. There is a wide variety of synthesized compounds, analogues of en-
dogenous peptides and, in particular, enkephalins whose biological activity is determined.
Design and synthesis is a long and expensive process. The possibilities that computer
methods provide for faster screening of existing compounds and chimeric structures are
great, and we have focused our attention on that.

Usually the docking problem could be presented as an optimization problem which
follows the next few steps:

− Defining the scoring function F (x, y). Each software has its own scoring functions.

− One conformation of the receptor Y has to be chosen and it is denoted by y0. The
structure of the receptor could be theoretically modelled or obtained from PDB
(Protein Data Bank), e.g. crystal structure;

− The set of ligands X1, X2, . . . , Xn is chosen (at least 10);

− The structure of the ligands X1, X2, . . . , Xn could be obtained by solving the
folding problem when Xi (i = 1, . . . , n) is a peptide or crystallography in the case
of non-peptides in order to obtain corresponding conformations x1, x2, . . . , xn.

− For any xi (i = 1, . . . , n) the value of the function F (xi, y0) is calculated and let
xi0 be a conformation for which F (xi0, y0) = max

i
F (xi, y0);

− The ligand conformation xi0 is define as a solution to the corresponding docking
problem.

Usually the verification of the docking procedure is based on experimental data con-
cerning the pharmacological effect Ei (i = 1, . . . , n), measured in the interaction between
ligands Xi, (i = 1, . . . , n) and given receptor R.

If Fi (i = 1, . . . , n) are the optimal values of the scoring function F for ligand Xi,
(i = 1, . . . , n), then if there is a “good” correlation between (F1, . . . , Fn) and (E1, . . . , En),
then it is possible to conclude that the docking procedure is successful.

In order to solve correctly and successfully the docking problem we should use proper
structure of the receptors (Y ). Depending on the way Y is obtained we have theoretical
model [20], homology model [49, 21, 52] and crystal structure [50, 51, 53]. X are selective
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δ-opioid ligands [20, 21, 49, 50], enkephalin and dalargin analogues [51] and selective
ligands of cannabinoid receptor known in the literature [52, 53].

Scoring function F (x, y) could be any scoring function of the docking software and in
our case they are GoldScore, ChemScore and ASP scoring function (www.ccdc.cam.ac.
uk/solutions/csd-discovery/components/gold/).

GoldScore is a function of molecular mechanics based on a force field:

GoldScore = Shb ext + Svdw ext + Shb int + Svdw int

where Shb ext is protein-ligand energy of hydrogen bonds (external H-bond), Svdw ext is
protein-ligand energy of Van der Waals bonds (vdw), (external vdw); Shb int is inter-
molecular hydrogen bonds of the ligand (internal H-bond); Svdw int is intramuscular Van
der Waals bonds the ligand (internal vdw).

The ChemScore function evaluates the changes in the total free energy that is pro-
duced by binding the ligand to the receptor:

ChemScore = ∆Gbinding + Eclash + Eint + Ecov

where ∆Gbinding is the free energy of binding of the ligand to the protein; Eclash is the
energy of the clashes between the atoms of the ligand and the protein; Eint is the ligand
internal energy; Ecov is the energy of covalently binding the ligand to the protein.

The ASP (Astex Statistical Potential) function calculates the atom-atom potential
obtained from the DB of protein-ligand complexes and can be compared with other such
potentials estimates. The ASP function compares accurately with ChemScore and Gold-
Score functions. Traditionally, scoring functions are based on force fields or regressions
where the parameters are derived from a plurality of experimentally related structures.
The ASP function uses a different approach: information on the frequency of interactions
between ligand-protein structures in the PDB is used to generate statistical potential.
The ASP scoring function differs from other statistical potentials in the choice of the
so-called reference state, which is the expected number of contacts.

ASP Fitness = − CsS(map)− cintEint − cclashEclash,

where S(map) is the overall evaluation of all combinations of the p and ligand l atoms;
cint is scaling factor; Eint is internal energy; Eclash is crash energy.

At the end of this part the more important results of the member of the CABR will
be mentioned:
− It is solved the docking problem Y = DOR (delta-opioid receptor) with homology

modelled structure, scoring function F (x, y) = ASP and X1, X2, . . . , X11 are met-
and leu-enkephalin and their analogues [50];

− It is solved the docking problem Y = MOR (mu-opioid receptor) with a crystal
structure, scoring function F (x, y) = ChemScore and X1, X2, . . . , X13 are met-
and leu-enkephalin and dalargin their analogues [51];

− It is solved the docking problem Y = CB1 (cannabinoid receptor type 1) with
homology modelled and crystal structures, scoring function F (x, y) = ASP and
X1, X2, . . . , X8 are selective CB1 ligands from the literature [52, 53].

3. Quantitative ligand-receptor interactions. Usually model of agonism are
functional curves F (x, p) which in best way approximate the experimental data of the
dose-response relationship between a given ligand X and a given type of receptor R.
Also the model can include some proposition concerning some steps of the process of the
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Fig. 2. Ligand-receptor interaction

ligand-receptor interaction. The steps are shown on Figure 2.

May be in all models of agonism the response (effect) is a function of the concentration
x of the ligand X of the concentration of the AR complex, i.e. pharmacological response
E = F (x, p), p = (p1 . . . pn) parameters.

The models are generally divided into three large groups: empirical, mechanistic, and
hybrid [22–25, 27, 46–48]. One of the methodical approaches to building such models is
the axiomatic approach. In this approach, a sequence of statements (the axiomatics of the
model) are considered to be true and implications are derived from them, characterizing
the ligand-receptor interactions.

Examples of such models are the Operational Model (OM) of Black & Leff [9], the
Theoretical Hyperbolic Model (THM) of Milanov & Pencheva [41] and others [1–3, 7,
10–15, 22–39].

The THM [41] is based on the mechanisms of the ligand-receptor interaction described
on Figure 2.

In THM the primary objective is to provide explicit formulas for affinity and efficacy
of the agonist, which are important for its quantitative characteristics. Let’s note that
even before the publication of [41], where the total THM is exposed, the formulas for
efficacy for special cases are used in [42, 43, 45] and others. We are shown that when
using these models, the theoretical efficacy τ introduced by Black & Leff [9] is equivalent
to Stephenson’s eA efficacy [54].

The quantitative analysis of receptor-mediated effects is based on experimental data
“concentration-effect”, where the independent variable – the concentration of the ligand
is associated with the dependent variable – pharmacological response.

Therefore, the developed model aims to describe more fully the nature of the partial
agonism at in vitro experiments in pharmacology.

The activity of the agonist can be measured by the parameters: affinity, reflecting
the agonist-receptor interaction kinetics and efficacy, characterizing the receptor-response
transition, referred to as the stimulus-response.

In this transition, the isolated tissue is involved with its specific mechanism that is
independent of the drug and its structure. It can be defined by the receptor concentration
and a function that reflects the stimulus-response relationship.

At first glance, the simplest approach to determining the rate of the ligand binding to
its receptors may seem to be measurable by the rate at which it acts on isolated tissue,
but problems arise. The first one is related with the fact that the relationship between
the effect of the tissue and the proportion of the receptors occupied by the ligand is often
unknown and can not be determined.
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The second one is that the rate at which the ligand acts on the isolated tissue is often
determined by the diffusion of the ligand molecules passing through the tissue rather
than by binding to the receptors.

The following assumptions for the development THM of Milanov & Pencheva [41] are
used:

Axiomatics THM. (a) the interaction between a drug and a receptor is a bimolecular
reaction, which according to the law of mass action is expressed as:

Y (A) =
X(A)

[R0]
=

[A]

[A] +KA

,

where Y (A) is the portion of the receptor that is occupied by agonist [43]; X(A) –
the number of the occupied receptors; [R0] – the total number of the receptors; KA –
dissociation constant.

(b) the occupied receptors X(A) generate stimulus S which is quantitatively defined
as:

S = eA
X(A)

[R0]
=

eA[A]

[A] +KA

= εA
[R0][A]

[A] + kA
= εAX(A),

this stimulus leads to some observed (measured) effect [12], eA – Stephenson’s efficacy
[12], εA – Furchgott’s intrinsic efficacy [30];

(c) the best approximation function of the experimental concentration-response data
is a function of the type:

EA =
LA
1 [A]

[A] + LA
2

,

where LA
1 and LA

2 are numerical constants;

(d) ET
m – potential maximum response of the tissue; it depends only on the given

tissue; there are drugs which produce this maximum response (full agonist) or one close
to it;

(e) the relation between stimulus S and response EA is a property of the tissue and
not of the drug (drug-independent property);

(f) equal stimuli lead to equal tissue responses.

Assumption (a) is a generally accepted relation and follows from the law of mass ac-
tion. It describes the equilibrium stage of the process of binding and gives a quantitative
characteristic of the number X(A) of the AR complex. Assumption (a) is valid only
under the suggestion [R0]≪ [A], i.e., X(A) is very small compared to [A].

Assumption (b) introduces the concept of stimulus S, which is quantified by the
efficacy of Stephenson [54] eA and the relative number of occupied or activated complexes
Y (A).

In THM, the efficacy is denoted by eA. The biological meaning of S can be different
for different tissues, and depending on the type of effect that is measured for different
types of receptors.

Assumption (c) originates from the empirical observation that the best approxima-
tion curves of the experimental data (most of them, if not all), are hyperbolas or semi
logarithmic hyperbolas (in a logarithmic scale) [5–7, 16, 28–31, 43, 56].
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Assumptions (a), (b) and (c) present in the most general form the complex transducer
process from receptor occupancy to their converting into a measurable response, subject
to the transducer function in (c).

In assumption (d) ET
m is a very important tissue characteristic and depends on the

pattern of the tissue-response. Assumptions (e) and (f) follow Stephenson’s definition of
the stimulus–response mechanism [54] and are generally accepted in quantitative phar-
macology.

By using assumption (b), the stimulus S can be expressed by the efficacy eA and pAR:

S = eA.pAR = eA.
[A]

KA + [A]
.

For parameters KA and eA and for each agonist the following Eq.9 are held:

(9) eA =
CA

2 .LA
1

CA
1 − LA

1

, KA =
CA

1 .LA
2

CA
1 − LA

1

The expressions for the constants CA
1 and CA

2 refer to agonist A acting on a given
tissue, the same type of receptor (assumption (a) and specific mechanism, given that the
best approximation of the experimental data is performed with the least squares method
by using the modeling function specified in assumption (c). On the other hand, the
stimulus-effect relationship is a drug-independent property (assumption (e)). Therefore,
there exist two constants C1 and C2 such that the following equation hold for each agonist
A:

(10) CA
1 = C1

1 = C1, CA
2 = C1

2 = C2.

The constants C1
1 , C

1
2 and C2

1 , C
2
2 are the same for a given tissue and receptor type

and for the particular mechanism, i.e., they do not depend on the agonist A, acting on
them.

From Eq. 10 for the response EA
1 and the parameters KA and eA for each agonist

A it follows

(11) EA =
C1.S

S + C2
, KA =

C1.L
A
2

C1 − LA
1

, eA =
C2.L

A
1

(C1 − LA
1 )

We will also use the terms erel = eA/C2, i.e. erel does not depend on C2.

A pharmacological interpretation of the parameters and their calculation.

The parameters LA
1 and LA

2 are functions of the experimental data (assumption (c)).
They are determined by the least squares method for a function of the class specified in
the assumption (c) and by the found LA

1 ≈ EA
m, LA

2 = [A50]. From the assumption (d) it
follows that C1 ≈ ET

m, and the effect EA could be presented as a function of S as follows:

(12)
EA

ET
m

=
S

S + C2
.

Without limitation, we can consider C1
2 = 1, C2

2 = 1, i.e.

(13)
EA

ET
m

=
S

S + 1
.

Stephenson [54] suggests that the function f(S) is an unknown, monotone and con-
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tinuous function of the stimulus S so that the answer can be represented by:

(14) EA = ET
mf (S) ,

where f (S) is an unknown function. In THM the response EA is a hyperbolic function
of S, which is monotone and continuous in nature, i.e., it satisfies the assumptions in [54].

Following Eq. 12, the parameter C2 could be considered as stimulus S, which elicits
0.5ET

m, because if S = C2, then EA = (ET
mC2)/2C2 = 0.5ET

m. So, C2 could be used as a
quantitative measure of the stimulus S in a given tissue. After replacing the coefficients
LA
1 , L

A
2 and C1 with EA

m, [A50] and ET
m, LA

1 , we obtain the following explicit expressions:

KA =
[A50] ET

m

ET
m − EA

m

, erel =
EA

m

ET
m − EA

m

.

These formulas are correct only when EA
m < ET

m or EA
m ≈ ET

m. This means that A is
a partial agonist or almost full agonist.

The parameters EA
m and [A50] can be calculated from experimental data such as ET

m

(respectively λA, µA) by using the experimental data of some full agonist or other-
wise [30].

In the Operational model of Black and Left [9] the “transducer ratio” τ is intro-
duced. Furchgott [26] redefined Stephenson [54] stimulus S = eA.[AR] by introducing
new parameter εA = eA/[R0]. Stimulus S can be related through a series of steps to final
pharmacological effect adopted the following form

E

Em

=
S

β + S
.

On the other hand, (Operational model)

E

Em

=
[AR]

KE + [AR]
=

S

εA.KE + S
.

Without loss of generally β = 1 and consequently KEεA = 1 or [R0] .KE .εA = [R0].
From this it follows that

eA = εA. [R0] =
[R0]

KE

= τ.

This means that the Stephenson efficacy eA and the Black and Leff “transducer ratio”
τ are equivalent.

At the end of this part the more important results of the members of the CABR will
be mentioned:

− the formulas for eA and KA are presented for the first time in [40];

− the constants for eA and KA are calculated based on experimental information of
enkephalin and dalargin analogues [42];

− proposed approach for the implementation of artificial neural networks in the study
of ligand-receptor interactions [43];

− complete exhibition of THM for partial agonism [41];

− based on the del Castillo-Katz mechanism [16]

A+R

k1

−→
←−
k2

AR

k3

−→
←−
k4

AR∗
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are derived similar formulas for eA and KA. These results are presented in PhD
thesis [61] and they are not published yet.
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МАТЕМАТИЧЕСКИ МОДЕЛИ В КОЛИЧЕСТВЕНАТА

ФАРМАКОЛОГИЯ

Петър Б. Миланов

Oт гледна точка на приложната математика следните задачи в количествената
фармакология са много важни и интересни:

− задачата за нагъване на протеини;
− задачата за докинг;
− количествената взаимовръзка лиганд-рецептор.

Всички горепосочени проблеми са изследвани от членовете на
”
Центъра за съвре-

менни биоинформатични изследвания“ към Югозападния университет
”
Неофит

Рилски“ в Благоевград.
В тази статия, ще бъдат представени нови резултати в областта на трите проб-

лема, споменати по-горе.
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