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EXPLICIT SOLUTION OF A BOUNDARY VALUE
PROBLEM FOR A HEAVY STRING®

Ivan Dimovski, Yulian T. Tsankov'

In this paper we find an explicit solution of a problem for hanging string using
operational calculus approach, based on a non-classical convolution. First, using
Sonyn’s transformation T we transform this problem to BVP with constant coefficient
but with a nonlocal boundary condition. Then we find the explicit solution. This
explicit solution is suitable for numerical calculation too.

1. BVP for a Heavy String. In this paper we find an explicit solution of a problem
for hanging chain, described by the following initial-boundary value problem:

0? 0 0
(1) w’l]—a(@&)v, O<I<17 O<2‘:7
v(x,0) =vo(z), 0<z<1,
ov(x,0
%:01(1), 0<x<1,
v(l,t) = aft), 0<t,
(2) [0(0,t)] < o0, 0<t.

This problem arise when we consider heavy string, fixed on the top and free at the
bottom.

We solve this problem in the flowing way.

First by Sonyn’s transformation T [5], [4] we transform this problem to BVP with
constant coefficient but with a nonlocal boundary condition.

Second we solve this nonlocal boundary value problem. We find explicit - duhamel
representation of the solution u using nonstandard convolution ¥ acting on the space
variable. This convolution is introduced by Dimivski (see [2], p. 119). At the end we
use inverse transform 7! to transform the explicit solution u of nonlocl BVP. This
transformed solution v = T~ u is the solution of BVP (1)—(2).

2. Sonyn’s transformation. We use the following notation
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for Bessel operator and
d2
4 D = —
(4) Tz
for the operator of the square of differentiation.
We consider both operators B and D in C%(0,1), i.e. for f € C?(0,1)

=& (c£)

Next, we consider Sonyn’s transformation

()
(5) Tf(x) =3z Tt d¢

and its inverse
(6) T'f=

Next, we use the following representatlon of T

@) @ =g (2Vf' ‘fiﬁ?i E ZT?TT )'

We show that the transformation T' transmutes the Bessel operator B to the operator
of square of the differentiation D.

Lemma 1. We have
(8) TB=DT
in C2(0,1).

Proof. First we prove TB = DT for the functions of the form f(z) = 2%, a € [0, 00).
Let us consider the left-hand side of TBx® = DT x:

T Bzx® Tdi (zi x > =T(?zx* N =a® T(x* 1) =

f2v%)
67r d:c Tz —£

dg.

dx
| pe-Dga—1 5 1 rod
—a—i 3« _ &
=3 2 4 d¢ = 2 1/ de.
R A R T L i

Next we consider the right-hand side of T Bz® = DTz“:

1 z?eg> 1 o
DTz*=D <3:c/0 _14(: gdf) = %D <x2a+1/0 fi gdg)
6 (1l + 2a) a1 b g
4o Vi

b D+l
/0 de = oHr%)\/?_T

By

we obtain that
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Using the linearity of operators D, B and T and the Weierstrass’ approximation theorem
we finish the proof. [J
Lemma 2. The transformation (5)

o
Tf($)=3x/01f§izd€

transforms the boundary value problem
d d
dz \"dx =F 1 -
®) dx (xdg;) p(z) +c p(z) (), 0<wz<1, c=const,

¢(0) =ag, (1) =
to the boundary value problem

(10) j—;w(m) +cp(x) =TF(x), 0<xz<l,
$(0)=0, (T7'9)(1) = ar,
where

P(z) = Te(x).

Proof. Using notation (3), we can write (9) as
By(z) + ¢ p(x) = F(z).
Let us apply the transformation T' to equation (9). We find
TBy(z)+c To(x) = TF(z).
By Lemma 1 we obtain
DT¢(z) + ¢ To(x) = TF(z).
Using the notation
() = Teo(z)
we find (10)
Diy(z) + ¢ Y(z) = TF(x).

Let us consider the boundary condition ¢(0) = ag. From

(2

vI=¢

b(z) = To(x) = 3 / ¢

we obtain that
$(0) = T(0) = 0.
Next we consider the boundary condition ¢(1) = a;. We apply the inverse transfor-
mation T~ to (x) = Ty(z) and find

p(x) =T ().
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Using the boundary condition ¢(1) = ay, we find

(T71)(1) = ¢(1) = a1
Here it is important to make the following observation. We change the local condition
©(1) = a; with respect to function ¢ by the nonlocal condition (T~'¢)(1) = a; with
respect to function v. 0O

Using Lemma 1 and Lemma 2 we obtain that the transformation T transforms the
boundary value problem (1)—(2) to the boundary value problem:

*u  9*u

(11) W_@7 O<$<17 O<t7
w(z,0) = f(z), 0<ax<1,
du(zx,0)

5 =g(z), 0<z<1,

u(0,t) =0, 0<t,
(I)ﬁ{u( ) ( )a 0<t,

where
(12) befu(e.0} =Tty = 1 (4 [0 Dag) ), -
1 HENGOP L2V VT
T (5 0 1—7 / Vi-r1 dT)
and
f(@) =Tvo(x), glx)=Tuv(x),
(13) u(xt)Tv(xt)Sx/lmdg 0<z<1, 0<t.
) ) o m ) —_ —_ Y f—
From

we obtain that

(50
U(O,t) = (TU(x,t))LC:O = 3z ) ﬁdf |:C=O = 0, 0 S t.

3. Duhamel-type representation of the solution of boundary value problem
(1)—(2). Using operational calculus approach of Dimovski [1], [2], we obtain an explicit
representation of the solution of BVP (12).

Theorem 1. If f(z) € C?([0,1]), £(0) = £'(0) =0 and ®{f(£)} =0, then

ot x
= (00 £ (@) =

1 6 1!
—5‘1’5{/0 (Q(E+2—n,t) = Q(§ —x—n,t))f (n)dn}
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Qu(2VT + 2 —n,t) — (2T — 2 — 1, t))f”(n)dn> dr

\
§l=
Lp— |
O\H
7N
- ﬁH
\‘
h

1 2vT
_ﬁ [/0 1—7 </0 (Q;c;c(Q\/F‘i‘f_n;t) _Q;c:c(2\/F_I_77’t))f”(n) dn+

20, [z] " [2\/F]> dr

where
i sin At sin A\, x
— )\5 J1(2\,) e

n=1,2,.... is a solution of (11) for g(z) = ¢¥(t) = F(x,t) = 0.

Ji(z) is the Bessel function of order one and 2\, are the zeros of Bessel function
Jo(z) of order zero.

The proof may be accomplished by a direct check, too.

From u(x,t) = Tw(x,t) where T~ is given by (6) we obtain the solution v(z,t) =
T u(x,t) of (1)-(2).
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TOYHO PEINTEHUE HA TPAHUYHATA 3AJTAYA 3A TEXKKA
CTPYHA

NBan Hdumocku, FOmmau Ilankos

B cratusTa e HaMepeHO TOYHO peIlleHMe Ha 3aJadaTa ONNCBAaIlla TeKKa CTPYHa,
KaTO € U3MO0JI3BaHO OIEPAIIMOHHO CMSATaHE OCHOBAHO Ha HEKJIACUYeCKa KOHBOJIIOIIUS.
Wsnonsaiiku Tpancdopmanusita Ha ConnH, TpancopMupaMe 3a/adaTa B TPAHIIHA,
3a/la4a C HMOCTOSHHM KOe(UIMEHT HO € HEJIOKAJHO I'paHu4HO ycsosme. CieJy TOBa
HaMupaMe SIBHO pelleHHe. HamepeHOTO sIBHO pellleHHe e NMOAXOAAINO M 33 YUCIIEHO
CMsITaHe.
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