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We develop a semi-analytic approach to the valuation of auto-callable structures
with accrual features subject to barrier conditions. Our approach is based on recent
studies of multi-asset binaries, present in the literature. We extend these studies to
the case of time-dependent parameters. We compare numerically the semi-analytic
approach and the day to day Monte Carlo approach and conclude that the semi-
analytic approach is more advantageous for high precision valuation.

1. Introduction. Auto-callable structures are quite popular in the world of struc-
tured products. On top of the auto-callable structure it is common to add features related
to interest payments. Hence, combining range accrual instruments and auto-call options
not only leads to interesting conditional dynamics, but gives an illustrative example of
a typical structured product ref. [1]. In addition to the strong path dependence of the
coupons the instrument’s final redemption becomes path dependent too. Intriguingly,
within the Black–Scholes world one can obtain a closed form expression for the payoff of
such a derivative. On the other side one can also rely on a straightforward Monte Carlo
(MC) approach ref. [2]. Often the interest payment features embedded in the instru-
ment accrue a fixed amount daily, related to some trigger levels of the underlyings. The
standard approach for valuation of such instruments is a daily MC simulation. The goal
of this paper is to propose an alternative semi-analytic approach (SA), which in some
cases performs significantly better than the brute force day to day MC evaluation ref. [3].
As we are going to show, the complexity of the evaluation of the auto-call probabilities
grows linearly with the number of observation times of the instrument and one may ex-
pect that at some point the MC approach would become more efficient. However, even
in these higher dimensional cases the semi-analytic approach provides a better control
of the sensitivities of the instrument, since contrary to the MC approach it does not
rely on a numerical differentiation. A relevant question is what are the advantages and
disadvantages of the above methods – i.e SA vs MC. We address this question performing
a thorough numerical investigation. Our work is heavily based on ref. [4], where a valu-
ation formula for multi-asset, multi-period binaries is provided. In addition to applying
these studies to auto-callable and range accrual structures, we extend the main result of
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ref. [4] to the case of time-dependent parameters: volatilities, interest rates and dividend
yields1.

The paper is structured as follows: In Section 2 we begin with a brief description of
the type of derivative instrument that we are studying.

In Section 3 we develop the quasi-analytic approach, extending the results of ref.
[4] to the case of time dependent deterministic parameters obtaining an expression for
the probability of an early redemption in terms of the multivariate cumulative normal
distribution. Building on this approach we obtain similar expression for the payoff at
maturity, subject to elaborate conditions. In addition we calculate the payoff of the
coupons as a sum over multivariate barrier options ref. [5], using the developed SA
approach to represent the pay-off of the latter in terms of multivariate cumulative normal
distribution ref. [6].

Finally, in section four we apply our approach to concrete examples. We implement
numerically both the SA and MC approaches and demonstrate the advantage of applying
the SA approach to lower dimensional systems, especially when a high precision valuation
is required.

2. The instrument. In this paper we analyse a type of instrument which combines
the features of range accrual coupons with auto-call options.

– The instrument is linked to the performance of two correlated assets S1 and S2.

– The instrument has a finite number M of observation times T1, T2, . . . , TM . If at
the observation time Tk both assets Si are simultaneously above certain barriers bi, k the
instrument redeems at 100%. This is the auto-call condition. To shift the valuation time
at zero we define τ = T − t and discuss the observation times τ1 , τ2 , . . . , τM .

– At the observation times the instrument pays coupons proportional to the number
of days, in the period between the previous observation time and the present2, in which
both assets Si were above certain barriers ci.

– If the instrument reaches maturity, it redeems at 100% if both assets Si are above
certain percentage κ of their spot prices at issue time S̄i. If at least one of the assets is
bellow κ S̄i the instrument pays only a part proportional to the minimum of the ratios
Si/S̄i.

3. Semi-analytic approach. In this section we outline our semi-analytic approach.
We begin by providing a formula for the auto-call probability.

3.1. Indicator functions and notations. Without loss of generality, it is assumed
that the auto-callable structure has two underlyings. On the set of dates are imposed
trigger conditions related to the auto-call feature. If the auto-call triggers have never
been breached at the observation dates the auto-callable structure matures at its final
maturity date. On the opposite case, if one of the auto-call triggers have been breached
the instrument auto-calls at this particular date and has its maturity.

Let us denote with Pk the probability to auto-call at observation time τk. Note that
this implies that at previous observation times the spot prices of the two assets where
never simultaneously above the barriers bi. We introduce the following notations: Xi, k

labels the spot value of the assets Si at observation time τk.

1To the best of our knowledge, a closed formula for time-dependant parameters have not been pre-
sented in the literature.

2Or the valuation day for the first observation time.
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Using the standard notations, if probability space (Ω,̥,P) is given, and A ∈ ̥, then
the indicator function is defined as E (1A) = P (A). Let us define:

Ωk(X) ≡
⋂k

s=1
(X1, s < b1, s) ∪ (X2, s < b2, s) .

Using the above definition, the auto-call probability at time τk, for the general case with
n underlying indices is then given by the expectation related to some probability measure
Q of the indicator function:

(1) Pk = EQ

[

1Ωk−1(X)∩ (X1, k>b1, k)∩ (X2, k> b2, k)

]

.

In order to simplify the notation, hereafter we will omit the probability measure Q. For
the case of two underlyings, we can also define the probability that the instrument will
not auto-call after the first k observation times:

P̄k = E
[

1Ωk(X)

]

.

Note that at each observation time we have more than one possibilities reflected in the
∪ operation.

For example the event (X1, 1 < b1)∪ (X2, 1 < b2) can be split into the three scenarios
(X1, 1 < b1) ∩ (X2, 1 < b2) , (X1, 1 < b1) ∩ (X2, 1 > b2), (X1, 1 > b1) ∩ (X2, 1 < b2).

We could do a bit better if we define X̃1, s = X1, s/b1, s and X̃2, s = X2, s/b2, s.
Then the condition (X1, 1 < b1, 1) ∪ (X2, 1 < b2, 1) can be split into the two conditions

(X̃1, 1 < 1) ∩ (X̃1, 1 X̃
−1
2, 1 < 1), (X̃2, 1 X̃

−1
1, 1 < 1) ∩ (X̃2, 1 < 1). Therefore to evaluate P̄k

we need to sum over 2k possible scenarios, each scenario containing 2k conditions. This
requires summing over 2k different 2k-dimensional cumulative multivariate normal dis-
tributions [4], which is computationally overwhelming for large values of k. Fortunately,
using de Morgan rules we can substantially reduce the computational cost.

Let us denote by Ei the event (X1, i < b1)∪(X2, i < b2), then the event Ēi is written as
the single scenario (X1, i > b1) ∩ (X2, i > b2). Using the well known probability relation

P
(

⋂n

i=1
Ei
)

=
∑

i

P (Ei)−
∑

i,j

P (Ei ∪ Ej) +

+
∑

i,j,k

P (Ei ∪ Ej ∪ Ek) + · · ·+ (−1)
n
P
(

⋃n

i=1
Ei
)

and DeMorgan’s law
(

⋃n

i=1
Ei
)

=
⋂n

i=1
Ei

it can be shown that:

(2) P̄k = P

(

k
⋂

s=1

Es
)

= 1 +
k
∑

s=1

∑

σs∈Ck
s

(−1)sP





s
⋂

j=1

Ēσs(j)



 ,

where the second sum is over all (sorted in ascending order) combinations of k elements
s−th class, Ck

s . Note that there are again 2k different terms, however only the last
term is 2k-dimensional3. In the same spirit we can obtain a formula for the auto-call
probabilities Pk:

3In general the number of 2s-dimensional terms is
(

k

s

)

.
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(3) Pk =

k−1
∑

s=0

∑

σs∈Ck−1

s

(−1)sP





s
⋂

j=1

Ēσs(j) ∩ Ēk



 ,

where we have used a convention: ∩0
j=1Ēσ0(j) ∩ Ēk = Ēk. Equations (2) and (3) can be

rewritten in terms of indicator functions. For compactness it is convenient to adopt the
notations of ref. [4]. We introduce a multi-index notation denoting by XI the element
Xi, s, where I = 1 , . . . , n and n is the number of all observed assets’ prices. In the case
considered in equation (1) we have n = 2 k. Using lexicographical order we can make the
map explicit:

(4) (i, s) → I = I[i, s] = 2 ∗ (s− 1) + i

where we have used that i = 1, 2. Next we define:

(5) (XA)j = X
Aj1

1 . . . XAjn

n j = 1, . . . ,m,

where m is the number of barrier conditions and A is an n × m matrix. With these
notations a general indicator function can be written as:

1m(SXA > S a),

where a is a vector of barriers and to allow for different types of inequalities we have
introduced the m × m diagonal matrix S whose diagonal elements take the values ±1
(’+’ for ’>’ and ’−’ for ’<’). Equations (2), (3) now become:

P̄k = E



1 +

k
∑

s=1

∑

σs∈Ck
s

(−1)s12s(X
A(σs) > b(σs))



 ,(6)

Pk = E





k−1
∑

s=0

∑

σs∈Ck−1

s

(−1)s12s+2(X
Ã(σs) > b̃(σs))



 ,(7)

where A(σs), b(σs), Ã(σs), b̃(σs), are 2k×2s, 1×2s, 2k×2(s+1), 1×2(s+1) matrices,
respectively. Their non-zero entries are:

A(σs)I[i, σs(j)], I[i, j] = 1, (b(σs))I[i,j] = bi, σs(j),(8)

Ã(σs)I[i, σs(j)], I[i, j] = 1, (b̃(σs))I[i,j] = bi, σs(j), for i = 1, 2 and j = 1, . . . , s.(9)

Ã(σ0)I[i, k], i = 1, (b̃(σ0))i = bi, k, for i = 1, 2 .(10)

In equation (8) we have used the map (4). Note that it is crucial that the combinations
σs are sorted in ascending order.

3.2. A time-dependant valuation formula. If we restrict ourselves to time inde-
pendent deterministic parameters (interest rate, dividend yield, volatility) we can directly
apply the formula derived in ref. [4] to calculate the indicator functions in equations (6)
and (7). However, this is a very crude approximation when dealing with long instruments
this is why we extend the results of ref. [4] to the time dependent case. The starting
point is to model the dynamics of the asset Si with a geometric Brownian motion:

(11)
dSi

Si
= (r(s) − qi(s)) ds+ σi(s) dWi(s),
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where Wi are correlated Brownian motions with correlation coefficient ρij . Indeed, the
integrated form of equation (11) is:

Si(τ) = S
(0)
i exp







τ
∫

0

(

r(s) − qi(s)−
1

2
σi(s)

2

)

ds+

τ
∫

0

σi dWi(s)







For the asset i at time Tk we can write:

(12) log X̃i,k = log xi +

(

r̄i,k − q̄i,k −
1

2
σ̄2
i,k

)

τk + σ̄i,k
√
τk Zi,k ,

where Zi,k is given by:

(13) Zi,k =
1

σ̄i,k
√
τk

τk
∫

0

σi(s) dWi(s)

and

(14) r̄i,k =
1

τk

τk
∫

0

ds ri(s), q̄i,k =
1

τk

τk
∫

0

ds qi(s), σ̄2
i,k =

1

τk

τk
∫

0

ds σi(s)
2.

Following ref. [4] we define the quantities:

(15) µ =

(

r̄i,k − q̄i,k −
1

2
σ̄2
i,k

)

τk, Σ = diag (σ̄i,k
√
τk),

which are straightforward generalizations of the corresponding definitions in the time
independent case [4]. A bit more involved is the expression for the correlation matrix R
defined as:

R(i,k)(j,l) ≡ 〈Zi,k , Zj,l〉.
Using equation (13) and the formula:

〈 τ1
∫

0

σi(s) dWi(s) ,

τ2
∫

0

σj(r) dWj(r)

〉

= ρij

min(τ1,τ2)
∫

0

σi(τ)σj(τ) dτ ,

we obtain:

R(i,k)(j,l) =
ρij√

τkτl σ̄i,kσ̄j,l

min(τk,τl)
∫

0

σi(τ)σj(τ) dτ .

Next following ref. [4] we define:

Γ = ΣRΣ′,

D =
√

diag (AΓA′),

C = D−1 (AΓA′)D−1,

d = D−1
[

log(xA/a) +Aµ
]

.

Here it is used that xi,k = xi for all k = 1, . . . ,M . In terms of these quantities the
indicator function is given by the same expression as in ref. [4], but the underlying
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variables are given in eq. (16) and due to the time-dependence thay are different from
those given in the work ref. [4],

(16) 1m(S X̃A(ω) > S a) = Nm(S d(ω), S C(ω)S) ,

where Nm is the cumulative multivariate normal distribution (centred around zero).

Note that equations (15)–(16) are valid for any n × m matrix A and any positive
barrier vector a.

3.3. Auto-call probability and payoff. Applying equation (16) to calculate the
auto-call probability Pk we obtain:

(17) Pk =

k−1
∑

s=0

∑

σs∈Ck−1

s

(−1)sN2s+2(d(σs) , C(σs)) , k = 1 . . .M − 1 ,

where d(σs) and C(σs) are obtained by substituting Ã(σs) and b(σs) from equation (8)
into equation (16). Note that the index k in equation (17) runs from 1 to M − 1. The
reason is that the last observation time is the maturity.

Let us denote by Pmat the probability to reach maturity4. Clearly we have:

(18) Pmat = 1−
M−1
∑

k=1

Pk , Pmat = Pup + Pdown ,

where Pup is the probability to reach maturity with both assets simultaneously above
the barrier κ S̄i, and Pdown is the probability at least one of the assets to be bellow the
barrier. In fact the probability Pup is exactly PM , hence we can write:

Pup =
M−1
∑

s=0

∑

σs∈Ck−1

s

(−1)sN2s+2(d(σs) , C(σs)) .

Clearly this also determines Pdown as Pdown = Pmat − Pup. To calculate the payoff at
maturity we also need the average performance of the assets subject to the condition
that the worst performing asset is bellow the barrier κ S̄i. The probability for this to
happen is exactly Pdown, which is a function of the parameter κ.

Let us denote X̂i = Si/S̄i and define X̂ = min(X̂1, X̂2), the probability Pdown can be
written as:

Pdown = P (X̂ < κ).

The average performance of the assets provided that at least one of the assets is bellow
the barrier κ is then proportional to the conditional expectation value 〈X̂〉|X̂<κ:

〈

min

(

S1

S̄1
,
S2

S̄2

)〉

∣

∣

∣

X̂<κ
= − 1

Pdown

κ
∫

0

dκ κ
dPup

dκ
,

where we have used that dPmat/dκ = 0. Therefore, the payoff at maturity is given by:

(19) Vmaturty = Pup + Pdown

〈

min

(

S1

S̄1
,
S2

S̄2

)〉

∣

∣

∣

X̂<κ
= Pup −

κ
∫

0

dκ κ
dPup

dκ
,

4Note also that Pmat = P̄M−1
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In the next subsection we calculate the contribution of the coupons.

3.4. Coupon contribution. To obtain the total payoff we have to evaluate the
contribution of the coupons. This can be done by summing over a type of two-asset
binary (cash-or-nothing) options, conditional on the survival of the instrument to the
appropriate accrual period. Indeed the probability at time τ both assets to be above the
barrier is given by the probability for such an option to pay. In the case of the first accrual
period this reduced to the standard two-asset binary option [7]. To write down a closed
form expression for this probability we need to add one more observation time τa, which
will iterate over the accrual dates. Clearly the simplest case is when 0 ≤ ta ≤ τ1, that
is the first accrual period. In this case we apply formula (16), for just one observation
time τa, with A = S = 12 and a = c. In more details the probability the coupons to pay
at time τa < T1, P01(τa) is given by:

P01(τa) = N2(d2(τa), C2) ,

di =
log(S̄i/ci) + (r̄ − q̄i(τa)− σ̄i(τa)

2/2) τa
σ̄i(τa)

√
τa

,(20)

C2 =

(

1 ρ12
ρ21 1

)

for i = 1, 2,

where r̄, q̄i(τa) and σ̄i(τa) are given by equations (14) with τk = τa. The total number
of days in which coupons have been payed in the period 0 to τ1, N1 is then given by:

(21) N1 =

τ 1
∑

τa =1

P01(τa) .

In the same way we can obtain a formula for the number of coupon days in the second
accrual period. The only difference is that now in addition to the condition both assets
to be above the accrual barrier we also have the condition that the instrument did not
auto-call at time τ1. In general the probability the coupons to pay at time τa in the
k-th accrual period is the joint probability that the instrument did not auto-call at the
first k − 1 observation times and both assets are above the accrual barrier at time τa.
Denoting by EC

τa the event that the assets are above the accrual barrier at time τa and

using the notations from section 3.1, one can show that5:

(22) Pk−1,k(τa) =

k−1
∑

s=0

∑

σs∈Ck−1

s

(−1)sP





s
⋂

j=1

Ēσs(j) ∩ EC
τa



 ,

where again we have used the convention: ∩0
j=1Ēσ0(j) ∩ EC

τa = EC
τa . Equation (22) can be

rewritten in analogy to equation (7) as:

Pk−1,k(τa) = E





k−1
∑

s=0

∑

σs∈Ck−1

s

(−1)s12s+2(X̃σs
> bcσs

)



 ,

where X̃σs
= [X1,σs(1), X2,σs(1), . . . , X1,σs(s), X2,σs(s), S1(τa), S2(τa)] and

bcσs
= [b1,σs(1), b2,σs(1), . . . , b1,σs(s), b2,σs(s), c1, c2]. Denoting by C̃σs

(τa) the covari-
ant matrix constructed using equations (14)–(16) with times τσs(1), . . . , τσs(s), τa and

5The derivation is analogous to that of equation (3).
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denoting by d̃σs
the corresponding quantity in equation (16) constructed using the bar-

rier vector bcσs
, we can write:

Pk−1,k(τa) =

k−1
∑

s=0

∑

σs∈Ck−1

s

(−1)sN2s+2(d̃σs
, C̃σs

(τa)) .

For the number of coupon paying days in the k-th accrual period we obtain:

Nk =

τk
∑

τa = τk−1 +1

Pk−1,k(τa).

To calculate the contribution of the coupons to the total payoff we need to take into
account the discount factors, since we have assumed that the coupons are payed at the
observation times6. Note that the probability the coupons to pay already include the
probability to reach that accrual period. Therefore, the total coupon contribution is
given by:

V CM = γ

M
∑

s=1

e−r̄s τs Ns,

where γ is the daily rate of the coupon.

3.5. Total payoff. Assuming for simplicity that the instrument redeems at 100 %
in the event of an auto-call (which in reality is quite common), for the total payoff we
obtain:

Vtot = Vmaturity +

M−1
∑

k=1

e−r̄k τk Pk + V CM ,

where we have substituted Pmat from equation (18).

4. Applications. In this section we outline some of the applications of the formalism
developed above. We begin with the simplest case of a pure accrual instrument.

4.1. Pure accrual instrument. The pure accrual instrument that we consider in
this subsection has the following characteristics:

– It pays a daily coupon at rate γ if at closing time both assets Si are above the
accrual barriers ci

– At maturity (time τm), it redeems at 100% if both assets Si are above certain
percentage κ of their spot prices at issue time S̄i. If at least one of the assets is bellow
κ S̄i the instrument pays only a part proportional to the minimum of the ratios Si/S̄i.

Clearly this is the general instrument that we considered with the auto-call option
removed. In this simple case the semi-analytic approach of Section 3 is particularly
efficient. The coupons are calculated by the first period formulas in equations (20), (21)
with τa = τm, while the payoff at maturity is calculated using equation (19), with Pup

given by:

Pup = N2(d̃2(τm), C2),

6Note that in practise there are a separate payment dates shortly after the corresponding observation
date.
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where C2 is given in equation (20) and d̃2(τm) is given by:

di =
log(S̄i/ci) + (r̄ − q̄i(τm)− σ̄i(τm)2/2) τm

σ̄i(τm)
√
τm

, i = 1, 2,

where r̄, q̄i(τm) and σ̄i(τm) are given by equations (14) with τk = τm.
4.2. Dual index range accrual autocallable instrument. In this section we

compare the efficiency of our semi-analytic (SA) approach and that of a standard Monte
Carlo (MC) approach. Since the dimensionality of the SA problem increases linearly
with the number of the auto-call dates, we consider the case of one auto-call date and
two range accrual periods. Therefore, our problem is four dimensional and we would still
need to rely on numerical methods to estimate the cumulative distributions.

To simplify the analysis even further and facilitate the comparison, we simplify the
pay-off at maturity. The instrument pays 100% if both underlyings perform above the
final barrier κ (as before), but if this condition is not satisfied, instead of redeeming a
worse performance: min

(

S1/S̄1, S2/S̄2

)

fraction, the instrument redeems at κ× 100%.
Equation (19) then simplifies to:

Vmaturty = Pup + κPdown.

The description of the coupon payments remains the same as in Section 3.4. The volatil-
ities σi, dividend yields qi , interest rate r and correlation coefficient ρ used in the
numerical example are presented in Table 1. In addition the final barrier was set at 60%
(κ = 0.60) and the daily accrual rate used was (15/365)% (γ = 0.15/365). The length of
each accrual period was one year so that: τ1 = 1 and τ2 = 2.

Table 1. Volatilities σi, dividend yields qi, interest rate r and correlation ρ used in the
numerical example

σi qi r ρ

0.25 0.005 0.01 0.78
0.20 0.007 0.01 0.78

To compare the efficiency of the algorithms we compared the running times Tǫ as
functions of the absolute error ǫ. The resulting plot is presented in Fig. 1. The round

Fig. 1. A plot of the running time Tǫ in seconds as a function of the absolute error ǫ. The
round dots represent the SA results, while the square dots correspond to the MC data
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dots correspond to the SA approach, while the square points represent the MC data. As
one may expect, the running time Tǫ for the MC algorithm increases as ∼ 1/ǫ2 and while
negligible for ǫ < 0.01, it increases rapidly to ∼ 10s, for ǫ = 5.0 × 10−4. On the other
side the SA method has a steady computation time Tǫ ∼ 4s, for ǫ < 2.0× 10−4. The SA
and MC curves intersect at ǫ ≈ 0.7× 10−3. The advantage of using the SA method for
higher precision ǫ < 0.7× 10−3 is evident. For example a calculation with ǫ = 2.0× 10−4

would require running the MC simulation for roughly ∼ 60 s, while the same accuracy
can be achieved by the SA method for ∼ 5 s, which is a factor of twelve. Clearly the
comparison depends on the implementation and the choice of parameters. To make the
comparison fair we used MatLab for both methods. Using a vectorised MC algorithm
for the Monte Carlo part and the built in MatLab cumulative distribution functions for
the SA approach.

Another obvious advantage of the SA approach is the higher precision in the estima-
tion of the sensitivities of the instrument. Semi-analytic expressions could be derived
for most of the greeks, which enables their calculation with a limited numerical effort.
This is clearly not the case in the MC approach, where one usually relies on a numerical
differentiation.

Finally, as we pointed out at the beginning of this section the dimensionality of the
problem increases linearly with the number of auto-call times. It is therefore expected
that at some point the MC approach would become more efficient. Nevertheless, the SA
approach could still be more efficient if the sensitivities are difficult to analyse in the MC
approach.

5. Conclusion. This paper makes several contributions to the related literature.

Our main result is the development of a semi-analytical valuation method for auto-
callable instruments embedded with range accrual structures. Our approach includes
time-dependent parameters, and hence greatly facilitates practitioners. In the process
we extend the valuation formula for multi-asset, multi-period binaries of ref. [4] to the
case of time-dependent parameters, which the best of our knowledge is a novel result.

Another merit of this work is the comparison between the straightforwardMonte Carlo
and the semi-analytical approaches. Our comparison shows that the semi-analytical ap-
proach becomes more advantageous at higher precisions and is potentially order of mag-
nitude faster than the brute force Monte Carlo method. The semi-analytical approach is
also particularly useful when calculating the sensitivities of the instrument. It is widely
accepted that the sensitivity calculations are often more important than the instrument
price itself, due to their contribution for the correct instrument hedging.

Finally, our work can be used as a starting point for modelling more complex struc-
tures related to range accrual auto-callable instruments. Furthermore, although the
numerical examples and the presented formulas are given for the two-dimension cases,
multi-asset and multi-period generalisation of the formulas can be easily written using
the key formulas presented here.

Acknowledgements. We would like to thank Bojidar Ibrishimov for critically
reading the manuscript.

Appendix A. Proof of the valuation formula. For completeness we provide a
proof of formula (16). Our proof follows the steps outlined in reference [4]. Using the
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definitions (5), (15) and equation (12) it is easy to obtain:

(23) log X̃A = logxA +Aµ+AΣZ .

Furthermore, the monotonicity of the logarithmic function implies:

(24) 1m(SXA > S a) = 1m(S logXA > S log a) = 1m(BZ < b)

where:

B = −S AΣ ,(25)

b = S (log xA/a+Aµ) .(26)

Now we use a Lemma from ref. [4] (which we will prove for completeness):
Lemma 1. If B is an m× n matrix of rank m ≤ n and Z is a random unit variate

vector of length n with correlation matrix R, then:

(27) E {1m(B Z < b)} = Nm(D−1b, D−1(BRBT )D−1) ,

where:

D =
√

diag(BRBT ) .(28)

Applying Lemma 1 for B and b given in equation (25), we obtain:

D = diag(SAΣRΣTATS) = diag(AΣRΣAT ) = diag(AΓAT ) ,

D−1(SAΣ)R(ΣATS)D−1 = SD−1AΣRΣATD−1S = SCS ,

D−1 b = S D−1 (logxA/a+A.µ) = S d ,(29)

where we have used that S and D are diagonal and commute and that S2
i,i = 1. Sub-

stituting relations (29) into equation (27) we arrive at equation (16). Now let us prove
Lemma 1:

Proof. Let us complete the m × n matrix B to an n × n non-singular matrix B̃.
We write:

(30) B̃ =

[

B
B⊥

]

,

where B⊥ is an (n−m)× n matrix, which we are going to specify bellow. Consider the
Cholesky decomposition of the correlation matrix R:

(31) R = U UT .

Next we transform the matrix B̃ with U via B̃′ = B̃ U , which implies:

B′ = B U ,(32)

B′
⊥ = B⊥ U .(33)

Since B has rank m and U is invertible, B′ also has rank m. We can therefore think of
B′ as m independent n− column vectors, spanning an m-dimensional subspace Lm. We
are always free to choose B′

⊥ to be a matrix of n −m independent n− column vectors
spanning the orthogonal completion of Lm. Making this choice of B′

⊥ implies:

(34) B⊥ RBT = B⊥ U (B U)T = B′
⊥B

′T = 0.

Next we apply the transformationY = B̃ Z. The covariance matrix of the random vector
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Y is given by:

(35) C = B̃ R B̃T =

[

BRBT 0

0 B⊥ RBT
⊥

]

,

where we have used equation (34). Defining:

(36) Y|| = B Z , Y⊥ = B⊥Z ,

the condition 1m(B Z < b) becomes 1m(Y|| < b). Furthermore, the probability density
function of Y factorises:

ρ(Y) =
exp

(

− 1
2Y

T (B̃ RB̃T )−1 Y
)

(2π)n/2
√

det(B̃ R B̃T )
=

=
exp

(

− 1
2Y

T
⊥ (B⊥ RBT

⊥)
−1 Y⊥

)

(2π)(n−m)/2

√

det(B⊥ RBT
⊥)

×
exp

(

− 1
2Y

T
|| (BRBT )−1 Y||

)

(2π)m/2
√

det(B RBT )
=

= ρ⊥(Y⊥)× ρ||(Y||)(37)

Since there are no conditions imposed on Y⊥ the integral over ρ⊥(Y⊥) is simply unity.
What remains is the integral over ρ||(Y||), which upon the normalisation: Y⊥ → D−1/2Y⊥

gives equation (27). �
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ПОЛУАНАЛИТИЧЕН МЕТОД ЗА ПРЕСМЯТАНЕ НА АВТОКОЛНИ

ИНСТРУМЕНТИ С ЛИХВЕНО НАТРУПВАНЕ В КОРИДОР

Веселин Г. Филев, Пламен Нейков, Генко С. Василев

Развит е полуаналитичен метод за пресмятане на автоколни структури с лих-

вено натрупване при бариерни критерии. Методиката е базирана на скорошно

изследване на бинарни опции върху портфолио от асети, като изследването е

разширено до случая на времезависещи параметри. Направено е числено срав-

нение на полуаналитичния подход и дневни Монте Карло симулации. Изводът, е

че полуаналитичният подход е по-подходящ при прецизни пресмятания.
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