
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2019

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2019

Proceedings of the Forty-eighth Spring Conference

of the Union of Bulgarian Mathematicians

Borovetz, April 1–5, 2019

GRAPHSL: STANDARD LIBRARY

FOR GRAPHS AND TREES*

Krassimir Manev, Mario Georgiev, Neli Maneva

Using libraries of standard subprograms is one of the traditional approaches for
amelioration of the process of creating programs. Many libraries, including predefined
abstract data types and corresponding methods, are crated for different programming
languages and platforms. The most popular standard library for the GNU compilers
of C/C++ language is STL. Unfortunately, despite its large volume, STL does not
maintain classical abstract data types for presenting graph structures and trees. This
paper describes an implementation of such data types.

1. Introduction. Programming with abstract data types (ADT) is an old approach,
which has its modern form in the Object-Oriented Programming paradigm. Main profit
of using this approach is that it separates the logic of the program, expressed in operation
with the abstract types, from implementation of the operations themselves. In such a
way the implementation of the ADT could be done better and better during the life cycle
of the program without changing the implementation of the program logic.

Traditionally implementation of different ADT are collected in libraries of standard
subprograms. Many libraries, including predefined abstract data types and corresponding
methods, are created for different programming languages and platforms from years.
During the years each such library is developed with including new objects and replacing
used algorithms with better ones.

The most popular standard library for the GNU compilers of C/C++ language is the
Standard Template Library STL. Unfortunately, despite its large volume and constantly
increasing quality, STL does not maintain classical ADT for presenting graph structures
and trees. Different researchers and developers are implementing their own libraries with
appropriate for their purposes interfaces but there is still no standard for implementing
graph structures and trees, despite the importance of these ADT and their widespread
use.

This paper describes one possibility for standardization of a set of ADT for presenting
graph structures and trees as classes of objects in C/C++ as well as implementation of
corresponding interfaces that contain some basic operations with the proposed ADT. In
Section 2 a very brief overview of the necessary terms and concepts is given. Section

*2010 Mathematics Subject Classification: G.2.2, E.1.

Key words: Abstract data types, data types and structures, procedures, functions and subroutines,

graph algorithms.

107



3 defines the proposed system of classes for presenting graph structures and trees fol-
lowing the STL style. Section 4 describes a set of classical graph algorithms that was
implemented for verification of the implementations of the ADT and comparing their
quality with similar implementations programmed in kernel C. Section 5 contains some
conclusions and remarks.

2. Terms and concepts. Each graph structure G is composed of set V of vertices
and set E of edges. Each edge e(u,w) ∈ E is connecting two vertices u ∈ V and w ∈ V .
In some graph structures edges are directed from one of the two vertices (called begin or
parent) to the other (called end or child). Such structures are called directed. In other
graph structures the edges have not an orientation – these structures are undirected. In
this case the two vertices that the edge connects are called neighbors. In some graph
structures it is possible to have more than one edge that links two vertices. Such struc-
tures are called multigraphs. When such repetition of edges is not permitted the structure
is simply called graph. So we consider four abstract data types – directed multigraph,
directed graph, undirected multigraph and undirected graph, the last one called simply
graph.

When we introduce a graph structure in the computer memory we usually specify
the structure graph or multigraph, the number N of the vertices usually denoted by the
integers from 1 to N , the number M of the edges and which two vertices each of the
edges connects. There are three most popular forms for defining the connections in the
structure:

• List of edges consists of M couples of vertices – one couple for each edge of the
structure. When the structure is directed the begin of the edge is listed before the end.
When the structure is undirected the both vertices are listed in arbitrary order.

• Presentation with Lists of neighbors/children is composed of N lists of vertices – one
list per vertex. In undirected case each list contains the neighbors of the corresponding
vertex and in the directed case – its children.

• Adjacency matrix is N × N matrix G. The element G[u][w] in the row u and
column w of the matrix contains the number of edges that link vertex u with vertex
w. In undirected case G[u][w] = G[w][u], but in directed case the two values are not
necessarily equal.

Sometime the objects from the life that are modeled with graph structures have
different characteristics – called length, weight, price, etc., associated with the edges or
the vertices of the structure. Here we will consider only graphs (multigraphs excluded)
with integer numerical characteristics of the edges called weight, will denote the price of
the edge (u,w) with c(u,w) and will call such structure weighted.

Trees are special kind of graphs with very important role not only in the algorithmic in
graphs but in informatics in general. Classical tree, defined as connected graph without
circuits, is not appropriate for informatics because of the difficult from algorithmic point
of view properties “connected” and “without circuits”. That is why we use the much
more appropriate rooted tree – a tree in which one of the vertices is chosen for root. A
rooted tree is constructed inductively, starting with trivial tree T ({r}, ∅) with a single
vertex r as a root and no edges. The inductive operation, starting with a rooted tree
T (V,E) with root r, links a new vertex w /∈ V to some of the vertices u ∈ V giving
new rooted tree T ′(V ∪ {w}, E ∪ {(u,w)} with the same root. This operation makes the
undirected rooted tree explicitly directed and gives us a possibility to call u parent of w

108



and w – child of u.
Rooted trees could be presented in the computer memory in any of the three universal

presentations for graph structures listed above. But there is a much better presentation
for the rooted trees – List of parents, which contains for each vertex its parent. As parent
of the root we take 0.

For more detailed introduction in the topic we recommend some of the numerous
textbooks in Algorithms (for example [1] ) or Algorithms in Graphs (for example [2]).

3. GraphSL library. The most simple for defining as a class of objects is the Ad-
jacency matrix:

class GraphAdjacencyMatrix {

private:

int N, M; bool directed; vector<vector<int>> G,C;

public:

GraphAdjacencyMatrix(int N, int M, bool directed);

int getVNum(); int getENum(); bool getIsDirected();

void connect(int u, int w);

bool isConnected(int u, int w);

vector<vector<int>>& getGraph();

};

Traditionally, the number of vertices will be always in the variable N and the number of
edges in M. The fact that the structure is directed will be marked with true in the variable
directed and the matrix itself will be in the container G of type vector<vector<int>>.
When we have weighted graph or directed graph then the weight of the edge (u,w) is in
C[u][w]. Methods get* return the mentioned in the name value. The method connect

appends an edge from vertex v to vertex w when the structure is directed or an edge
between v and w when the structure is undirected. Finally, the method isConnected

checks if there is at least one edge connecting v and w.
For implementation of the two other presentations we introduced an auxiliary class

Edge as follow:

class Edge {

public:

int u, v, c;

static Edge newEdge(int u, int v, int c);

static Edge newEdge(int u, int v);

Edge(int u, int v, int c);

Edge(int u, int v); Edge();

};

Lists of neighbors/children class is defined and implemented as follows:

class GraphAdjacencyLists {

private:

int N, M; bool directed; vector<vector<Edge>> G;

public:

GraphAdjacencyLists(int N, int M, bool directed);

109



int getVNum(); int getENum(); bool getIsDirected();

void connect(int u, int v);

void connect(int u, int v, int w);

vector<vector<Edge>>& getGraph();

};

The purpose of the elements and the semantics of the methods here is not different
from these in the class GraphAdjacencyMatrix.

The presentation List of edges is used inside programs rarely. But this is the presen-
tation in which the graph structures are usually given to the input of programs. Our
implementation is the following:

class GraphEdgeList {

private:

int N, M; bool directed; vector<Edge> G;

public:

GraphEdgeList(int N, int M, bool directed);

int getVertices(); int getEdges();

void addEdge(int u, int v, int c);

void addEdge(int u, int v);

bool isConnected(int u, int v);

vector<Edge>&getGraph();

GraphAdjacencyMatrix* transformToAdjacencyMatrix();

GraphAdjacencyLists* transformToAdjacencyLists();

};

Beside the methods that we have in the previous two classes here two special methods
are included that transform List of edges to more frequently used Adjacency matrix and
Lists of neighbors/children.

Finally, our implementation of rooted tree is the class RootedTree as follows:

class RootedTree {

private:

int N, root; vector<int> parent;

public:

RootedTree(int N, int root); int getRoot();

int getParent(int u); void connect(int u, int v);

};

For rooted tree the number of edges is always N − 1 that is why it is not necessary
to keep the number of edges.

The full implementation of the classes is published in [3].
4. Verification. A set of some popular algorithms was implemented in order to check

usability of the defined classes and their correctness, namely:
• Breadth first search approach and some of its derivatives (spanning tree, connected

components, shortest path in not weighted graph structures);
• Depth first search and some of its derivatives spanning tree, connected components,

finding bridges and articulation points, strongly connected components of directed struc-
tures, topological sort of DAG);

110



• Euler traversals in multigraps;
• Minimal/maximal spanning trees in weighted graph structures (algorithms of Prim

and Kruskal);
• Shortest path in weighted graph structures (algorithms of Dijkstra, Bellman-Ford

and Floyd-Warshall);
• Max flow in weighted graphs (algorithms of Ford-Fulkerson and Edmond-Karp).
Full implementations of these algorithms are published in [3].
For checking the correctness and effectiveness of the implemented algorithms a com-

parison of some of them with corresponding algorithms from [4], implemented in kernel
C, was made. For each of the listed in Table 1 algorithms two test cases was run in
both implementations on Intel Pentium G630 CPU working on 2.7 GHz. First test was
a small graph with 10–20 vertices – just to verify that both implementations give equal
results, and the second – graph with 2000 vertices and 1000000 edges. The results are
summarized in Table 1.

Table 1. Comparing efficiency of the implementations

Task N M Kernel C GraphSL

BFS spanning tree 2000 1000000 0,60 sec 0,64 sec

DFS spanning tree 2000 1000000 0,58 sec 0,64 sec

Euler circuit 2000 1000000 4,32 sec 4,55 sec

Min spanning tree (Prim) 2000 1000000 0,76 sec 0,90 sec

Min spanning tree (Kruskal) 2000 1000000 1,46 sec 1,80 sec

One-to-all shortest path 2000 1000000 0,82 sec 0,82 sec

5. Conclusion. The experiments show no significant difference between the efficiency
of the Kernel C and GraphSL implementation. Some amelioration in GraphSL could be
obtained if implementation is made without using the STL containers.

REFERENCES

[1] T. H. Cormen, Ch. A. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms.
MIT Press, 2009.

[2] R. Sedgwick. Algorithms in C++ Part 5: Graph Algorithms, 3rd Edition, Addison-Wesley
Professional, 2002.

[3] М. Георгиев. Алгоритми и реализация на абстрактни класове за работа с графови
структури и дървета. Бакалавърска теза, Нов Български Университет, София, 2019.

[4] Кр. Манев. Алгоритми в графи. Основни алгоритми. КЛМН, София, 2013.

111



Krassimir Manev
e-mail: kmanev@nbu.bg
Mario Georgiev
e-mail: mario.r.georgiev@gmail.com
New Bulgarian University
21, Montevideo Blvd
1618 Sofia, Bulgaria

Neli Maneva
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 8
1113 Sofia, Bulgaria
e-mail: neman@math.bas.bg

GRAPHSL: СТАНДАРТНА БИБЛИОТЕКА ЗА ГРАФИ И ДЪРВЕТА

Красимир Манев, Марио Георгиев, Нели Манева

Използването на стандартни библиотеки от подпрограми е един от традицион-
ните подходи за подобряване процеса на създаване на програми. Много библио-
теки, включващи предефинирани абстрактни типове данни и съответните мето-
ди, са създадени за различни програмни езици и платформи. Най-популярната
библиотека за компилаторите от серията GNU за езика C/C++ е STL. За съ-
жаление, въпреки големия си обем, STL не поддържа класическите абстрактни
типове за представяне на графови структури и дървета. Тази статия предлага
една възможна стандартизация за такива типове данни.

112


