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A DIOPHANTINE TRANSPORT PROBLEM FROM 2016

AND ITS POSSIBLE SOLUTION FROM 1903*

Silvia Boumova, Vesselin Drensky, Boyan Kostadinov

Motivated by a recent Diophantine transport problem about how to transport prof-
itably a group of persons or objects, we survey classical facts about solving systems of
linear Diophantine equations and inequalities in nonnegative integers. We emphasize
on the method of Elliott from 1903 and its further development by MacMahon in his
“Ω-Calculus” or Partition Analysis. As an illustration we obtain the solution of the
considered transport problem in terms of a formal power series in several variables
which is an expansion of a rational function of a special form.

1. Introduction. The idea for this paper came from the very interesting recent
papers by Robles-Pérez and Rosales [37] and [38]. Starting with a specific transport
problem about how to transport profitably a group of persons or objects the authors of
[37] and [38] have generalized it to the following system of linear Diophantine inequalities.

Let N be the set of nonnegative integers, let (a1, . . . , ak) and (b1, . . . , bk) belong to
Nk, and let a, b ∈ N. How to find the set T of all solutions y ∈ N of the system

y ≥ a1x1 + · · ·+ akxk + a
y ≤ b1x1 + · · ·+ bkxk − b?

The approach in [37] and [38] is to prove that T ∪ {0} is a submonoid of the additive
monoid (N,+) and to develop an algorithm for computing the minimal system of its
generators. This is in the spirit of results in [39], the main of which states that there exists
a one-to-one correspondence between the set of numerical semigroups (i.e. submonoids
S of (N,+) such that N \ S is a finite set) with a fixed minimal nonzero element and the
set of nonnegative integer solutions of a system of linear Diophantine inequalities.

Linear Diophantine equations and inequalities and their solutions in nonnegative in-
tegers are classical objects which appear in many branches of mathematics, computer
science and their applications. Many methods have been developed for solving such sys-
tems. The purpose of our paper is to survey results, many of them with proofs, starting
from Euler, Gordan and Hilbert. Special attention is paid to the method of Elliott [19]
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from 1903 and its further development by MacMahon [32] in his “Ω-Calculus” or Parti-
tion Analysis. Later, this method was studied in detail by Stanley [42] who added new
geometric ideas. More recently, Domenjoud and Tomás [17] gave new life to the method
deriving an algorithm for solving systems of linear Diophantine equations, inequalities
and disequalities in nonnegative integers. As an illustration of the methods of Elliott
and MacMahon in the present paper we solve one of the Diophantine transport problems
which motivated our project.

The ideas of Elliott and MacMahon have many other applications. Andrews, alone
or jointly with Paule, Riese, and Strehl published a series of twelve papers (I – [4], . . . ,
XII – [5]) on MacMahon’s Partition Analysis, with numerous applications to different
problems, illustrating the power of the methods. The “Ω-Calculus” was further improved
by developing better algorithms and effective computer realizations by Andrews, Paule,
and Riese [6, 7], and Xin [47]. Other applications were given by Berele [10, 11] (to algebras
with polynomial identities), Bedratyuk and Xin [9] (to classical invariant theory), and
the authors in a series of papers, also jointly with Benanti, Genov, and Koev (to algebras
with polynomial identities, and classical and noncommutative invariant theory), see [12]
and the references there.

Let

aij , ai ∈ Z, i = 1, . . . ,m, j = 1, . . . , k,

be arbitrary integers. Consider the system of Diophantine equations and inequalities

(1)

a11x1 + · · ·+ a1kxk + a1 = 0
· · ·

al1x1 + · · ·+ alkxk + al = 0
al+1,1x1 + · · ·+ al+1,kxk + al+1 ≥ 0

· · ·
am1x1 + · · ·+ amkxk + am ≥ 0.

Let the set of solutions of the system (1) in nonnegative integers be

S = {s = (s1, . . . , sk) ∈ Nk | s is a solution of the system}.
The leitmotif of the paper is to apply a slight modification of the method as presented
in the original paper by Elliott [19], to show how to calculate the function

(2) χS(t1, . . . , tk) =
∑

s∈S

ts11 · · · tskk ,

which describes the solutions of the system, and to derive the parametric form of the
solutions. We give concrete calculations for the example in [37]. Using similar methods
one can handle also the example in [38].

2. The ideas of Euler, Gordan, and Hilbert seen from nowadays. We start
with some classical facts on systems of linear Diophantine equations. For historical details
and a survey of the methods for solving such systems we refer to the sections on historical
and further notes on linear Diophantine equations and on integer linear programming in
the book of Schrijver [41] and the section of brief historical notes in the Ph.D. Thesis of
Tomás [44].
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The following fact was known already by Euler in 1748, see [20, 21, 22].
Lemma 2.1. Let all coefficients aij and bj of the system

(3)
a11x1 + · · · + a1kxk = b1

· · ·
am1x1 + · · · + amkxk = bm,

be nonnegative integers such that for each j = 1, . . . , k at least one of the coefficients aij ,
i = 1, . . . ,m, is different from 0. Then the number of solutions in nonnegative integers
of the system is equal to the coefficient of tb11 · · · tbmm of the expansion as a power series
of the product

(4)
k∏

j=1

1

1− t
a1j

1 · · · tamj
m

·

Proof. Using the formula
1

1− z
= 1 + z + z2 + · · · ,

we obtain immediately that
k∏

j=1

1

1− t
a1j

1 · · · tamj
m

=

k∏

j=1

∑

sj≥0

t
a1jsj
1 · · · tamjsj

m

=
∑

sj≥0

t
∑k

j=1
a1jsj

1 · · · t
∑k

j=1
amjsj

m =
∑

bi≥0

cbt
b1
1 · · · tbmm ,

where the coefficient cb is equal to the number of k-tuples (s1, . . . , sk) ∈ Nk such that

ai1s1 + · · ·+ aiksk = bi, i = 1, . . . ,m,

i.e. to the number of solutions of the system (3). �

Remark 2.2. If we replace in Lemma 2.1 the product (4) by
k∏

j=1

1

1− zjt
a1j

1 · · · tamj
m

,

then the coefficient of tb11 · · · tbkk will be a polynomial

χS(z1, . . . , zk) =
∑

s∈S

zs11 · · · zskk

in z1, . . . , zk, where S ⊂ Nk is the set of the solutions s = (s1, . . . , sk) of the system (3).
Example 2.3. Given the system

x1 + x2 + x3 = 10
x1 + 2x2 + 3x3 = 15

we expand the product
1

(1− z1t1t2)(1 − z2t1t22)(1 − z3t1t32)

as a power series and find that the coefficient of t101 t152 is equal to z71z2z
2
3 + z61z

3
2z3+ z51z

5
2 .

Hence the system has three solutions

(s1, s2, s3) = (7, 1, 2), (6, 3, 1), (5, 5, 0).
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Now we shall consider systems of homogeneous linear Diophantine equations

(5)
a11x1 + · · ·+ a1kxk = 0

· · ·
am1x1 + · · ·+ amkxk = 0,

where the coefficients aij are arbitrary integers. As before, we shall be interested in
solutions in nonnegative integers. We introduce a partial order on Nk:

(6) q′ = (q′1, . . . , q
′
k) � (q′′1 , . . . , q

′′
k ) = q′′ if q′j ≤ q′′j , j = 1, . . . , k.

If q′ ≺ q′′ are two solutions, then

q = q′′ − q′ = (q1, . . . , qk) = (q′′1 − q′1, . . . , q
′′
k − q′k) ∈ Nk

is also a solution and q′′ is a sum of two smaller solutions q and q′. Hence every solution
of the system (5) is a sum of minimal (or fundamental) solutions. In 1873 Gordan [24]
called the minimal solutions irreducible. He proved that every system (5) has a finite
number of minimal solutions. Here we give the proof from the book by Grace and Young
[26, Chapter VI, Section 97] which is very close to the original proof of Gordan.

Theorem 2.4. The system (5) has a finite number of minimal solutions.
Proof. We start with a single equation. Changing the order of the unknowns we

rewrite the equation in the form

(7) a1x1 + · · ·+ amxm = b1y1 + · · ·+ bnyn,

where all ai and bj are positive integers. The equation has mn solutions

xr = bs, ys = ar

and all other variables equal to 0. Now, let us assume that in the solution (r, s) =
(r1, . . . , rm, s1, . . . , sn) one of the coordinates ri (e.g. r1) is greater than b1 + · · · + bn.
Hence

b1s1 + · · ·+ bnsn = a1r1 + · · ·+ amrm ≥ a1r1 > a1(b1 + · · ·+ bm),

b1(s1 − a1) + · · ·+ bn(sn − a1) > 0

and there exists an sj (e.g. s1) such that sj > a1. Then

(r, s) = (r1 − b1, r2, . . . , rm, s1 − a1, s2, . . . , sn) + (b1, 0, . . . , 0, a1, 0, . . . , 0)

and the solution (r, s) is not minimal. In this way the minimal solutions satisfy the
condition

ri ≤ b1 + · · ·+ bn, sj ≤ a1 + · · ·+ am.

Hence they are a finite number and can be found explicitly. Let (r(1), s(1)), . . . , (r(p), s(p))
be all minimal solutions of the first equation of the system (5). Then all solutions of the
first equation are in the form

(8) q = (r, s) = (r(1), s(1))z1 + · · ·+ (r(p), s(p))zp, zi ∈ N.

Replacing (r, s) in the second equation of the system (5) we obtain an equation

(9) c1z1 + · · ·+ cpzp = 0

with unknowns z1, . . . , zp. Then the minimal solutions q = (q1, . . . , qk) of the first two
equations of (5) are among the solutions (8) obtained from the minimal solutions of the
equation (9). Again, we can find them explicitly. Continuing in the same way we can
find all minimal solutions of the system (5). �
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Remark 2.5. We can find the candidates for the minimal solutions of the equation
(7) combining the method of the proof of Theorem 2.4 with the method of Euler from
Lemma 2.1 as modified in Remark 2.2. We consider the power series

T (t1, . . . , tm, z) =

m∏

i=1

1

1− tizai
=

∑

xi≥0

tx1

1 · · · txm
m za1x1+···+amxm =

∑

k≥0

Tk(t1, . . . , tm)zk,

U(u1, . . . , um, z) =

n∏

j=1

1

1− ujzbj
=

∑

yj≥0

uy1

1 · · ·uyn
n zb1y1+···+bnyn =

∑

k≥0

Uk(u1, . . . , un)z
k.

The polynomials Tk(t1, . . . , tm) and Uk(u1, . . . , un), respectively, are sums of monomials
of the form tx1

1 · · · txm
m and uy1

1 · · ·uyn
n and each pair of these monomials gives a solution

of (7) of the form

a1x1 + · · ·+ amxm = b1y1 + · · ·+ bnyn = k.

By the proof of Theorem 2.4 the candidates for minimal solutions satisfy the conditions
xi ≤ b1+ · · ·+bn and yj ≤ a1+ · · ·+am. Hence it is sufficient to compute the polynomials
Tk(t1, . . . , tm) and Uk(u1, . . . , un) for k ≤ (a1 + · · ·+ am)(b1 + · · ·+ bn).

Example 2.6. Let us consider the system

(10)
x1 + 2x2 − x3 − x4 = 0

2x1 + 3x2 − 2x3 − x4 = 0.

We rewrite the first equation in the form

x1 + 2x2 = y3 + y4.

By the proof of Theorem 2.4 every minimal solution q = (r1, r2, s1, s2) satisfies the
conditions

0 < r1 + r2, r1, r2 ≤ 2, 0 < s1 + s2, s1, s2 ≤ 3.

There are 8 possibilities for r1 + r2 and for each (r1, r2) there are r = r1 + r2 + 1
possibilities (r, 0), (r− 1, 1), . . . , (0, r) for (s1, s2). Simple calculations give that there are
35 candidates for minimal solutions. We start with the cases (r1, r2) = (0, 1) and (1, 0)
and obtain 5 solutions

(11)
q(1) = (0, 1, 0, 2), q(2) = (0, 1, 1, 1), q(3) = (0, 1, 2, 0),

q(4) = (1, 0, 0, 1), q(5) = (1, 0, 1, 0).

If r1 > 1, then s1 + s2 > 1 and the solution q = (r1, r2, s1, s2) is not minimal because
q(i) ≺ q for some i = 4, 5. By similar argument we derive that the other solutions with
r1 + r2 > 1 are also not minimal. Thus we obtain that the minimal solutions of the first
equation of (10) are those in (11) and all solutions of this equation are

q =

5∑

i=1

tiq
(i) = (t4 + t5, t1 + t2 + t3, t2 + 2t3 + t5, 2t1 + t2 + t4), ti ≥ 0.

The second equation of (10) becomes

2x1 + 3x2 − 2x3 − x4 = 2(t4 + t5) + 3(t1 + t2 + t3)− 2(t2 + 2t3 + t5)− (2t1 + t2 + t4)

= t1 − t3 + t4 = 0.

By the proof of Theorem 2.4 again, t1, t4 ≤ 1, t3 ≤ 2, and the candidates for minimal
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solutions of the equation t1 − t3 + t4 = 0 are

(t1, t3, t4) = (1, 1, 0), (0, 1, 1), (1, 2, 1).

Only the first two solutions are minimal. We have to add also the minimal solutions

(t1, t2, t3, t4, t5) = (0, 1, 0, 0, 0), (0, 0, 0, 0, 1)

and obtain the candidates for minimal solutions of the original system (10)

q = (0, 2, 2, 2), (1, 1, 2, 1), (0, 1, 1, 1), (1, 0, 1, 0).

The first two solutions are not minimal and we obtain all minimal solutions of (10)

q(1) = (0, 1, 1, 1), q(2) = (1, 0, 1, 0).

Example 2.7. We consider the same system (10). Applying the method in Remark
2.5 to the first equation x1 +2x2 = y3 + y4 of the system, we start with the power series

T (t1, t2, z) =
1

(1− t1z)(1− t2z2)
=

∑

k≥0

Tk(t1, t2)z
k,

U(u1, u2, z) =
1

(1 − u1z)(1− u2z)
=

∑

k≥0

Uk(u1, u2)z
k

and compute the first 6 polynomials Tk and Uk (k = 1, . . . , 6). For example

T1 = t1, U1 = u1 + u2, T2 = t21 + t2, U2 = u2
1 + u1u2 + u2

2,

which gives the pair of monomials

(t1, u1), (t1, u2), (t
2
1, u

2
1), (t

2
1, u1u2), (t

2
1, u

2
2), (t2, u

2
1), (t2, u1u2), (t2, u

2
2)

producing the solutions

(1, 0, 1, 0), (1, 0, 0, 1), (2, 0, 2, 0), (2, 0, 1, 1), (2, 0, 0, 2), (0, 1, 2, 0), (0, 1, 1, 1), (0, 1, 0, 2).

Then by direct verification we select the minimal solutions of the equation and continue
with the second equation of the system (10).

By the Hilbert Basis theorem [27] every ideal of the polynomial algebra Q[x1, . . . , xk]
is finitely generated. The following property of the partial order (6) is known as the
Dickson lemma with easy proof by induction in [16]. As it is mentioned in [16] it is a direct
consequence of the Hilbert Basis theorem applied to monomial ideals in Q[x1, . . . , xk].

Lemma 2.8. Let J be a subset of Nk. Then J has a finite subset

{q(i) = (q
(i)
1 , . . . , q

(i)
k ) | i = 1, . . . , n}

with the property that for any q = (q1, . . . , qk) ∈ J there exists a q(i) such that q(i) � q.

We should mention that this lemma was used by Gordon [25] in 1899 in his proof of
the Hilbert Basis theorem. Clearly, as a corollary we immediately obtain also a noncon-
structive proof of Theorem 2.4.

It is interesting to know the behavior of the minimal solutions of the system (5). It
can be given in terms of recursion theory.

Definition 2.9. Let f : N → N be an arbitrary function. A function h : Nk → N

is primitive recursive in f if h can be obtained by a finite number of steps applying
the following rules, starting with the function f , the constant function 0, the successor
function s : N → N (defined by s(n) = n + 1, n ∈ N) and the projection function
pki : Nk → N, i = 1, . . . , k (defined by pki (n1, . . . , nk) = ni, (n1, . . . , nk) ∈ Nk):

(1) The functions f , 0, s and pki are primitive recursive in f ;
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(2) Substitution: If g : Nk → N and hi : Nm → N, m = 1, . . . , k, are primitive
recursive in f , then the function g(h1, . . . , hk) : N

m → N is also primitive recursive in f ;

(3) Primitive recursion: If g : Nk → N and h : Nk+2 → N, are primitive recursive in
f , then the primitive recursion p : Nk+1 → N of g and h defined by

p(0, n1, . . . , nk) = g(n1, . . . , nk) and p(s(m), n1, . . . , nk) = h(m, p(m,n1, . . . , nk)),

m ∈ N, (n1, . . . , nk) ∈ Nk, is also primitive recursive in f .

In the above definition, the “ordinary” primitive recursive functions are those which do
not depend on the function f . Roughly speaking, from the point of view of computability
theory, a primitive recursive function can be computed by a computer program such that
for every loop in the program the number of iterations can be bounded from above before
entering the loop.

Definition 2.10. The function g : Nk → N is recursive if in addition to the con-
structions in the definition of a primitive recursive function one uses also the following.

(4) Minimization operator µ: If h(m,n1, . . . , nk) : Nk+1 → N is partially defined
(i.e. defined on a subset of Nk+1), then the function µ(h) : Nk → N is defined by
µ(h)(n1, . . . , nk) = m if h(i, n1, . . . , nk) > 0 for i = 0, 1, . . . ,m−1 and h(m,n1, . . . , nk) =
0. If h(i, n1, . . . , nk) > 0 for all i ∈ N or if h(i, n1, . . . , nk) is not defined before reach-
ing some m with h(m,n1, . . . , nk) = 0, then the search for m never terminates, and
µ(h)(n1, . . . , nk) is not defined for the argument (n1, . . . , nk).

We shall restate the formalization of Seidenberg [40] introduced originally for the
ideals of the polynomial algebra Q[x1, . . . , xk].

Problem 2.11. Given a function f : N → N, what is the maximal pf (i) ∈ N with the
property: There exists a set

If = {q(i) = (q
(i)
1 , . . . , q

(i)
k ) | i = 1, . . . , pf (i)} ⊂ Nk

such that q
(i)
1 + · · ·+ q

(i)
k ≤ f(i) and the elements of If are not comparable with respect

to the partial order ≺.

Seidenberg showed that there exists a bound p
(k)
f depending on f and k only, which

is recursive in f for a fixed k. This result was improved by Moreno-Soćıas [34].
Theorem 2.12. In the notation of Problem 2.11 for every k there is a primitive

recursive function p
(k)
f : N → N in f , but there is no bound pf which is primitive recursive

in f in general.

For each d ∈ N \ {0} Moreno-Soćıas [33] constructed an example for the primitive
recursive function fd(n) = d + n, n ∈ N, with the property that the bound pfd is
expressed in terms of the Ackermann function a(k, n) : N2 → N [2] defined by

a(0, n) = n+ 1, a(k + 1, 0) = a(k, 1), a(k + 1, n+ 1) = a(k, a(k + 1, n)).

It is known that a(k, n) is recursive and grows faster than any primitive recursive function.
Theorem 2.13. In the notation of Problem 2.11 let d ∈ N\{0} and let fd(n) = d+n,

n ∈ N. Then there exists a set

Ifd = {q(i) = (q
(i)
1 , . . . , q

(i)
k ) | i = d, d+ 1, . . . , p} ⊂ Nk

of noncomparable k-tuples such that q
(i)
1 + · · ·+ q

(i)
k = i and p is equal to a(k, d− 1)− 1,

where a(k, n) is the Ackermann function.

See also the paper by Aschenbrenner and Pong [8] for another approach to the com-
plexity of the problems discussed above.
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3. From the homogeneous case to the solution of general linear Diophantine

constraints. Let us consider the general system of linear Diophantine equations and
inequalities (1). There is a standard way to bring the solution of (1) to the solution of
a homogeneous system of linear Diophantine equations. We introduce new unknowns
y, yl+1, . . . , ym and replace the system (1) by the system

(12)

a11x1 + · · · + a1kxk + a1y = 0
· · ·

al1x1 + · · · + alkxk + aly = 0
al+1,1x1 + · · · + al+1,kxk + al+1y − yl+1 = 0

· · ·
am1x1 + · · · + amkxk + amy − ym = 0.

The following easy theorem shows how to reduce the solution of a general system to
a homogeneous one.

Theorem 3.1. Let

(13) {q(i) = (r
(i)
1 , . . . , r

(i)
k , s(i), s

(i)
l+1, . . . , s

(i)
m ) | i = 1, . . . , n} ⊂ Nk+1+m−l

be the set of minimal solutions of the homogeneous system of equations (12) and let
s(i) = 1 for i = 1, . . . , c, s(i) = 0 for i = c + 1, . . . , d and s(i) > 1 for i = d + 1, . . . , n.
Then the set of all solutions of the system (1) are of the form

q = q(i) + tc+1q
(i) + · · ·+ tdq

(d), i = 1, . . . , c, tc+1, . . . , td ∈ N.

Proof. If q = (r1, . . . , rk, s, sl+1, . . . , sm) is a solution of (12), then sl+1, . . . , sm ≥ 0
and the solutions (r1, . . . , rk) of (1) are obtained from solutions q with s = 1. Every q is

a linear combination of the minimal solutions from (13). If q has the form q =

n∑

i=1

tiq
(i),

we obtain that 1 = s = t1 + · · ·+ tc + td+1s
(d+1) + · · ·+ tns

(n). Hence t1 + · · ·+ tc = 1
and td+1 = · · · = tn = 0 because td+1, . . . , tn > 1. �

Remark 3.2. Let some of the inequalities in the system (1), e.g.

am1x1 + · · ·+ amkxk + am > 0

be strict. Then we replace it in the system (12) by

am1x1 + · · ·+ amkxk + (am + 1)y − ym = 0.

Example 3.3. Let us modify the system (10) from Example 2.6 into the system

(14)
x1 + 2x2 − x3 − 1 = 0
2x1 + 3x2 − 2x3 − 1 ≥ 0.

Following the proof of Theorem 3.1 we have to consider the system

(15)
x1 + 2x2 − x3 − y = 0

2x1 + 3x2 − 2x3 − y − y2 = 0.

The minimal solutions q = (r1, r2, r3, s) of the first equation of (15) are the same as the
minimal solutions (11) of the first equation of (10). Since s = 2 > 1 in the solution
q(1) = (0, 1, 0, 2), s = 1 in q(2) and q(4), and s = 0 in q(3) and q(5), we obtain that all
solutions are

q′ = q(2) + t3q
(3) + t5q

(5) = (t5, 1 + t3, 1 + 2t3 + t5, 1),

q′′ = q(4) + t3q
(3) + t5q

(5) = (1 + t5, t3, 2t3 + t5, 1),
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t3, t5 ∈ N. Substituting q′ in the second equation of (15) we obtain

2t5 + 3(1 + t3)− 2(1 + 2t3 + t5)− 1− y2 = −t3 − y2 = 0.

Hence t3 = y2 = 0 and we obtain the solutions (r1, r2, r3) = (1 + t5, 0, t5) of (14).
Similarly, starting with q′′, the second equation of (15) gives

2(1 + t5) + 3t3 − 2(2t3 + t5)− 1− y2 = 1− t3 − y2 = 0.

We obtain two solutions (t3, y2) = (0, 1) and (t3, y2) = (1, 0), which give the solutions
(r1, r2, r3) = (1 + t5, 0, t5) and (r1, r2, r3) = (1 + t5, 1, 2 + t5) of (14).

There are many methods based on different ideas for solving systems of linear Dio-
phantine equations and inequalities. See for example [1, 3, 14, 15, 17, 23, 31, 35, 36, 45, 46]
and the bibliography there. See also [28, 29] for relations with mathematical logic and
the theory of formal grammars.

4. The method of Elliott. In this section we shall explain in detail the method
of Elliott from [19]. Originally, it was developed for systems of homogeneous linear
Diophantine equations. But for our applications we shall restate the method for systems
of linear Diophantine inequalities. We fix arbitrary integers

aij , ai ∈ Z, i = 1, . . . ,m, j = 1, . . . , k,

a system of Diophantine inequalities

(16)
a11x1 + · · ·+ a1kxk + a1 ≥ 0

· · ·
am1x1 + · · ·+ amkxk + am ≥ 0,

and consider the set of solutions of the system (16) in nonnegative integers

S = {s = (p1, . . . , pk) ∈ Nk | s is a solution of the system}.

4.1. The first idea of Elliott. A usual way to describe a set A ⊂ Rk is in terms of
its characteristic (or indicator) function chfA : Rk → {0, 1} defined by

chfA(p1, . . . , pk) =

{

1, (p1, . . . , pk) ∈ A

0, (p1, . . . , pk) /∈ A.

Definition 4.1. Let P ⊂ Nk. By analogy with the characteristic function of P we
call the formal power series

χP (t1, . . . , tk) =
∑

p∈P

tp1

1 · · · tpk

k , p = (p1, . . . , pk),

the characteristic series of P .

When P ⊂ Nk is the set of solutions of a system of linear Diophantine equations
Elliott suggests to call χP (t1, . . . , tk) the generating function of the set of solutions.

4.2. The second idea of Elliott. To find the characteristic series of a set of solutions
S ⊂ Nk of a system of homogeneous linear Diophantine equations Elliott involves Laurent
series.

Definition 4.2. Let P ⊂ Nk, let

f(t1, . . . , tk) =
∑

p∈P

αpt
p1

1 · · · tpk

k ∈ C[[t1, . . . , tk]], p = (p1, . . . , pk), αp ∈ C,

97



be a formal power series, and let S be a subset of P . We call the formal power series

χS(f ; t1, . . . , tk) =
∑

p∈S

αpt
p1

1 · · · tpk

k ,

the characteristic series of f with respect to the set S.

The next lemma is one of the key moments in the approach of Elliott. Its proof is
obvious.

Lemma 4.3. Let P ⊂ Nk, let

f(t1, . . . , tk) =
∑

p∈P

αpt
p1

1 · · · tpk

k ∈ C[[t1, . . . , tk]], p = (p1, . . . , pk), αp ∈ C,

be a formal power series, and let S ⊂ P be the set of solutions in P of the Diophantine
equation

a1x1 + · · ·+ akxk = 0, ai ∈ Z.

If the Laurent series

ξS(t1, . . . , tk, z) = f(t1z
a1, . . . , tkz

ak) =
∞∑

n=−∞

∑

p∈S

αpt
p1

1 · · · tpk

k zn,

p = (p1, . . . , pk), n = a1p1 + · · ·+ akpk, has the form

ξS(t1, . . . , tk, z) =

∞∑

n=−∞

fn(t1, . . . , tk)z
n, fn(t1, . . . , tk) ∈ C[[t1, . . . , tk]],

then

χS(f ; t1, . . . , tk) =
∑

p∈S

αpt
p1

1 · · · tpk

k = f0(t1, . . . , tk).

The next lemma is a slight generalization of the original approach of Elliott. Its proof
is also obvious.

Lemma 4.4. Let P ⊂ Nk, let

f(t1, . . . , tk) =
∑

p∈P

αpt
p1

1 · · · tpk

k ∈ C[[t1, . . . , tk]], p = (p1, . . . , pk), αp ∈ C,

be a formal power series, and let S be the solutions in P of the Diophantine inequality

a1x1 + · · ·+ akxk + a ≥ 0, ai, a ∈ Z.

If

ξS(t1, . . . , tk, z) = zaf(t1z
a1 , . . . , tkz

ak)

=

∞∑

n=−∞

∑

p∈S

αpt
p1

1 · · · tpk

k zn =

∞∑

n=−∞

fn(t1, . . . , tk)z
n,

fn(t1, . . . , tk) ∈ C[[t1, . . . , tk]], n = a1p1 + · · ·+ akpk + a, then

χS(f ; t1, . . . , tk) =
∑

(p1,...,pk)∈S

αpt
p1

1 · · · tpk

k =

∞∑

n=0

fn(t1, . . . , tk).

Now the problem is how to find χS(f ; t1, . . . , tk) if f(t1, . . . , tk) is an explicitly given
power series which converges to a rational function and we know the set S. Even in
simple cases the answer may be not trivial.
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Example 4.5. Combining the results from [18, p. 409] with ideas from [12], for the
formal power series

f(t1, t2) =
t1 − t2

1− (t1 + t2)
= (t1 − t2)

∞∑

n=0

(t1 + t2)
n, S = {(p1, p2) ∈ N2 | p1 ≥ p2},

we obtain

χS(f ; t1, t2) =
1−

√
1− 4t1t2

2t2 − (1−
√
1− 4t1t2)

.

4.3. The third idea of Elliott. The following definition is given by Berele [10].
Definition 4.6. A nice rational function is a rational function with denominator

which is a product of monomials of the form (1− tα1

1 · · · tαk

k ).

Nice rational functions appear in many places of mathematics. For example, the
Hilbert series of any finitely generated multigraded commutative algebra is of this form.
The following theorem was proved by Elliott [19]. The proof also gives an algorithm how
to find the characteristic series χS(t1, . . . , tk) of the set S of solutions.

Theorem 4.7. Let

(17)
a11x1 + · · ·+ a1kxk = 0

· · ·
am1x1 + · · ·+ amkxk = 0,

where aij ∈ Z, i = 1, . . . ,m, j = 1, . . . , k, be a system of homogenous linear Diophantine
equations. Then the characteristic series χS(t1, . . . , tk) of the set S of the solutions of
(17) in Nk is a nice rational function.

Proof. We start with the characteristic series of the set Nk of all points with
nonnegative integers coordinates

χNk(t1, . . . , tk) =

k∏

i=1

1

1− ti
=

∑

pi≥0

tp1

1 · · · tpk

k .

Let the first equation of the system be of the form

(18) a1x1 + · · ·+ adxd − ce+1xe+1 − · · · − ckxk = 0, ai > 0, cj > 0, d ≤ e.

Then the Laurent series

ξS(t1, . . . , tk, z) = χNk(t1z
a1 , . . . , tdz

ad , td+1, . . . , te, te+1z
−ce+1 , . . . , tkz

−ck)

from Lemma 4.3 has the form

ξS(t1, . . . , tk, z) =
d∏

i=1

e∏

j=d+1

k∏

m=e+1

1

(1− tizai)(1− tj)(1 − tmz−cm)
·

More general, we shall assume that ξS(t1, . . . , tk, z) is of the form

(19) ξS(t1, . . . , tk, z) =

d∏

i=1

e∏

j=d+1

k∏

m=e+1

1

(1−Aizai)(1−Bj)(1 − Cmz−cm)
,

where Ai, Bj , Cm are monomials in t1, . . . , tk.

Case 1. If the equation (18) does not contain negative cm, i.e. if e = k, then
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obviously

ξS(t1, . . . , tk, z) =

d∏

i=1

k∏

j=d+1

1

(1−Aizai)(1 −Bj)

=

k∏

j=d+1

1

1−Bj



1 +
∑

n≥1

Dnz
n



 , Dn ∈ Q[[t1, . . . , tk]],

and

χS(t1, . . . , tk) = f0(t1, . . . , tk) =

k∏

j=d+1

1

1−Bj

·

Case 2. Similar arguments work when the equation (18) does not contain positive
ai, i.e. when d = 0. Again

χS(t1, . . . , tk) = f0(t1, . . . , tk) =

e∏

j=1

1

1−Bj

.

Case 3. Now, let (18) contain both positive ai and negative cm. We shall use the
Elliott tricky equality [19, equation (4)]

(20)
1

(1−Aza)(1− Cz−c)
=

1

1−ACza−c

(
1

1−Azp
+

1

1− Cz−c
− 1

)

,

where a, c ∈ N and A,C are again monomials in t1, . . . , tk. Applying (20) to a pair of
ai and cm, we shall replace the product (19) by a sum of three similar products with
numerators ±1. Continuing with the application of (20) to each of the three expressions
in several steps we shall obtain a sum of products with denominators containing factors
which do not depend on z and factors with only positive or only negative degrees of
z. Then in order to obtain the expression of f0(t1, . . . , tk) we handle each summand as
in Case 1 and Case 2 of the proof. In this way we compute the characteristic series of
the set of the solutions of the first equation of (17). Applying the same algorithm on
f0(t1, . . . , tk) we obtain the characteristic series of the solutions of the first two equations
of (17) and continue the process until we find the characteristic series χS(t1, . . . , tk) of
the set S of the solutions of the whole system (17). Below we shall explain why the
process stops in a finite number of steps. �

The product (19) has d+ (k − e) factors depending on z. The original arguments of
Elliott are the following. If a = c, then, applying (20), in any of the three summands the
number of factors depending on z is smaller. If a > c, then after applying (20), one of
the summands (the third one) has fewer number of factors depending on z. For the first
of the other two factors we replace the factor (1−Aza)(1−Cz−c) with negative degree
of z in 1−Cz−c by the factor (1−ACza−c)(1−Aza). Since a− c is between −c and a,
this expression is simpler than the original. For the other factor (1−ACza−c)(1−Cz−c)
again a − c is between −c and a and the expression is simpler than the original, too.
Similar arguments can be applied for the case a < c.

We shall formalize the arguments of Elliott following the Master Thesis [30] of the
third named author of this paper. Given two sequences of nonnegative integers

α = (a1, . . . , ad) and γ = (ce+1, . . . , ck),
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we denote by θ = [α, γ] the corresponding pair of partitions

[α] = (ai1 , . . . , aid), ai1 ≥ · · · ≥ aid , [γ] = (cm1
, . . . , cmk−e

), cm1
≥ · · · ≥ cmk−e

.

Then we define the linear order

θ = [α, γ] ≺ [α′, γ′] = θ′, if [α] < [α′] or [α] = [α′], [γ] < [γ′],

where the order < in [α] < [α′] and [γ] < [γ′] is with respect to the usual lexicographic
order. Obviously the order ≺ satisfies the descending chain condition.

Proposition 4.8. The algorithm of Elliott in the proof of Theorem 4.7 stops after a
finite number of steps.

Proof. Applying (20) to the product ξ = ξS(t1, . . . , tk, z) from (19) we shall follow
the behavior of the two sequences α = (a1, . . . , ad) and γ = (ce+1, . . . , ck) of the degrees
of z and the corresponding pair of partitions θ = [α, γ]. Since the set of all finite integer
sequences is well ordered with respect to ≺, it is sufficient to show that the statement
holds for the pair θ if it holds for all pairs ϕ which are smaller with respect to ≺, and
then to apply inductive arguments. Without loss of generality we may assume that
a1 ≥ · · · ≥ ad and ce+1 ≥ · · · ≥ ck. By virtues of (20) we replace the product (19)
corresponding to θ = [α, γ] with three products

ξ′ =
1

1−A1C1za1−ce+1

d∏

i=1

e∏

j=d+1

k∏

m=e+2

1

(1 −Aizai)(1 −Bj)(1− Cmz−cm)
,

ξ′′ =
1

1−A1C1za1−ce+1

d∏

i=2

e∏

j=d+1

k∏

m=e+1

1

(1−Aizai)(1−Bj)(1 − Cmz−cm)
,

ξ′′′ =
1

1−A1C1za1−ce+1

d∏

i=2

e∏

j=d+1

k∏

m=e+2

1

(1 −Aizai)(1 −Bj)(1− Cmz−cm)
,

corresponding to the pairs θ′ = [α′, γ′], θ′′ = [α′′, γ′′], θ′′′ = [α′′′, γ′′′], respectively.

Case 1. Let a1 = c1. Then

θ′ = [(a1 − ce+1 = 0, a1, a2, . . . , ad), (ce+2, . . . , ck)],

θ′′ = [(a2, . . . , ad), (ce+1, ce+2, . . . , ck)],

θ′′′ = [(a2, . . . , ad), (ce+2, . . . , ck)].

Since [ce+2, . . . , ck] < [ce+1, ce+2, . . . , ck] and [a2, . . . , . . . , ad] < [a1, a2, . . . , . . . , ad] we
obtain that θ′, θ′′, θ′′′ ≺ θ and we can apply inductive arguments.

Case 2. Let a1 > ce+1. Then θ′, θ′′, θ′′′ are, respectively,

θ′ = [α′, γ′] = [(a1 − ce+1, a1, a2, . . . , ad), (ce+2, . . . , ck)],

θ′′ = [α′′, γ′′] = [(a1 − ce+1, a2, . . . , ad), (ce+1, ce+2, . . . , ck)],

θ′′′ = [α′′′, γ′′′] = [(a1 − ce+1, a2, . . . , ad), (ce+2, . . . , ck)].

Since [α′′] = [α′′′] < [α] we have that θ′′, θ′′′ ≺ θ and we can apply inductive arguments
for them. But we have that [α′] > [α] and θ′ ≻ θ. Applying (20) to θ′ we obtain three
pairs of partitions:

(θ′)′ = [(α′)′, (γ′)′] = [(a1 − ce+1, a1 − ce+2, a1, a2, . . . , ad), (ce+3, . . . , ck)],
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(θ′)′′ = [(α′)′′, (γ′)′′] = [(a1 − ce+1, a1 − ce+2, a2, . . . , ad), (ce+2, ce+3, . . . , ck)],

(θ′)′′′ = [(α′)′′′, (γ′)′′′] = [(a1 − ce+1, a1 − ce+2, a2, . . . , ad), (ce+3, . . . , ck)].

Let us assume that

[α] = (a1, . . . , a1
︸ ︷︷ ︸

r times

, ar+1, . . . , ad), a1 > ar+1 ≥ · · · ≥ ad.

Then

[(α′)′′] = [(α′)′′′] = [a1, . . . , a1
︸ ︷︷ ︸

r−1 times

, a1 − ce+1, a1 − ce+2, ar+1, . . . , ad] < [α]

and again (θ′)′′, (θ′)′′′ ≺ θ. Hence we have a problem with (θ′)′ only.

The application of (20) to (θ′)′ gives three pairs ((θ′)′)′, ((θ′)′)′′, ((θ′)′)′′′. The latter
two, ((θ′)′)′′ and ((θ′)′)′′′, are smaller than θ and

((θ′)′)′ = [(a1, . . . , ad, a1 − ce+1, a1 − ce+2, a1 − ce+3), (ce+4, . . . , ck)] ≻ θ.

Continuing to apply (20), we obtain in each step pairs of partitions which are smaller
than θ, and the pairs

[(a1, . . . , ad, a1 − ce+1, . . . , a1 − ce+j), (ce+j+1, . . . , ck)] ≻ θ.

Finally, we shall reach the pair

[(a1, . . . , ad, a1 − ce+1, . . . , a1 − ck), (0)]

corresponding to the product
d∏

i=1

1

1−Aizai

k∏

m=e+1

1

1−A1Cmza1−cm

e∏

j=d+1

1

1−Bj

,

which we can handle as in Case 1 of Theorem 4.7.

Case 3. Let a1 < ce+1. Applying (20) to θ gives pairs of partitions

θ′ = [α′, γ′] = [(a1, a2, . . . , ad), (ce+1 − a1, ce+2, . . . , ck)],

θ′′ = [α′′, γ′′] = [(a2, . . . , ad), (ce+1 − a1, ce+1, ce+2, . . . , ck)],

θ′′′ = [α′′′, γ′′′] = [(a2, . . . , ad), (ce+1 − a1, ce+2, . . . , ck)]

with θ′, θ′′′ ≺ θ. As in Case 2, we replace θ′′ by a sequence

[(aj+1, . . . , ad), (ce+1 − a1, . . . , ce+1 − aj, ce+1, ce+2, . . . , ck)], j = 2, . . . , d,

until we obtain [(0), (ce+1 − a1, . . . , ce+1 − ad, ce+1, ce+2, . . . , ck)] and then handle the
corresponding product as in Case 2 of Theorem 4.7. �

The following theorem is a modification of Theorem 4.7 for systems of Diophantine
inequalities.

Theorem 4.9. Let aij , ai ∈ Z, i = 1, . . . ,m, j = 1, . . . , k, be arbitrary integers.
Then the characteristic series χS(t1, . . . , tk) of the set S of the solutions in nonnegative
integers of the system of Diophantine inequalities

a11x1 + · · ·+ a1kxk + a1 ≥ 0
· · ·

am1x1 + · · ·+ amkxk + am ≥ 0

is a nice rational function.

Proof. We repeat the arguments from the proof of Theorem 4.7 using Lemma 4.4
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instead of Lemma 4.3. Consider the linear Diophantine inequality

a1x1 + · · ·+ akxk + a ≥ 0, ai, a ∈ Z,

and the nice rational function

f(t1, . . . , tk) = tr11 · · · trkk
∏ 1

1− tqi11 · · · tqikk

with a set S of solutions in nonnegative integers. By Lemma 4.4 we have to compute the
component

χS(t1, . . . , tk) =

∞∑

n=0

fn(t1, . . . , tk)

of the Laurent series

ξS(t1, . . . , tk, z) = zaf(t1z
a1 , . . . , tkz

ak) =

∞∑

n=−∞

fn(t1, . . . , tk)z
n.

Applying the algorithm of Elliott to the part
∏ 1

1−Dizdi
of

zaf(t1z
a1 , . . . , tkz

ak) = zbB
∏ 1

1−Dizdi
,

where B and Di are monomials in t1, . . . , tk, we present zaf(t1z
a1 , . . . , tkz

ak) as a sum
of products of the form

ξ+ = zdE
∏ 1

1−Gi

∏

hj>0

1

1−Hjzhj
and ξ− = zdE

∏ 1

1−Gi

∏

hj<0

1

1−Hjzhj
,

where again E,Gi, Hj are monomials in t1, . . . , tk. In order to complete the proof we
have to determine the contribution of each summand ξ+ and ξ− to χS(t1, . . . , tk).

Case 1. The exponent d of z in ξ+ satisfies d ≥ 0. Then the whole ξ+ contributes
to χS(t1, . . . , tk).

Case 2. The exponent d of z in ξ− satisfies d ≤ 0. If d < 0, then ξ− does not con-
tribute to χS(t1, . . . , tk) because its expansion as a Laurent series contains only negative

degrees of z. If d = 0, then the contribution of ξ− is E
∏ 1

1−Gi

·

Case 3. The exponent d of z in ξ+ satisfies d < 0. We expand
∏

hj>0

1

1−Hjzhj
as

∏

hj>0

1

1−Hjzhj
= 1+K1z +K2z

2 + · · ·+Kd−1z
d−1 + zdL(z),

where L(z) ∈ C[[t1, . . . , tk, z]]. Then

ξ+ = E
∏ 1

1−Gi

(z−d +K1z
−d+1 +K2z

−d+2 + · · ·+Kd−1z
−1) + E

∏ 1

1−Gi

L(z)

and the contribution of ξ+ to χS(t1, . . . , tk) is E
∏ 1

1−Gi

L(z).

Case 4. The exponent d of z in ξ− satisfies d > 0. As in Case 3 we have
∏

hj<0

1

1−Hjzhj
= 1 +K1z

−1 +K2z
−2 + · · ·+Kdz

−d + z−(d+1)L(z),
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where L(z) ∈ C[[t1, . . . , tk, z
−1]]. Then

ξ− = E
∏ 1

1−Gi

(zd +K1z
d−1 +K2z

d−2 + · · ·+Kd−1z +Kd) + z−1E
∏ 1

1−Gi

L(z)

and the contribution of ξ− is

E
∏ 1

1−Gi

(zd +K1z
d−1 +K2z

d−2 + · · ·+Kd−1z +Kd). �

There are several algorithms for solving linear systems of Diophantine equations and
inequalities using the method of Elliott, see e.g. Domenjoud, Tomás [17], Pasechnik [35]
and Xin [47].

Applying the result of Elliott we start with a nice rational function and obtain the
result also in the form of a nice rational function. See Stanley [42] for further discussions
and applications of the approach of Elliott.

The next theorem of Blakley [13] gives another point of view of the problem.
Theorem 4.10. Let

f(t1, . . . , tk) =

n∏

i=1

1

1− tai1

1 · · · taik

k

=
∑

bj≥0

β(b1, . . . , bk)t
b1
1 · · · tbkk , β(b1, . . . , bk) ∈ N.

Then there is a finite decomposition of Nk such that the coefficients β(b1, . . . , bk) are
polynomials of degree n− k in b1, . . . , bk on each piece.

In the notation of Theorem 4.10 Sturmfels [43] proposed a method to find such a
decomposition and the polynomials which express the coefficients β(b1, . . . , bk).

5. The algorithm of Xin. In this section we give an idea for the algorithm of Xin
[47] in a form suitable for our purposes. The algorithm is based on two easy observations.

Lemma 5.1. Let

q(t1, . . . , tk, z) = 1− ta1

1 · · · tak

k zb, ai ∈ N, b ∈ Z.

(i) If b > 0, then q(t1, . . . , tk, z) decomposes as a product of irreducible polynomials in
Q[t1, . . . , tk, z] with constant terms (as polynomials in z) equal to 1.

(ii) If b < 0, then q(t1, . . . , tk, z) is decomposed as

q(t1, . . . , tk, z) = zb
m∏

i=1

ui(t1, . . . , tk, z),

where the irreducible polynomials ui(t1, . . . , tk, z) ∈ Q[t1, . . . , tk, z] are with leading terms
(as polynomials in z) equal to zni , ni ≥ 1.

Proof. (i) Let b > 0 and let q(t1, . . . , tk, z) = 1− ta1

1 · · · tak

k zb decompose as

q(t1, . . . , tk, z) =

m∏

i=1

ui(t1, . . . , tk, z), ui(t1, . . . , tk, z) ∈ Z[t1, . . . , tk, z].

Comparing the constant term 1 of q(t1, . . . , tk, z) with respect to z with the product of
the constant terms of the factors ui(t1, . . . , tk, z) we derive that the constant terms of
ui(t1, . . . , tk, z) belong to Q, i.e. we may assume that they are equal to 1.

(ii) If b < 0 we present q(t1, . . . , tk, z) in the form

q(t1, . . . , tk, z) =
1

zc
q1(t1, . . . , tk, z), q1(t1, . . . , tk, z) = zc − ta1

1 · · · tak

k , c = −b.
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As in (i), comparing the leading monomials zc of q1(t1, . . . , tk, z) and the product of the
leading monomials ui(t1, . . . , tk, z) we derive the proof of (ii). �

Proposition 5.2. Let

f(t1, . . . , tk, z) = g(t1, . . . , tk, z, z
−1)

m∏

i=1

1

1− tai1

1 · · · taik

k zbi

=

∞∑

n=−∞

fn(t1, . . . , tk)z
n,

(21)

where aij ∈ N, bi ∈ Z, g(t1, . . . , tk, z, z
−1) ∈ Z[t1, . . . , tk, z, z

−1] is a polynomial in
t1, . . . , tk and a Laurent polynomial in z, and fn(t1, . . . , tk) ∈ Q[[t1, . . . , tk]]. Let the
partial fraction decomposition of f(t1, . . . , tk, z) be

f(t1, . . . , tk, z) = p(t1, . . . , tk, z) +
∑

l,d

pld(t1, . . . , tk, z)

qdl (t1, . . . , tk, z)
+
∑

j,e

rje(t1, . . . , tk, z)

sej(t1, . . . , tk, z)
,

where p, pld, ql, rje, sj ∈ Q[t1, . . . , tk, z], ql and sj are irreducible in Q[t1, . . . , tk, z],
degz pld < degz ql, degz rje < degz sj, the constant term ql(t1, . . . , tk, 0) of each ql be
nonzero and belong to Q and the constant term sj(t1, . . . , tk, 0) of each sj be a polyno-
mial of positive degree in Q[t1, . . . , tk] (or sj(t1, . . . , tk, 0) = z). Then

h(t1, . . . , tk, z) =

∞∑

n=0

fn(t1, . . . , tk)z
n = p(t1, . . . , tk, z) +

∑

l,d

pld(t1, . . . , tk, z)

qdl (t1, . . . , tk, z)

and f0(t1, . . . , tk) = h(t1, . . . , tk, 0).

Proof. The polynomials qd(t1, . . . , tk, z) and se(t1, . . . , tk, z) in the denomina-
tors in the expression of f(t1, . . . , tk, z) are of the form prescribed in Lemma 5.1 (or
s(t1, . . . , tk, z) = z). Hence we may assume that

q(t1, . . . , tk, z) = 1 + zv(t1, . . . , tk, z),

s(t1, . . . , tk, z) = zn + w(t1, . . . , tk, z),

v, w ∈ Q[t1, . . . , tk, z], degz w < n, degw(t1, . . . , tk, 0) > 0 (or s(t1, . . . , tk, z) = z). The
expansion of the fractions with denominators of the form qd(t1, . . . , tk, 0) belongs to
Q[[t1, . . . , tk, z]] because the expression

1

qd(t1, . . . , tk, z)
=

1

(1 + zv(t1, . . . , tk, z))d

= (1 + zv(t1, . . . , tk, z) + z2v2(t1, . . . , tk, z) + · · · )d

does not involve negative degrees of z. By similar arguments, when deg s(t1, . . . , tk, 0) >
0, all monomials in the expansion of

1

se(t1, . . . , tk, z)
=

1

(zn + w(t1, . . . , tk, z))e
=

1

znd(1 + u(t1, . . . , tk, z−1))e

=
1

znd
(1 + u(t1, . . . , tk, z

−1) + u2(t1, . . . , tk, z
−1) + · · · )d

involve factors z−m with negative degrees of z with m ≥ n. Since m is larger than
the degree in z of the corresponding numerator r(t1, . . . , tk, z), the expansion of these
fractions contains only negative degrees of z and does not contribute to h(t1, . . . , tk, z).
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When s(t1, . . . , tk, z) = z the numerator r(t1, . . . , tk, z) does not depend on z and hence
these fractions do not participate in h(t1, . . . , tk, z) again. �

Algorithm 5.3. We want to solve the homogeneous linear Diophantine system of
equations and inequalities

(22)

a11x1 + · · · + a1kxk = 0
· · ·

al1x1 + · · · + alkxk = 0
al+1,1x1 + · · · + al+1,kxk ≥ 0

· · ·
am1x1 + · · · + amkxk ≥ 0.

We start with the function

u(t1, . . . , tk) =

k∏

i=1

1

1− ti
,

replace the variables ti by tiz
a1i , i = 1, . . . , k, and expand u(t1z

a11 , . . . , tkz
a1k) in the

form (21)

f(t1, . . . , tk, z) =

∞∑

n=−∞

fn(t1, . . . , tk)z
n.

Applying Proposition 5.2 we obtain

h(t1, . . . , tk, z) =

∞∑

n=0

fn(t1, . . . , tk)z
n = p(t1, . . . , tk, z) +

∑

l,d

pld(t1, . . . , tk, z)

qdl (t1, . . . , tk, z)
·

All polynomials ql(t1, . . . , tk, z) in the denominators are divisors of some 1− tb11 · · · tbkk zc,
multiplying the numerators and denominators with suitable polynomials we present

h(t1, . . . , tk, z) as a fraction with denominator in the form
∏

(1 − tb11 · · · tbkk zc), i.e. the

result is a nice rational function. If we start with an equation a11x1 + · · · + a1kxk = 0
from (22) we take f0(t1, . . . , tk) = h(t1, . . . , tk, 0), continue the work with f0(t1, . . . , tk)
and handle the next equation or inequality of (22). If we have an inequality a11x1 +
· · ·+a1kxk ≥ 0, we make the next step with the function h(t1, . . . , tk, 1) which takes into
account all fn(t1, . . . , tk), n ≥ 0. Continuing in the same way, we obtain in each step a
nice rational function which is the characteristic series of the solutions of the first several
equations and inequalities of (22). At the final step, we obtain the characteristic series
of the solutions of the whole system.

Example 5.4. We start with the system from Example 2.6

x1 + 2x2 − x3 − x4 = 0
2x1 + 3x2 − 2x3 − x4 = 0.

By Algorithm (5.3),

u(t1, t2, t3, t4) =
1

(1− t1)(1 − t2)(1− t3)(1− t4)
,

f(t1, t2, t3, t4, z) = u(t1z, t2z
2, t3z

−1, t4z
−1)

=
1

(1− t1)(1 − t2z2)(1 − t3z−1)(1− t4z−1)

106



=
t23

(t3 − t4)(1− t1t3)(1− t2t23)(z − t3)
− t24

(t3 − t4)(1 − t1t4)(1 − t2t24)(z − t4)

+
(1 + t1t3 + t1t4 + t2t3t4 + (t1 + t2t3 + t2t4 + t1t2t3t4)z)t2

(t2 − t21)(1− t2t23)(1− t2t24)(1− t2z2)

− t21
(t2 − t21)(1− t1t3)(1− t1t4)(1− t1z)

,

h(t1, t2, t3, z) =
(1 + t1t3 + t1t4 + t2t3t4 + (t1 + t2t3 + t2t4 + t1t2t3t4)z)t2

(t2 − t21)(1 − t2t23)(1 − t2t24)(1 − t2z2)

− t21
(t2 − t21)(1− t1t3)(1− t1t4)(1− t1z))

,

f0(t1, t2, t3, t4) = h(t1, t2, t3, 0) =
1 + t2t3t4 − t1t2t

2
3t4 − t1t2t3t

2
4

(1− t1t3)(1− t1t4)(1− t2t23)(1− t2t24)
·

We continue in the same way with the second equation and present f0(t1z
2, t2z

3, t3z
−2,

t4z
−1) as a sum of partial fractions. Finally we obtain the characteristic series of the

solutions of (10)

χS(t1, t2, t3, t4) =
1

(1 − t1t3)(1 − t2t3t4)
=

∑

m,n≥0

(t1t3)
m(t2t3t4)

n.

This means that all solutions of the system are

m(1, 0, 1, 0) + n(0, 1, 1, 1), m, n ∈ N,

i.e. the minimal solutions are (1, 0, 1, 0) and (0, 1, 1, 1).

6. Our solution of the problem of Robles-Pérez and Rosales. We shall illus-
trate the method of Elliott and the algorithm of Xin on the example of the Diophantine
transport problem given in [37] which was one of the two main motivations of the present
project. As stated in [37], the example is the following.

A transport company carries cars from the factory to a dealer using small and large
trucks with a capacity of three and six cars. The trucks cost for the company 1200
and 1500 euros, respectively. The company receives from the dealer 300 euros for each
transported car and offers as a bonus the transportation of an additional car without
charge. The company considers that the ordered transport is profitable when it has a
profit of at least 900 euros. How many cars must be transported at least in order to
achieve that purpose?

If y denotes the required number of cars, x3 and x6 are the numbers of the small and
the large trucks, respectively, the problem is equivalent to the linear Diophantine system

300y ≥ 1200x3 + 1500x6 + 900
y + 1≤ 3x3 + 6x6

which after a simplification has the form:

(23)
y ≥ 4x3 + 5x6 + 3
y ≤ 3x3 + 6x6 − 1

=⇒ −4x3 − 5x6 + y − 3 ≥ 0
3x3 + 6x6 − y − 1 ≥ 0.

The goal of the paper [37] was to prove that the set T of the integers n for which
the system (23) has a solution (x3, x6, y) = (r3, r6, n) ∈ N3 together with 0 forms a
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submonoid of (N,+), and to give algorithmic procedures how to compute T . We shall
extend this goal and show how to find the set S of all solutions (r3, r6, n) ∈ N3 of the
system. In particular, we shall discuss the relations between the profit and the solutions
of the system.

Remark 6.1. As in the one-dimensional case considered in [37], it is easy to see
that the set S of solutions (r3, r6, n) of the system (23), together with (0, 0, 0) forms a
submonoid of (N3,+).

Our solution 6.2. Applying Theorem 3.1 and Algorithm 5.3, the first inequality of
(23) is replaced by the equation −4x3−5x6+y−3t = 0 which has to be solved for t = 1.
We start with the function

u(x3, x6, y, t) =
1

(1− x3)(1 − x6)(1 − y)(1− t)

and replace the variables x3, x6, y, t by x3z
−4, x6z

−5, yz, tz−1, respectively. Presenting
the obtained function f(x3, x6, y, t, z) as a sum of partial fractions with respect to z

f(x3, x6, y, t, z) = u(x3z
−4, x6z

−5, yz, tz−3) =

∞∑

n=−∞

fn(x3, x6, y, t)z
n,

we obtain

h(x3, x6, y, t, z) =

∞∑

n=0

fn(x3, x6, y, t)z
n =

1

(1 − x3y4)(1 − x6y5)(1 − y3t)(1− yz)
.

By Theorem 3.1 the solutions of the first inequality in (23) are obtained from the solutions
(x3, x6, y, t) with t = 1. In the expansion

h(x3, x6, y, t, z) =
∞∑

d=0

hd(x3, x6, y, z)t
d

these solutions correspond to the coefficient h1(x3, x6, y, z). Hence

h1(x3, x6, y, z) =
y3

(1− x3y4)(1 − x6y5)(1 − yz)
.

Instead of the second inequality of (23) we consider the equation

3x3 + 6x6 − y − v = 0.

We start with the function

p(x3, x6, y, v) =
1

1− v
h1(x3, x6, y, 1) =

y3

(1− x3y4)(1 − x6y5)(1 − y)(1− v)

and applying Algorithm 5.3 we obtain

q(x3, x6, y, v, w) = p(x3w
3, x6w

6, yw−1, vw−1)

=
y3

w3(1− x3y4w−1)(1 − x6y5w)(1 − yw−1)(1 − vw−1)
=

∞∑

m=−∞

qm(x3, x6, y, v)w
m,

r(x3, x6, y, v, w) =

∞∑

m=0

qm(x3, x6, y, v)w
m

=
x3
6y

18

(1− x6y6)(1− x3x6y9)(1− x6y5v)(1− x6y5w)
=

∞∑

k=0

rk(x3, x6, y, w)v
k,
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r1(x3, x6, y, w) =
x4
6y

23

(1− x6y5w)(1 − x6y6)(1 − x3x6y9)
,

χS(x3, x6, y) = r1(x3, x6, y, 1) =
x4
6y

23

(1− x6y5)(1 − x6y6)(1− x3x6y9)
·

Hence the set S of all solutions (r3, r6, n) of the system (23) are

(r3, r6, n) = (0, 4, 23) + c1(0, 1, 5) + c2(0, 1, 6) + c3(1, 1, 9), c1, c2, c3 ∈ N.

Replacing x3 and x6 with 1 in χS(x3, x6, y) we obtain the characteristic series of the set
T of the possible values of n:

χT (y) = χS(1, 1, y) =
y23

(1 − y5)(1 − y6)(1− y9)

which expresses the original solution of the problem in [37] in the form of its characteristic
series.

Remark 6.3. Using the expression for χS(x, y, z) found above, it is easy to find a
relation between the solutions and the corresponding profit. Since for each transported
car the firm gains 300 euros and pays, respectively, 1200 euros and 1500 euros for each
small and large truck, we shall consider the function

ω(x3, x6, y, t) = χS(x3t
−4, x6t

−5, yt) =
x4
6y

23t3

(1 − x6y5)(1 − x3x6y9)(1 − x6y6t)

=

∞∑

k=3

ωk(x3, x6, y)t
k =

∞∑

k=3

xk+1
6 y6k+5tk

(1− x6y5)(1 − x3x6y9)
·

The firm will have a profit 300k euros for all (r3, r6, n) such that xr3
3 xr6

6 yn participates
with a nonzero coefficient α(r3, r6, n) in the expansion of ωk(x

r3
3 xr6

6 yn) as a power series:

ωk(x3, x6, y) =
xk+1
6 y6k+5

(1− x6y5)(1− x3x6y9)
=

∑

r3,r6,n≥0

α(r3, r6, n)x
r3
3 xr6

6 yn.

In particular, it is easy to see that the minimal number of transported cars to gain a
profit 300k is n = 6k + 5 (plus one car as a bonus) and for this purpose the firm has to
use k + 1 large trucks.
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ЕДНА ДИОФАНТОВА ТРАНСПОРТНА ЗАДАЧА ОТ 2016 ГОДИНА
И НЕЙНОТО ВЪЗМОЖНО РЕШЕНИЕ ПРЕЗ 1903 ГОДИНА

Силвия Бумова, Веселин Дренски, Боян Костадинов

Този проект е мотивиран от неотдавнашен диофантов транспортен проблем

как да транспортираме изгодно група от хора или обекти. Ние правим обзор

на класически факти за решаване на системи линейни диофантови уравнения и

неравенства в неотрицателни цели числа. Специално внимание отделяме на ме-

тода на Елиът от 1903 година и неговото по-нататъшно развитие от МакМахън

в неговото
”
Омега смятане“. Като илюстрация намираме решение на разглеж-

дания транспортен проблем на езика на формални степенни редове на няколко

променливи, които са развития на рационални функции от специален вид.
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