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In this paper we study the existence of symmetric positive solutions for p-Laplacian
differential equation. Using the mountain-pass theorem and a lemma on symmetry
we prove the existence of positive even solutions of the problem considered.

1. Introduction. In this paper we study the existence of symmetric and positive
solutions of the Dirichlet problem for the second-order p-Laplacian equation

(1) (φp (u
′ (x)))

′ − a(x)φq (u (x)) + b(x)φr (u (x)) = 0, x ∈ [−L,L],

where φp (t) = |t|p−2
t, t ∈ R and L > 0.

We assume (and denote the assumptions by H) that:
(H) the functions a(x) and b(x) are continuously differentiable, strictly positive and

even functions on [−L,L], xa′(x) > 0, xb′(x) < 0 for x ̸= 0 and 2 ≤ p < q < r.
A partial case of the equation (1), where p = 2, q = 3, r = 4 appears in a biomathe-

matics model suggested by Austin [2] in a model of an aneurysm in the circle of Willis.
Grossinho and Sanchez [12] consider the periodic solutions of the equation in this case
using a variational method. Periodic and homoclinic solutions are studied in [8]. Similar
problems are considered in [4, 5], using a variational method. In [10] Tersian considers
the following p-Laplacian differential equation

(2)
(
|u′|p−2u′)′ − a(x)u|u|p−2 + λb(x)u|u|q−2 = 0, x ∈ R

where 2 ≤ p < q and λ > 0, a(x) and b(x) are continuously differentiable, strictly positive
functions, xa′(x) > 0 and xb′(x) < 0 for x ̸= 0. Higher-order equations are studied in [7]
using the generalized Clark’s theorem. It is applied to fourth-order p-Laplacian equations
in [9].

Denote by X the Sobolev space:

(3) X = W 1,p
0 (−L,L) = {u ∈ Lp (−L,L) : u′ ∈ Lp (−L,L) , u (−L) = u (L) = 0} ,

where Lp (−L,L) is the usual Lebesgue space. The space X is a separable Banach space
with the norm

∥u∥X =

(∫ L

−L

(
|u′ (x)|p + |u (x)|p

)
dx

) 1
p

,
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which is equivalent to the norm

(4) ∥u∥ =

(∫ L

−L

|u′ (x)|p dx

)
by Poincare’s inequality [3, p. 218], ∥u∥X ≤ C ∥u′∥Lp , where

∥u∥pLp =

∫ L

−L

|u|p dx.

We use a variational formulation of the problem considering the functional J : X → R
defined as

J (u) =
1

p

∫ L

−L

|u′ (x)|p dx+
1

q

∫ L

−L

a (x)
(
u+ (x)

)q
dx− 1

r

∫ L

−L

b (x)
(
u+ (x)

)r
dx

where u+ = max (0, u). We look for the critical points of the functional J in order to
find the solution of the problem

(5)

{
(φp (u

′ (x)))
′ − a(x)φq (u (x)) + b(x)φr (u (x)) = 0, x ∈ (−L,L)

u (−L) = u (L) = 0

Using the well-known classical mountain-pass theorem, we conclude that the func-
tional J(x) has a nontrivial critical point ul, which is a solution of the problem (5).
By a solution of problem (5) we mean a function u ∈ C ([−L,L]), such that φp (u

′) ∈
AC ([−L,L]) and u (x) satisfies Eq.(1) for x ∈ [−L,L] and boundary condition u (−L) =
u (L) = 0. Here AC ([−L,L]) denotes the space of absolutely continuous functions on
[−L,L] [1, 3].

Since w = φp (u
′) ∈ AC ([−L,L]) = W 1,1 (−L,L)∫ L

−L

wv′ dx = −
∫ L

−L

w′v dx,

for every v ∈ X. Since u′ = φp′ (w) = φ−1
p (w) ∈ C ([−L,L]), where

1

p
+

1

p′
= 1, it

follows that ∫ L

−L

((
|u′|p−2

u′
)′

− a (x)
(
u+
)q−1

+ b (x)
(
u+
)r−1

)
v dx = 0

for every v ∈ C∞
0 ([−L,L]). Then it follows that u is a solution of (5). To obtain the

symmetry property, we extend the Lemma of Korman and Ouyang [6] to the p-Laplacian
equations.

Our main result is:
Theorem 1. Suppose that 2 ≤ p < q < r and the (H) assumptions hold. Then the

problem (5) has a positive even solution ul in the interval [−L,L] for which
max {ul (x) : x ∈ [−L,L]} = ul (0) and u′

l (x) < 0 for x > 0.

Further, in Section 2, we present the variational formulation of the problem, and we
formulate the symmetric lemma and mountain-pass theorem. We prove a lemma for the
(PS ) condition for the functional J . In Section 3 we prove Theorem 1.

2. Preliminary results. Let X be the Sobolove space as defined in (3) equipped
with the norm

∥u∥ =

(∫ L

−L

|u′ (x)|p dx

) 1
p

.
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Note that the embedding X ∈ C ([−L,L]) is compact, u ∈ Lq (−L,L) for q ≥ p and∫ L

−L

|u (x)|q dx ≤ ∥u∥q−p
L∞ ∥u∥pLp

[3, Chapter 8].

We consider the functional J : X → R

J (u) =
1

p

∫ L

−L

|u′ (x)|p dx+
1

q

∫ L

−L

a (x) |u (x)|q dx− 1

r

∫ L

−L

b (x) |u (x)|r dx,

and we are looking for critical points of J , which are solutions of (5).

Let f (x, u) = −a (x)φq (u) + b (x)φr (u). Then the problem (5) can be rewritten as

(6)

{
(φp (u

′ (x)))
′
+ f (x, u (x)) = 0, x ∈ (−L,L)

u (−L) = u (L) = 0

where f ∈ C1
(
[−L,L]× R+

)
and satisfies (H1) conditions:

(H1)

{
f (−x, u) = f (x, u) , x ∈ (−L,L)
xfx (x, u) < 0, x ∈ (−L,L) \ {0} , u > 0.

We will apply the following symmetric lemma due to Korman and Ouyang [6]:
Lemma 1 ([6]). Assume that f ∈ C1

(
(−L,L)× R+

)
satisfies (H1). Then any

positive solution (6) is an even function, such that u′ (x) < 0 for x ∈ (0, L] .

We consider the modified problem

(7)

{
(φp (u

′ (x)))
′
+ f

(
x, u+ (x)

)
= 0, x ∈ (−L,L)

u (−L) = u (L) = 0

where u+ = max (0, u) and we use variational statement of the problem (7). The solutions
of the problem (7) are positive solutions of the problem (5) and (6).
In [10] Tersian considers Eq. (2) and proves that if f (x, u) ∈ C1 ([−L,L]× [0,∞)) and
satisfies (H1), then any positive solution uL (x) of (6) is an even function. Moreover
u′
L (x) < 0 for x > 0 and uL (0) = max {uL (x) , x ∈ (−L,L)}.
We define the functional J(u) for (7) as follows:

J (u) =
1

p

∫ L

−L

|u′ (x)|p dx+
1

q

∫ L

−L

a (x)
(
u+ (x)

)q
dx− 1

r

∫ L

−L

b (x)
(
u+ (x)

)r
dx,

Recall
Theorem 2 (Mountain-pass theorem [11]). Let E be a Banach space with a norm

∥.∥, I ∈ C1 (E,R), I (0) = 0 and I satisfy the (PS) condition. Suppose that there exist
r > 0, α > 0 and e ∈ E such that ∥e∥ > r and

(i) I (u) ≥ α if ∥u∥ = r;

(ii) I (e) < 0. Let c = inf
γ∈

{
max
0≤t≤1

I (γ (t))

}
≥ α, where

Γ = {γ ∈ C ([0, 1] , X) : γ (0) = 0, γ (1) = e} .

Then c is a critical value of I, i.e. there exists u0 such that I (u0) = c and I ′ (u0) = 0.

The use of the critical points theory needs the well known Palais-Smale (PS) condi-
tions which plays a central role:
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For J ∈ C1(X,R) we say that it satisfies the (PS) condition if any sequence {un} ∈ X
for which J (un) is bounded and J ′ (un) converges to 0 as n → ∞ possesses a convergent
subsequence [11].

Now we prove:
Lemma 2. Let 2 ≤ p < q < r, a (x) and b (x) are continuous positive functions on

[−L,L] and (5) is satisfied. Then, the functional J : X → R satisfies the (PS) condition.
Proof. Let {un} be a (PS )-sequence in X, i.e. {J (un)} is a bounded sequence and

J ′ (un) → 0 in X⋆. We have

1

r
⟨J ′ (un) , un⟩ =

1

r

∫ L

−L

(
|u′

n (x)|
p
+ a (x)

(
u+
n (x)

)q − b (x)
(
u+
n (x)

)r)
dx

and

J (un)−
1

r
⟨J ′ (un) , un⟩

=

(
1

p
− 1

r

)∫ L

−L

|u′
n (x)|

p
dx+

(
1

q
− 1

r

)∫ L

−L

(
u+
n (x)

)q
dx

≥
(
1

p
− 1

r

)
∥un∥p ,

which implies that

(8) |J (un)|+
1

r
∥J ′ (un)∥⋆ ∥un∥ ≥

(
1

p
− 1

r

)
∥un∥p .

Then, the sequence {un} is bounded in X. Indeed, if we suppose that there is a
subsequence {unk

} still denoted by {un} such that ∥un∥ → ∞, by (7) we obtain

|J (un)|
∥un∥p

+
1

r

∥J ′ (un)∥⋆
∥un∥p−1 ≥ 1

p
− 1

r
> 0,

which implies a contradiction as n → ∞, because |J (un)| is bounded and ∥J ′ (un)∥⋆ → 0.
Hence {un} is a bounded sequence in X. Let un ⇀ u weakly in X. By compact
embedding X ⊂ C ([−L,L]), it follows that:

(9) lim
n→∞

∫ L

−L

a (x)
(
u+
n (x)

)q
dx =

∫ L

−L

a (x)
(
u+ (x)

)q
dx,

lim
n→∞

∫ L

−L

b (x)
(
u+
n (x)

)r
dx =

∫ L

−L

b (x)
(
u+ (x)

)r
dx.

We have ⟨J ′ (un) , un⟩ → 0 as n → ∞ by

|⟨J ′ (un) , un⟩| ≤ ∥J ′ (un)∥⋆ ∥un∥ .
Then

(10) 0 = lim
n→∞

⟨J ′ (un)− J ′ (u) , un − u⟩

= lim
n→∞

∫ L

0

(φp (u
′
n)− φp (u

′)) (u′
n − u′) dx

By the inequality

(φp (x)− φp (y)) (x− y) ≥ 2

p (2p−1 − 1)
|y − x|p
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for x, y ∈ R; for p ≥ 2 we have

(φp (u
′
n)− φp (u

′)) (u′
n − u′) ≥ 2

p (2p−2 − 1)
|u′

n − u′|p

which implies by (9) that un → u strongly in X. �

3. Proof of the Main result. To prove Theorem 1 we show that the geometric
assumptions of Theorem 2 are satisfied and apply Lemma 1.

Since X = W 1,p
0 (−L,L) ⊂ C ([−L,L]) ⊂ Lq (−L,L) and

X = W 1,p
0 (−L,L) ⊂ C ([−L,L]) ⊂ Lr (−L,L) for 2 ≤ p < q < r there are constants c1

and c2 such that for u ∈ X

∥u∥Lq =

(∫ L

−L

|u (x)|q dx

) 1
q

≤ c1 ∥u∥ ,(11)

∥u∥Lr =

(∫ L

−L

|u (x)|r dx

) 1
r

≤ c2 ∥u∥ .

Proof of Theorem 1. We prove that conditions (i) and (ii) are satisfied.

(i) Since a (x) and b (x) are positive, even and continuous functions we have A =
max a (x)
x∈[−L,L]

, a = min a (x)
x∈[−L,L]

, b = min b (x)
x∈[−L,L]

and B = max b (x)
x∈[−L,L]

then

(12) 0 < a ≤ a (x) ≤ A, 0 < b ≤ b (x) ≤ B

By (11) and (12) we obtain:

J (u) =
1

p
∥u∥p + 1

q

∫ L

−L

a (x)
(
u+
)q

dx− 1

r

∫ L

−L

b (x)
(
u+
)r

dx ≥

≥ 1

p
∥u∥p − Bc2

r
∥u∥r = ∥u∥p

(
1

p
− Bc2

r
∥u∥r−p

)
.

Since r > p, for ∥u∥ = ρ <

(
r

c2pB

) 1
r−p

sufficiently small there exist α > 0 such that

J (u) ≥ α > 0.

(ii) Let u0 (x) ∈ X be such that u0 (x) > 0 if x ∈ (−L,L) and also
u0 (−L) = u0 (L) = 0.

Consider the function

ũ0 (x) =

{
tu0 (x) if x ∈ [−1, 1],

0 if x ∈ [−L,L] \ [−1, 1].
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Then by (11) and (12) it follows that:

J (ũ0) = tp
∫ L

−L

|u′
0|

p

p
dx+

∫ L

−L

(
tqa (x)

|u0|q

q
− trb (x)

|u0|r

r

)
dx ≤

≤ tp

p
∥u0∥p +

∫ L

−L

(
tq

q
A |u0|q −

tr

r
b |u0|r

)
dx <

<
tp

p
∥u0∥p +

∫ L

−L

(
tq

q
A |u0|q −

tr

r
b |u0|r

)
dx =

=
tp

p
∥u0∥p +

Atq

q

∫ L

−L

|u0|q dx− btr

r

∫ L

−L

|u0|r dx =

=
tp

p
∥u0∥p +

Atq

q
∥u0∥qLq −

btr

r
∥u0∥rLr ≤

≤ tp

p
∥u0∥p + c1

tq

q
A ∥u0∥q − c2

tr

r
b ∥u∥r =

= ∥u0∥p tp
(
1

p
+Ac1

tq−p

q
∥u0∥q−p − bc2

tr−p

r
∥u0∥r−q

)
< 0

for t > 0 small enough.
By Lemma 2 and Theorem 2, there exists a solution ul ∈ X such that J (ul) = c and

J ′ (ul) = 0. Moreover, if ul is a positive solution of (5), by Lemma 1 we obtain that ul

is an even solution, ul (0) = max {ul (x) , x ∈ (−L,L)} and u′
l (x) < 0 for x ∈ (0, L]. �
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ВЪРХУ ЧЕТНИТЕ ПОЛОЖИТЕЛНИ РЕШЕНИЯ НА ЗАДАЧА ЗА
p-ЛАПЛАСОВО ДИФЕРЕНЦИАЛНО УРАВНЕНИЕ

Гергана Цветкова

В статията се изследва съществуването на положителни четни решения на за-
дача на Дирихле за едномерни p-Лапласови уравнения. Приложени са теоремата
за хребета и лема за симетрия.
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