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LAGRANGE’S FOUR SQUARE THEOREM WITH
ALMOST-PRIME NUMBERS HAVING A SPECIAL FORM"

Tatyana L. Todorova

In this paper we consider the Lagrange’s equation with almost-prime numbers sat-
isfying a diophantine inequality.

1. Introduction and statement of the result. In 1770 Lagrange proved that for
any positive integer N the equation
(1) vi+a;+a5+ai=N
has a solution in integer numbers x1,...,x4. Later Jacobi found an exact formula for
the number of the solutions [7, Ch. 20]. A lot of researchers studied the equation (1)
for solvability in integers satisfying additional conditions. There is a hypothesis stating
that if N is sufficiently large and N = 4 (mod 24) then (1) has a solution in primes.
This hypothesis has not been proved so far, but several approximations to it have been
established.

In 1994 J. Briidern and E. Fouvry [1] proved that for any large N = 4(mod24), the
equation (1) has a solution in zy,...,z4 € P3y. (We say that an integer n is almost-
prime of order r if n has at most r prime factors, counted with their multiplicities, and
denote by P, the set of all almost-primes of order r.) This result is improved by D. R.
Heath-Brown and D. I. Tolev [8]. They showed that for the same restrictions for N,
the equation (1) has a solution in prime x; and almost-prime 3, 3,24 € P1o1. In their
paper they also proved that the equation has a solution in z1,...,z4 € Pos. In 2010 Tak
Wing Ching [2] improved this result with three of them being Ps-numbers and the other
— a Pj-number.

On the other hand, let us consider a subset of the set of integers having the form

A = {n|a < {nn} < b},
where 7 is a fixed quadratic irrational number, and a,b € [0, 1].
Let I(N) be the number of solutions of (1) in arbitrary integers and J(N) be the
number of solutions of (1) in integers of the set A.

In 2011, S. A. Gritsenko and N. N. Motkina [5] proved that for any positive small ¢,
the following formula holds

J(N) = (b—a)'I(N) + O (N%3) |
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S. A. Gritsenko and N. N. Motkina consider many others additive problem in witch
variables are in special set of numbers similar to A [3, 4, 6]. In 2013 A. V. Shutov
[11] considered solvability of diophantine equation in integer numbers from .A. Further
research in this area was made by A. V. Shutov and A. A. Zhukova [12].

2. Main results. Our result is

Theorem 1. Let 11, 02, 113, N4 € R\Q and at least one of them be a quadratic irra-

1 54
tional number, 0 < A < i and k = 110)\} . Then for every sufficiently large integer
N, the equation (1) has a solution in almost-prime numbers x1,...,x4 € Py, such that

Im1 + 12 + 1323 + maza]] < N7

The present paper is an extension of the work of Zh. H. Petrov and T. Todorova [14].

3. Notations. In the present paper we use the following notations.

We denote by N a sufficiently large odd integer. The letters a, b, k, [, m, n, ¢, p denote
always integers. By (ni,...,n;) we denote the greatest common divisor of nq, ..., ng.
We denote by 7 four dimensional vectors and let
(2) |77| = max(|nq], ..., |n4])-

As usual p(q) is the Mobius function and 7(q) is the number of positive divisors of gq.
Sometimes we write a = b (¢) as an abbreviation of a = b (mod ¢). We write Z for a
z (q)
sum over a complete system of residues modulo ¢ and respectively Z " is a sum over a
= (q)
reduced system of residues modulo ¢. Let e(t) = >,

We use Vinogradov’s notation A < B, which is equivalent to A = O(B). By & we
denote an arbitrarily small positive number, which is not the same in different formulas.
The constants in the O-terms and <-symbols are absolute or depend on €.

4. Auxiliary results. Now we introduce some lemmas, which shall be used later.

Lemma 2. Suppose that D € R, D > 4. There exist arithmetical functions )\i(d)
(called Rosser’s functions of level D) with the following properties:

1. For any positive integer d we have
IAE(d)] <1, ME(d)=0 if d>D or pu(d) =0.

2. If n € N then

SA (@) < S u() < Y At(@).

d|n d|n d|n

3. If z € R is such that 2> < D and if

_ _ 1 _ AE(d) __logD
(3) P(2) _2<r,,[<zp7 8_20112 (1_10_1), NE _d;@sa(d)’ 0=t
then we have
(4) B<N*t<B (F(so) ) ((1og D)—%)) ,
(5) B>N- zs(f(so)+o((1ogD)—%)),
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where F(s) and f(s) satisfy
F(s)=2e"s"', if 2<s<3,
f(s) =2e"s tlog(s —1), if 2<s<3,
(sP(s)) = f(s— 1), if s >3,
(sf(s)) =F(s—1), ifs>2.
Here ~y is Euler’s constant!.

Proof. See Greaves [8, Chapter 4]. O

Lemma 3. Suppose that Ai,A;t are real numbers satisfying A; =0 or 1, A, <A; <
Af,i=1,2,3,4. Then

(6) AiAgA3Ay > ATATATAS + ATASATAS + ATASASAS
+ATATATAL — 3ATATATAT.
Proof. The proof is similar to the proof of Lemma 13 in [1]. O

Let
‘\p_16 ! 575 )
wo(t) = 2 — 52 55
0 ifrg (—2,2
55
and
7) (@) =wo (%2
wz)=wo |5 ~5]-
Lemma 4. Let u, € R and
+o0 1
(8) J(B,u) = / wo <x - 2) e(Bx? + ux)dz.
Then:
1. For every k € N and u # 0 we have
1+]8*
J(/Bau) <k |U|k

2. The following inequality holds
J(B,u) < min (1, |6|_%) .

Proof. See Lemma 9in [§8]. O
Lemma 5. Suppose that i € Z*, |ii| = max(|u1l, |ual, |usl, |usl) > 0 and

4
T (i) =[] (v, w).
i=1
Then we have

+oo
/ 7 (@) dy < [~

—0o0

17 =~ 0.577, also known as Euler-Mascheroni constant, is defined as the limiting difference between
harmonic series and the natural logarithm.
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Proof. The proof can be found in [8, Lemma 10]. O

Lemma 6. There exists a function o(v,q,«) defined for —% <v < %, q < P,
vl < g, integrable with respect to vy, satisfying
o(v.4.7)] <
B 13
and also
<av) _{1 if « € Na,q),
el — )o(v,qa)= .
i< q 0 otherwise,
where , ,
P P

M) = <q(q +4q') gqlg+ q”)}
and
(9) P<q+qd,q+¢" <P+q, aq’ = 1(modgq), aq” = —1(modgq).

Proof. See Lemma 45 [15]. O
The Gauss sum is defined by

(10) G(g,m,n) e (mx +nx)
For d = (dy,...,ds) €Z* 7 = (nl,...,n4> € Z* we denote

G(q,ada, i) = H G(q,ad?, n;).

i=1
We need to estimate an exponential sum of the form
- * av — N N
(11) Vo =Vy(N,d,v, @) = Z e (ava) G(q,ad?,1).
q

a(q)
To estimate V; we use the properties of the Gauss sum and the Kloosterman sum.
Lemma 7. Suppose that N,q € N;v € Z and d:ﬁ € Z*. Then we have

Vo(N. d,v, ) < q37(q)(¢. N)* (¢, d1)(q: d2) (g, d3) (g, da)-
Moreover, if some of the conditions
(qadi)|ni7 Z:1a74
do not hold, then V4 (N, cz v,1) =0.

Proof. This result is analogous to the one in Lemma 1 [1]. O

Lemma 8 (Liouville). If n is an irrational number which is the root of a polynomial
f of degree 2 with integer coefficients, then there exists a real number A > 0 such that,
for all integers p, q, with ¢ > 0,
A

p
I

)

Proof. See Theorem 1A [10]. O
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5. Proof of the theorem.

5.1. Beginning of the proof. Let N be a sufficiently large integer. We denote
z =N P(z)zl_[p7 §=N"2
p<z

We apply the well-known Vinogradov’s “little cups” lemma [9, Chapter 1, Lemma A]
with parameters

1) ) )
- _Z = — A=— = [log N
« 2; 6 27 27 r [Og ]

and construct a function 6(t), which is periodic with period 1 and has the following
properties:

0
0t)y=1 f ——<t< -
(t) or 1 <t<
4] ] d 30 30 30
1 for —- - - —; = fi — 1——.
0<6(t) < or 2<t<4 or 4<1f<47 6(t)=0 for 4<t< 1
Furthermore, the Fourier series of 6(t) is given by
(12)
1 loo N [log N]
0t) =6+ > c(m)e(mt)+O(P~*), with [¢(m)| < min (5, ol (Ef'm]') :
0<|m|<H
m#0
where A is an arbitrary large constant,
log N2
(13) i - log NI
5
Let

0(7Z) = 0(mx1 + N2z + N33 + Nats)
and
w(Z) = w(zr)w(zs)w(xs)w(xy).
We consider the sum
I = > 0(777)w(ET).
z%+x§+z§+xZ:N

(zi,P(2))=1, i=1,2,3,4

From the condition (z;, P(z)) = 1 it follows that any prime factor of z; is greater or
equal to z. Suppose that z; has [ prime factors, counted with the multiplicity. Then we
have

N% Zl‘iZZl:Nal
1
and hence [ < o This implies that if I' > 0 then equation (1) has a solution in
«a
1
Z1,...,24, which is almost-prime with at most [2} prime factors, such that ||nz; +
a

N2t + 323 + maza|| < N7
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For i =1,2,3,4 we define

1 if (z;, P(2)) =1,
(14) A= Z uld) = {0 otlElerWis(e.))
d|(zi,P(2))
Then we find that
r= > A Ao As A4 (77w (7).

zf+m§+m§+mz:N
We can write I' as

1
r= Z A1A2A3A49(f]"’)w(f)/ e(a(x? + 22 4+ 22 + 22 — N))da.
x; €L 0

Suppose that A\*(d) are the Rosser functions of level D (see Lemma 2). Let us also
denote

(15) Af= > M), i=1,2,3,4.
dl(zi,P(2))
Then from Lemma 2, (14) and (15) we find that
A7 <A <AS

We use Lemma 3 and find that
>+ T+ T3 +Ty — 305,
where I'y,...,I'y are the contributions coming from the consecutive terms of the right
side of (6). We have I'y =Ty =T'3 =T’y and
1
INESY A;A;A;Aw(ﬁf)w(f)/ e(a(z? 4+ 22 4+ 22 + 22 — N))da,

x;, €L 0
1
Ts= ) ATA;*A;AIG(ﬁﬁ)w(a‘:’)/ e(a(z? 4+ 23 4 22 + 22 — N))da.
x, €L 0
Hence, we get
(16) [ > 4T — 3Ts.

5.2. Asymptotic formula for I'y. We shall find an asymptotic formula for the
integral I';. We have

1
= Y A (d)AT(d)AT(ds)AT(dy) D 0(E / e(a(z+-- +a5 — N))da.
di|P(2) 2;=0(d;) 0
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Now using the Fourier series of 0(t), we find

> o) w(E)e(a(af + -+ 23))

4
= > em]] w(z)e(a(z? +mniz;))
+ O(P_A Z w(xl)w(xg)w(x3)w(x4)).
£
Let
(17) S(a,d;,m) = Z w(z;)e(ax? + mmnx;)
(18) S(a,d,m) = S(a, dy, m)S(ex,d, m)S(cv, dz, m)S(cx, dg, m).
and
(19) Md) = A~ (d)AT (do) M (d3) AT (dy) -
Then
1
Iy= Y Ad) Y c(m)/ S(a,d,m)e(—Na)da + O(1).
di|P(z)  |m|<H 0

We split I'; into two parts:
(20) Iy =TI +TI5 4+ 0(1),
where

[ =c(0) Y Ad) > w(T)

23 tai+eitei=N
and
1
(21) =Y Ad) Y c(m)/ S(a,d,m)e(—Na)da,
di|P(z)  0<|m|<H 0

So from (16) and (20) we get
(22) I >4T9 - 309 + O(IF) + O(I%) + O(1).

We will evaluate the sums I'] and I';.

5.3. Estimation of T']. In this subsection we find the upper bound for I'] defined
in (21). The function into integral in I'] is periodic with period 1, so we can integrate
over the interval Z defined as

I_@jwﬁ+rﬁﬂ>

We apply the Kloosterman form of the Hardy-Littlewood circle method. We divide the
interval into large arcs only. Using the properties of the Farey fractions we represent 7
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as an union of disjoint intervals in the following way:

= U U E(Qaa)a

q<P a=1
(a7Q)=1
where
a 1 a 1
E a,q) = ( - y + :|
(@9) q qlg+d) q alg+q")

and where the integers ¢’, ¢ are specified in (9). Then

N= Y@ Y dmy > [ . Slosd me(-Nei

d;|P(z) 0<|m|<H q<P a=1
(a,q)=1

We change variable of integration a = 4 + 3, to get
q

e Sl 3 D 3 [ s (Gendn)e(n(en))en

di|P(z) 0<|m|<H qSP(aaq:)IZI

where

1 1
Mla.q) = (_Q(q +d') qlg+ q”)] '

1 1 1 1
[‘qu’ 2qP} € Mlaq) {_qP’qP]

From (9) we find that

and hence

1
(23) B< 5 for B M)

Now we consider the sum S(a, d;, m) defined in (17). Since 7, is an irrational number
[|sni|| # 0 for all s € Z. Using that fact and working as in the proof of [8, Lemma 12],
we find that for 8 € M(q,a) we have

(24)
S (Z + /Badi7m) = P Z J <6P27 (mnl - dnq)P> G(Q7 ad?v n) + O(P_B)

d.
s | <M,

where G(q, m,n) and J(v,u) are defined respectively by (10) and (8), B is an arbitrarily
large constant, M; = d;P°, ¢ > 0 is arbitrarily small and the constant in the O-term
depends only on B and £. We leave the verification of the last formula to the reader.

Let
- * alN a -
F(Pd)y= Y cm)d Y e (-) / S ( + 8,d, m) e(—BN)dgs.
0<|m|<H 4<Pa(q) q M(a,q) q
It is obvious that
(25) = Y XdF(P,d).
d;|P(z)
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Using (24) and Lemma 4 we get

- -

(26) F(P,d)=F*(P,d)+0(1),
where
o P4
PERd- e Y Y Ly ( )
0<|m|<H q<P a(q)

i
X G(q, ad?, ﬁ)/ J (,BP2, (mﬁ— _,) P) e(—vy)dy
2 M(aq) dq

[n;—mdigqni|<M;
Working as in the proof of [13, Lemma 2] we find that

(27) F*(P, d) = F (P, d) + O(P%?**),
where
Frd=-—1""" S umY L Y vw.do s
didadszdy 0<imI<H <P q* s = midgans] <M !

(q,d;)|ng,i=1,...,4

X / J (% <mﬁ— CL) P> e(—v)dy,
lyl<£ dq

and V,(N, d,0, i) is defined by (11). We represent the sum F'(P, d) as

(28) F (P, d)=F +F,

where F} is a contribution of these addends with ¢ < @ and F5 is the contribution for
addends with @Q < ¢ < P. Here @ is parameter, which we shall choose later. Using

Lemma 4 (2), Lemma 7 and (12) we get
(29)

P%5 @?1(q)(q, N)V?(q, d1) -~ (g, da)
F - - ’ ’ 1
2 S Uidadsda 2.2 q! 2
0<|m|<H Q<q<P

Ing—md;qn;| <M,
(q,d;)|ng,i=1,...,4

It is clear that the sum over 7 we have

R | >

|n;—md;qn;|<M; 1<Z<4 —M; +md7qn7 M;+md;qn;
(@rdi)mgimd, .. @y <h<Tgap
My Mo Mz M, Pedidadsdy

< <
(Q7 dl)(Q) d2)(Q7 d3)(Q7 d4) (qa dl)(qa d2) (q7 d3) (q7 d4)
which, together with (5.3) and (13), gives

24 7(q)(g, N)'/?
F2 < P € Z T
Q<q<P
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Now we apply Cauchy’s inequality to get

N|=

2

O I = I I Sl e DSl i
1

Q<q<P q Q<q<P ¢ N Q@ P
a= = t<p T <UST

N

P2+€

Q12"
To evaluate F; we first apply Lemma 5 to get

— — —14¢
foe |2 0 (mi= ) 2)| v (| (- 2) 7))
lyl<£ dq dq

Then using Lemma 7 and (13) we receive

(31)

(30) «

P2 5/2 CN)Y2(q, dy) - (g, d 1
F1<<dddd Zq 7(q)(g, N) 4(‘1 1)+ (g, da) Z S —
e <@ 1 Ing—md;qn;|<M; (mn— qu)P’
(q,d;)|n;, i=1,...,4
i P ) dl
It is clear that if n; = (q, d;)t;, d; = (q, d;)d; and ‘(mm_dl)p’ — %Hi—mdémql
iq qa;
then for the sum over (m#q — dg)P we obtain
q
(32) Z ; < a Z 1
j— L Vt — mdnal/d:
‘niimd“"%KMi (mn - qu)P| P ‘ti—mdQQ7li|<(qM;v) 112?%(4((]’ dl)ltz mdznlqul

(g, d;)|ng,i=1,...,4
Without loss of generality we can assume that 7; is quadratic irrationality. Let ¢{ is such
that we can assume that 1; is quadratic irrationality. Let ¢{ is such that

|67 — mdyma| = || = mdymal| = [|mdimal|.
As 7y is a quadratic irrational number then ||mdimigq|| # 0 and for ¢t; # ¢ we have
[t1 — mdiniq| > 1/2. Hence
d;)|t; — mdin; d
max (& @)lti = mdimia| (g, di)
1<i<4 dy dq
which, together with (32), gives

a4 Z 1
P . d;)|t; — mdiniq|/d;
|ti*md;q7ii|<(q],\/{;i) 1H§1?§X4(q i)t —m il ql/di
< q ( dy My Mo Ms My N dy Moy Ms M, )
P (qy d1)2(Q7 d2)(Q7 d3)(Q7 d4) (qa dl)(q, dQ)(q, d3)(q, d4)||md/1771q||
P~ Ddydadsd P*~1d;dadsd
(33) < q 1020304 q 1dodsdy

(@ )% (q &)(a d5)(a. da) | (@ )0, d2)(a: ds)(q: da) Imdinad]]

As 71 is quadratic irrationality it has a periodic continued fraction and if Z—n, n € Nis
HDQ
(d1, q)

and Liouville’s inequality for quadratic numbers (see Lemma 8) we can find convergent

n-th convergent then b, < ¢" for some constant ¢ > 0. Using that ||md}q|| <
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% to n with denominator such that

(34)

Since (a, b) = 1 we have md'lq% ¢ 7. As

1
m— Z’ < 0 and (34) we get
a a
méia(n =3 2 fmi
1 [mldyq(dy, q)

1 |m|d1q
> - MR, 9 -
b 3bHDQ ~— b 3bHDQ

lm|d1q
-

a
i > |[matay | |

1 Iml _1 1 2
>S-o L Ll>- -2
b 3bH —b 3 3b
(d17 Q)
From (33) and (32) it follows that
1 qP5_1d1d2d3d4HDQ

>

In;—mdjqn;|<M;
(q,d;)|ng,i=1,..., 4

Then for Fy (see (31))we receive

s

1P| < (@ d)2(q, da)(a, ds)(a, da)

(mif —

U

q

P+ DQ ~ 7(g)(g. N)'/?
(35) In < 5 Z

1/2
q<Q 4

Applying Cauchy’s inequality we get

pPitep N
F < ; Q Z 72(q) Z (q,N)
q<Q q<Q 4

W=
N

P*teD 1
R 2% QY05 QY | Y S —
5 N o 11

t<Q lIlST

P1+EDQ3/2
0
We choose Q = 6Y/2PY2D~1/2 Then
Fla Fv2 < P7/4+6571/4D1/4 )
From the inequalities, (28), (27), (26), (37) it follows that
(37) F’{ < D17/4P7/4+€5_1/4.

(36) <

5.4. End of the proof of Theorem. From (22) we have
['>4r0 — 319 + O(T'}) + O(T%) + O(1).
__logD

= 3.13 we obtain the estimate
log =z

According to [8] and [1] for D < P1/87¢
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CON

38 ar9 —3r9 > ———
( ) 1 5 > (log N)4

+ O(5P3/2+€D4)

with some constant C.
Since the sum T} is estimated in the same way as '], from (22), (37) and (38) we get

ON

T D17/4P7/4+66—1/4 )
7 Tlog Nt
1-38 —10A—8e
Then for a fixed small € > 0, A < 10 E, D < N7 and » = D'/313 we get I' >
ON
—————. Therefore, the equation (1) has solutions in almost-prime numbers x1, ..., x4 €
(log N)*
Pr, k 53,21 h that || + + + | < N
= |———— such tha x x x x .
ks 1-10)— 8¢ MLy T N2L2 T 133 T 74L4
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