LAGRANGE'S FOUR SQUARE THEOREM WITH ALMOST-PRIME NUMBERS HAVING A SPECIAL FORM*

Tatyana L. Todorova

In this paper we consider the Lagrange's equation with almost-prime numbers satisfying a diophantine inequality.

1. Introduction and statement of the result. In 1770 Lagrange proved that for any positive integer N the equation

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=N \tag{1}
\end{equation*}
$$

has a solution in integer numbers x_{1}, \ldots, x_{4}. Later Jacobi found an exact formula for the number of the solutions [7, Ch. 20]. A lot of researchers studied the equation (1) for solvability in integers satisfying additional conditions. There is a hypothesis stating that if N is sufficiently large and $N \equiv 4(\bmod 24)$ then (1) has a solution in primes. This hypothesis has not been proved so far, but several approximations to it have been established.

In 1994 J. Brüdern and E. Fouvry [1] proved that for any large $N \equiv 4(\bmod 24)$, the equation (1) has a solution in $x_{1}, \ldots, x_{4} \in \mathcal{P}_{34}$. (We say that an integer n is almostprime of order r if n has at most r prime factors, counted with their multiplicities, and denote by \mathcal{P}_{r} the set of all almost-primes of order r.) This result is improved by D. R. Heath-Brown and D. I. Tolev [8]. They showed that for the same restrictions for N, the equation (1) has a solution in prime x_{1} and almost-prime $x_{2}, x_{3}, x_{4} \in \mathcal{P}_{101}$. In their paper they also proved that the equation has a solution in $x_{1}, \ldots, x_{4} \in \mathcal{P}_{25}$. In 2010 Tak Wing Ching [2] improved this result with three of them being P_{3}-numbers and the other - a P_{4}-number.

On the other hand, let us consider a subset of the set of integers having the form

$$
\mathcal{A}=\{n \mid a<\{\eta n\}<b\},
$$

where η is a fixed quadratic irrational number, and $a, b \in[0,1]$.
Let $I(N)$ be the number of solutions of (1) in arbitrary integers and $J(N)$ be the number of solutions of (1) in integers of the set \mathcal{A}.

In 2011, S. A. Gritsenko and N. N. Motkina [5] proved that for any positive small ε, the following formula holds

$$
J(N)=(b-a)^{4} I(N)+O\left(N^{0,9+3 \varepsilon}\right) .
$$

[^0]S. A. Gritsenko and N. N. Motkina consider many others additive problem in witch variables are in special set of numbers similar to \mathcal{A} [3, 4, 6]. In 2013 A. V. Shutov [11] considered solvability of diophantine equation in integer numbers from \mathcal{A}. Further research in this area was made by A. V. Shutov and A. A. Zhukova [12].
2. Main results. Our result is

Theorem 1. Let $\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4} \in \mathbb{R} \backslash \mathbb{Q}$ and at least one of them be a quadratic irrational number, $0<\lambda<\frac{1}{10}$ and $k=\left[\frac{54}{1-10 \lambda}\right]$. Then for every sufficiently large integer N, the equation (1) has a solution in almost-prime numbers $x_{1}, \ldots, x_{4} \in \mathcal{P}_{k}$, such that $\left\|\eta_{1} x_{1}+\eta_{2} x_{2}+\eta_{3} x_{3}+\eta_{4} x_{4}\right\|<N^{-\lambda}$.

The present paper is an extension of the work of Zh. H. Petrov and T. Todorova [14].
3. Notations. In the present paper we use the following notations.

We denote by N a sufficiently large odd integer. The letters a, b, k, l, m, n, q, p denote always integers. By $\left(n_{1}, \ldots, n_{k}\right)$ we denote the greatest common divisor of n_{1}, \ldots, n_{k}. We denote by \vec{n} four dimensional vectors and let

$$
\begin{equation*}
|\vec{n}|=\max \left(\left|n_{1}\right|, \ldots,\left|n_{4}\right|\right) . \tag{2}
\end{equation*}
$$

As usual $\mu(q)$ is the Möbius function and $\tau(q)$ is the number of positive divisors of q. Sometimes we write $a \equiv b(q)$ as an abbreviation of $a \equiv b(\bmod q)$. We write $\sum_{x(q)}$ for a sum over a complete system of residues modulo q and respectively $\sum_{x(q)}^{*}$ is a sum over a reduced system of residues modulo q. Let $e(t)=e^{2 \pi i t}$.

We use Vinogradov's notation $A \ll B$, which is equivalent to $A=O(B)$. By ε we denote an arbitrarily small positive number, which is not the same in different formulas. The constants in the O-terms and \ll-symbols are absolute or depend on ε.
4. Auxiliary results. Now we introduce some lemmas, which shall be used later.

Lemma 2. Suppose that $D \in \mathbb{R}, D>4$. There exist arithmetical functions $\lambda^{ \pm}(d)$ (called Rosser's functions of level D) with the following properties:

1. For any positive integer d we have

$$
\left|\lambda^{ \pm}(d)\right| \leq 1, \quad \lambda^{ \pm}(d)=0 \quad \text { if } \quad d>D \quad \text { or } \quad \mu(d)=0
$$

2. If $n \in \mathbb{N}$ then

$$
\sum_{d \mid n} \lambda^{-}(d) \leq \sum_{d \mid n} \mu(d) \leq \sum_{d \mid n} \lambda^{+}(d)
$$

3. If $z \in \mathbb{R}$ is such that $z^{2} \leq D$ and if
(3) $P(z)=\prod_{2<p<z} p, \mathcal{B}=\prod_{2<p<z}\left(1-\frac{1}{p-1}\right), \mathcal{N}^{ \pm}=\sum_{d \mid P(z)} \frac{\lambda^{ \pm}(d)}{\varphi(d)}, s_{0}=\frac{\log D}{\log z}$,
then we have

$$
\begin{align*}
& \mathcal{B} \leq \mathcal{N}^{+} \leq \mathcal{B}\left(F\left(s_{0}\right)+O\left((\log D)^{-\frac{1}{3}}\right)\right) \tag{4}\\
& \mathcal{B} \geq \mathcal{N}^{-} \geq \mathcal{B}\left(f\left(s_{0}\right)+O\left((\log D)^{-\frac{1}{3}}\right)\right), \tag{5}
\end{align*}
$$

where $F(s)$ and $f(s)$ satisfy

$$
\begin{aligned}
& F(s)=2 e^{\gamma} s^{-1}, \quad \text { if } \quad 2 \leq s \leq 3 \\
& f(s)=2 e^{\gamma} s^{-1} \log (s-1), \quad \text { if } \quad 2 \leq s \leq 3, \\
& (s F(s))^{\prime}=f(s-1), \quad \text { if } s>3, \\
& (s f(s))^{\prime}=F(s-1), \quad \text { if } s>2
\end{aligned}
$$

Here γ is Euler's constant ${ }^{1}$.
Proof. See Greaves [8, Chapter 4].
Lemma 3. Suppose that $\Lambda_{i}, \Lambda_{i}^{ \pm}$are real numbers satisfying $\Lambda_{i}=0$ or $1, \Lambda_{i}^{-} \leq \Lambda_{i} \leq$ $\Lambda_{i}^{+}, i=1,2,3,4$. Then

$$
\begin{align*}
\Lambda_{1} \Lambda_{2} \Lambda_{3} \Lambda_{4} \geq & \Lambda_{1}^{-} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{+}+\Lambda_{1}^{+} \Lambda_{2}^{-} \Lambda_{3}^{+} \Lambda_{4}^{+}+\Lambda_{1}^{+} \Lambda_{2}^{+} \Lambda_{3}^{-} \Lambda_{4}^{+} \\
& +\Lambda_{1}^{+} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{-}-3 \Lambda_{1}^{+} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{+} . \tag{6}
\end{align*}
$$

Proof. The proof is similar to the proof of Lemma 13 in [1].
Let

$$
w_{0}(t)= \begin{cases}e\left(\frac{1}{t^{2}-\frac{16}{25}}\right) & \text { if } t \in\left(-\frac{4}{5}, \frac{4}{5}\right), \\ 0 & \text { if } t \notin\left(-\frac{4}{5}, \frac{4}{5}\right)\end{cases}
$$

and

$$
\begin{equation*}
w(x)=w_{0}\left(\frac{x}{P}-\frac{1}{2}\right) . \tag{7}
\end{equation*}
$$

Lemma 4. Let $u, \beta \in \mathbb{R}$ and

$$
\begin{equation*}
J(\beta, u)=\int_{-\infty}^{+\infty} w_{0}\left(x-\frac{1}{2}\right) e\left(\beta x^{2}+u x\right) d x \tag{8}
\end{equation*}
$$

Then:

1. For every $k \in \mathbb{N}$ and $u \neq 0$ we have

$$
J(\beta, u)<_{k} \frac{1+|\beta|^{k}}{|u|^{k}} .
$$

2. The following inequality holds

$$
J(\beta, u) \ll \min \left(1,|\beta|^{-\frac{1}{2}}\right) .
$$

Proof. See Lemma 9 in [8].
Lemma 5. Suppose that $\vec{u} \in \mathbb{Z}^{4},|\vec{u}|=\max \left(\left|u_{1}\right|,\left|u_{2}\right|,\left|u_{3}\right|,\left|u_{4}\right|\right)>0$ and

$$
J(\gamma, \vec{u})=\prod_{i=1}^{4} J\left(\gamma, u_{i}\right) .
$$

Then we have

$$
\int_{-\infty}^{+\infty}|J(\alpha, \vec{u})| d \gamma \ll|\vec{u}|^{-1+\varepsilon}
$$

[^1]Proof. The proof can be found in [8, Lemma 10].
Lemma 6. There exists a function $\sigma(v, q, \alpha)$ defined for $-\frac{q}{2}<v \leq \frac{q}{2}, q \leq P$, $|\gamma| \leq \frac{P}{q}$, integrable with respect to γ, satisfying

$$
|\sigma(v, q, \gamma)| \leq \frac{1}{1+|v|}
$$

and also

$$
\sum_{-\frac{q}{2}<v \leq \frac{q}{2}} e\left(\frac{\bar{a} v}{q}\right) \sigma(v, q, \alpha)= \begin{cases}1 & \text { if } \alpha \in \mathcal{N}(a, q) \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
\mathcal{N}(a, q)=\left(\frac{P^{2}}{q\left(q+q^{\prime}\right)}, \frac{P^{2}}{q\left(q+q^{\prime \prime}\right)}\right]
$$

and
(9) $\quad P<q+q^{\prime}, q+q^{\prime \prime} \leq P+q, \quad a q^{\prime} \equiv 1(\bmod q), \quad a q^{\prime \prime} \equiv-1(\bmod q)$.

Proof. See Lemma 45 [15].
The Gauss sum is defined by

$$
\begin{equation*}
G(q, m, n)=\sum_{x(q)} e\left(\frac{m x^{2}+n x}{q}\right) \tag{10}
\end{equation*}
$$

For $\vec{d}=\left\langle d_{1}, \ldots, d_{4}\right\rangle \in \mathbb{Z}^{4}, \vec{n}=\left\langle n_{1}, \ldots, n_{4}\right\rangle \in \mathbb{Z}^{4}$ we denote

$$
G\left(q, a \overrightarrow{d^{2}}, \vec{n}\right)=\prod_{i=1}^{4} G\left(q, a d_{i}^{2}, n_{i}\right)
$$

We need to estimate an exponential sum of the form

$$
\begin{equation*}
V_{q}=V_{q}(N, \vec{d}, v, \vec{n})=\sum_{a(q)}^{*} e\left(\frac{\bar{a} v-N a}{q}\right) G\left(q, a \overrightarrow{d^{2}}, \vec{n}\right) \tag{11}
\end{equation*}
$$

To estimate V_{q} we use the properties of the Gauss sum and the Kloosterman sum.
Lemma 7. Suppose that $N, q \in \mathbb{N}, v \in \mathbb{Z}$ and $\vec{d}, \vec{n} \in \mathbb{Z}^{4}$. Then we have

$$
V_{q}(N, \vec{d}, v, \vec{n}) \ll q^{\frac{5}{2}} \tau(q)(q, N)^{\frac{1}{2}}\left(q, d_{1}\right)\left(q, d_{2}\right)\left(q, d_{3}\right)\left(q, d_{4}\right) .
$$

Moreover, if some of the conditions

$$
\left(q, d_{i}\right) \mid n_{i}, \quad i=1, \ldots, 4
$$

do not hold, then $V_{q}(N, \vec{d}, v, \vec{n})=0$.
Proof. This result is analogous to the one in Lemma 1 [1].
Lemma 8 (Liouville). If η is an irrational number which is the root of a polynomial f of degree 2 with integer coefficients, then there exists a real number $A>0$ such that, for all integers p, q, with $q>0$,

$$
\left|\eta-\frac{p}{q}\right| \geq \frac{A}{q^{2}}
$$

Proof. See Theorem 1A [10].

5. Proof of the theorem.

5.1. Beginning of the proof. Let N be a sufficiently large integer. We denote

$$
z=N^{\alpha}, \quad P(z)=\prod_{p<z} p, \quad \delta=N^{-\lambda} .
$$

We apply the well-known Vinogradov's "little cups" lemma [9, Chapter 1, Lemma A] with parameters

$$
\alpha=-\frac{\delta}{2}, \quad \beta=\frac{\delta}{2}, \quad \Delta=\frac{\delta}{2}, \quad r=[\log N]
$$

and construct a function $\theta(t)$, which is periodic with period 1 and has the following properties:

$$
\begin{gathered}
\theta(t)=1 \quad \text { for } \quad-\frac{\delta}{4}<t<\frac{\delta}{4} ; \\
0<\theta(t)<1 \quad \text { for } \quad-\frac{\delta}{2}<t<\frac{\delta}{4} \quad \text { or } \quad \frac{\delta}{4}<t<\frac{3 \delta}{4} ; \quad \theta(t)=0 \quad \text { for } \quad \frac{3 \delta}{4}<t<1-\frac{3 \delta}{4} .
\end{gathered}
$$

Furthermore, the Fourier series of $\theta(t)$ is given by
$\theta(t)=\delta+\sum_{\substack{0<|m| \leq H \\ m \neq 0}} c(m) e(m t)+O\left(P^{-A}\right)$, with $|c(m)| \leq \min \left(\delta, \frac{1}{|m|}\left(\frac{[\log N]}{\Delta \pi|m|}\right)^{[\log N]}\right)$, where A is an arbitrary large constant,

$$
\begin{equation*}
H=\frac{[\log N]^{2}}{\delta} \tag{13}
\end{equation*}
$$

Let

$$
\theta(\vec{\eta} \vec{x})=\theta\left(\eta_{1} x_{1}+\eta_{2} x_{2}+\eta_{3} x_{3}+\eta_{4} x_{4}\right)
$$

and

$$
w(\vec{x})=w\left(x_{1}\right) w\left(x_{2}\right) w\left(x_{3}\right) w\left(x_{4}\right) .
$$

We consider the sum

$$
\Gamma=\sum_{\substack{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=N \\\left(x_{i}, P(z)\right)=1, i=1,2,3,4}} \theta(\vec{\eta} \vec{x}) w(\vec{x}) .
$$

From the condition $\left(x_{i}, P(z)\right)=1$ it follows that any prime factor of x_{i} is greater or equal to z. Suppose that x_{i} has l prime factors, counted with the multiplicity. Then we have

$$
N^{\frac{1}{2}} \geq x_{i} \geq z^{l}=N^{\alpha l}
$$

and hence $l \leq \frac{1}{2 \alpha}$. This implies that if $\Gamma>0$ then equation (1) has a solution in x_{1}, \ldots, x_{4}, which is almost-prime with at most $\left[\frac{1}{2 \alpha}\right]$ prime factors, such that $\| \eta_{1} x_{1}+$ $\eta_{2} x_{2}+\eta_{3} x_{3}+\eta_{4} x_{4} \|<N^{-\lambda}$.

For $i=1,2,3,4$ we define

$$
\Lambda_{i}=\sum_{d \mid\left(x_{i}, P(z)\right)} \mu(d)= \begin{cases}1 & \text { if }\left(x_{i}, P(z)\right)=1 \tag{14}\\ 0 & \text { otherwise }\end{cases}
$$

Then we find that

$$
\Gamma=\sum_{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=N} \Lambda_{1} \Lambda_{2} \Lambda_{3} \Lambda_{4} \theta(\vec{\eta} \vec{x}) w(\vec{x}) .
$$

We can write Γ as

$$
\Gamma=\sum_{x_{i} \in \mathbb{Z}} \Lambda_{1} \Lambda_{2} \Lambda_{3} \Lambda_{4} \theta(\vec{\eta} \vec{x}) w(\vec{x}) \int_{0}^{1} e\left(\alpha\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-N\right)\right) d \alpha
$$

Suppose that $\lambda^{ \pm}(d)$ are the Rosser functions of level D (see Lemma 2). Let us also denote

$$
\begin{equation*}
\Lambda_{i}^{ \pm}=\sum_{d \mid\left(x_{i}, P(z)\right)} \lambda^{ \pm}(d), \quad i=1,2,3,4 . \tag{15}
\end{equation*}
$$

Then from Lemma 2, (14) and (15) we find that

$$
\Lambda_{i}^{-} \leq \Lambda_{i} \leq \Lambda_{i}^{+}
$$

We use Lemma 3 and find that

$$
\Gamma \geq \Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}-3 \Gamma_{5}
$$

where $\Gamma_{1}, \ldots, \Gamma_{4}$ are the contributions coming from the consecutive terms of the right side of (6). We have $\Gamma_{1}=\Gamma_{2}=\Gamma_{3}=\Gamma_{4}$ and

$$
\begin{aligned}
& \Gamma_{1}=\sum_{x_{i} \in \mathbb{Z}} \Lambda_{1}^{-} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{+} \theta(\vec{\eta} \vec{x}) w(\vec{x}) \int_{0}^{1} e\left(\alpha\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-N\right)\right) d \alpha \\
& \Gamma_{5}=\sum_{x_{i} \in \mathbb{Z}} \Lambda_{1}^{+} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{+} \theta(\vec{\eta} \vec{x}) w(\vec{x}) \int_{0}^{1} e\left(\alpha\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-N\right)\right) d \alpha
\end{aligned}
$$

Hence, we get

$$
\begin{equation*}
\Gamma \geq 4 \Gamma_{1}-3 \Gamma_{5} \tag{16}
\end{equation*}
$$

5.2. Asymptotic formula for $\boldsymbol{\Gamma}_{\mathbf{1}}$. We shall find an asymptotic formula for the integral Γ_{1}. We have
$\Gamma_{1}=\sum_{d_{i} \mid P(z)} \lambda^{-}\left(d_{1}\right) \lambda^{+}\left(d_{2}\right) \lambda^{+}\left(d_{3}\right) \lambda^{+}\left(d_{4}\right) \sum_{x_{i} \equiv 0\left(d_{i}\right)} \theta(\vec{\eta} \vec{x}) w(\vec{x}) \int_{0}^{1} e\left(\alpha\left(x_{1}^{2}+\cdots+x_{4}^{2}-N\right)\right) d \alpha$. 168

Now using the Fourier series of $\theta(t)$, we find

$$
\begin{aligned}
& \sum_{x_{i} \equiv 0\left(d_{i}\right)} \theta(\vec{\eta} \vec{x}) w(\vec{x}) e\left(\alpha\left(x_{1}^{2}+\cdots+x_{4}^{2}\right)\right) \\
&= \sum_{|m| \leq H} c(m) \prod_{i=1}^{4} \sum_{x_{i} \equiv 0\left(d_{i}\right)} w\left(x_{i}\right) e\left(\alpha\left(x_{i}^{2}+m \eta_{i} x_{i}\right)\right) \\
&+O\left(P^{-A} \sum_{\substack{x_{i} \equiv 0\left(d_{i}\right) \\
x_{1}^{2}+\cdots+x_{4}^{2}=N}} w\left(x_{1}\right) w\left(x_{2}\right) w\left(x_{3}\right) w\left(x_{4}\right)\right) .
\end{aligned}
$$

Let

$$
\begin{equation*}
S(\alpha, \vec{d}, m)=S\left(\alpha, d_{1}, m\right) S\left(\alpha, d_{2}, m\right) S\left(\alpha, d_{3}, m\right) S\left(\alpha, d_{4}, m\right) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda(\vec{d})=\lambda^{-}\left(d_{1}\right) \lambda^{+}\left(d_{2}\right) \lambda^{+}\left(d_{3}\right) \lambda^{+}\left(d_{4}\right) . \tag{19}
\end{equation*}
$$

Then

$$
\Gamma_{1}=\sum_{d_{i} \mid P(z)} \lambda(\vec{d}) \sum_{|m| \leq H} c(m) \int_{0}^{1} S(\alpha, \vec{d}, m) e(-N \alpha) d \alpha+O(1)
$$

We split Γ_{1} into two parts:

$$
\begin{equation*}
\Gamma_{1}=\Gamma_{1}^{0}+\Gamma_{1}^{*}+O(1) \tag{20}
\end{equation*}
$$

where

$$
\Gamma_{1}^{0}=c(0) \sum_{d_{i} \mid P(z)} \lambda(\vec{d}) \sum_{\substack{x_{i} \equiv 0\left(d_{i}\right) \\ x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=N}} w(\vec{x})
$$

and

$$
\begin{equation*}
\Gamma_{1}^{*}=\sum_{d_{i} \mid P(z)} \lambda(\vec{d}) \sum_{0<|m| \leq H} c(m) \int_{0}^{1} S(\alpha, \vec{d}, m) e(-N \alpha) d \alpha, \tag{21}
\end{equation*}
$$

So from (16) and (20) we get

$$
\begin{equation*}
\Gamma \geq 4 \Gamma_{1}^{0}-3 \Gamma_{5}^{0}+O\left(\Gamma_{1}^{*}\right)+O\left(\Gamma_{5}^{*}\right)+O(1) . \tag{22}
\end{equation*}
$$

We will evaluate the sums Γ_{1}^{*} and Γ_{5}^{*}.
5.3. Estimation of Γ_{1}^{*}. In this subsection we find the upper bound for Γ_{1}^{*} defined in (21). The function into integral in Γ_{1}^{*} is periodic with period 1 , so we can integrate over the interval \mathcal{I} defined as

$$
\mathcal{I}=\left(\frac{1}{1+[P]}, 1+\frac{1}{1+[P]}\right) .
$$

We apply the Kloosterman form of the Hardy-Littlewood circle method. We divide the interval into large arcs only. Using the properties of the Farey fractions we represent \mathcal{I}
as an union of disjoint intervals in the following way:

$$
\mathcal{I}=\bigcup_{\substack{q \leq P}} \bigcup_{\substack{a=1 \\(a, q)=1}}^{q} \mathcal{L}(q, a)
$$

where

$$
\mathcal{L}(a, q)=\left(\frac{a}{q}-\frac{1}{q\left(q+q^{\prime}\right)}, \frac{a}{q}+\frac{1}{q\left(q+q^{\prime \prime}\right)}\right]
$$

and where the integers $q^{\prime}, q^{\prime \prime}$ are specified in (9). Then

$$
\Gamma_{1}^{*}=\sum_{d_{i} \mid P(z)} \lambda(\vec{d}) \sum_{0<|m| \leq H} c(m) \sum_{q \leq P} \sum_{\substack{a=1 \\(a, q)=1}}^{q} \int_{\mathcal{L}(a, q)} S(\alpha, \vec{d}, m) e(-N \alpha) d \alpha
$$

We change variable of integration $\alpha=\frac{a}{q}+\beta$, to get
$\Gamma_{1}^{*}=\sum_{d_{i} \mid P(z)} \lambda(\vec{d}) \sum_{0<|m| \leq H} c(m) \sum_{q \leq P} \sum_{\substack{a=1 \\(a, q)=1}}^{q} \int_{\mathcal{M}(a, q)} S\left(\frac{a}{q}+\beta, \vec{d}, m\right) e\left(-N\left(\frac{a}{q}+\beta\right)\right) d \beta$,
where

$$
\mathcal{M}(a, q)=\left(-\frac{1}{q\left(q+q^{\prime}\right)}, \frac{1}{q\left(q+q^{\prime \prime}\right)}\right]
$$

From (9) we find that

$$
\left[-\frac{1}{2 q P}, \frac{1}{2 q P}\right] \subset \mathcal{M}(a, q) \subset\left[-\frac{1}{q P}, \frac{1}{q P}\right]
$$

and hence

$$
\begin{equation*}
|\beta| \leq \frac{1}{q P} \quad \text { for } \quad \beta \in \mathcal{M}(a, b) \tag{23}
\end{equation*}
$$

Now we consider the sum $S\left(\alpha, d_{i}, m\right)$ defined in (17). Since η_{i} is an irrational number $\left\|s \eta_{i}\right\| \neq 0$ for all $s \in \mathbb{Z}$. Using that fact and working as in the proof of [8, Lemma 12], we find that for $\beta \in \mathfrak{M}(q, a)$ we have
$S\left(\frac{a}{q}+\beta, d_{i}, m\right)=\frac{P}{d_{i} q} \sum_{\left|n-m d_{i} q \eta_{i}\right|<M_{i}} J\left(\beta P^{2},\left(m \eta_{i}-\frac{n}{d_{i} q}\right) P\right) G\left(q, a d_{i}^{2}, n\right)+O\left(P^{-B}\right)$
where $G(q, m, n)$ and $J(\gamma, u)$ are defined respectively by (10) and (8), B is an arbitrarily large constant, $M_{i}=d_{i} P^{\varepsilon}, \varepsilon>0$ is arbitrarily small and the constant in the O-term depends only on B and ε. We leave the verification of the last formula to the reader.

Let

$$
F(P, \vec{d})=\sum_{0<|m| \leq H} c(m) \sum_{q \leq P} \sum_{a(q)}^{*} e\left(-\frac{a N}{q}\right) \int_{\mathcal{M}(a, q)} S\left(\frac{a}{q}+\beta, \vec{d}, m\right) e(-\beta N) d \beta .
$$

It is obvious that

$$
\begin{equation*}
\Gamma_{1}^{*}=\sum_{d_{i} \mid P(z)} \lambda(\vec{d}) F(P, \vec{d}) \tag{25}
\end{equation*}
$$

Using (24) and Lemma 4 we get

$$
\begin{equation*}
F(P, \vec{d})=F^{*}(P, \vec{d})+O(1), \tag{26}
\end{equation*}
$$

where

$$
\begin{aligned}
F^{*}(P, \vec{d})= & \frac{P^{4}}{d_{1} d_{2} d_{3} d_{4}} \sum_{0<|m| \leq H} c(m) \sum_{q \leq P} \frac{1}{q^{4}} \sum_{a(q)}^{*} e\left(-\frac{a N}{q}\right) \times \\
& \times \sum_{\left|n_{i}-m d_{i} q \eta_{i}\right|<M_{i}} G\left(q, a d_{i}^{2}, \vec{n}\right) \int_{\mathcal{M}(a, q)} J\left(\beta P^{2},\left(m \vec{\eta}-\frac{\vec{n}}{\vec{d} q}\right) P\right) e(-\gamma) d \gamma
\end{aligned}
$$

Working as in the proof of [13, Lemma 2] we find that

$$
\begin{equation*}
F^{*}(P, \vec{d})=F^{\prime}(P, \vec{d})+O\left(P^{3 / 2+\varepsilon}\right) \tag{27}
\end{equation*}
$$

where

$$
\begin{aligned}
F^{\prime}(P, \vec{d})=\frac{P^{2}}{d_{1} d_{2} d_{3} d_{4}} \sum_{0<|m| \leq H} c(m) \sum_{q \leq P} \frac{1}{q^{4}} & \sum_{\substack{\left|n_{i}-m d_{i} q n_{i}\right|<M_{i} \\
\left(q, d_{i}\right) \mid n_{i}, i=1, \ldots, \ldots, 4}} V_{q}(N, \vec{d}, 0, \vec{n}) \times \\
& \times \int_{|\gamma| \leq \frac{P}{2 q}} J\left(\gamma,\left(m \vec{\eta}-\frac{\vec{n}}{\overrightarrow{d q}}\right) P\right) e(-\gamma) d \gamma
\end{aligned}
$$

and $V_{q}(N, \vec{d}, 0, \vec{n})$ is defined by (11). We represent the sum $F^{\prime}(P, \vec{d})$ as

$$
\begin{equation*}
F^{\prime}(P, \vec{d})=F_{1}+F_{2} \tag{28}
\end{equation*}
$$

where F_{1} is a contribution of these addends with $q \leq Q$ and F_{2} is the contribution for addends with $Q<q \leq P$. Here Q is parameter, which we shall choose later. Using Lemma 4 (2), Lemma 7 and (12) we get

$$
\begin{equation*}
F_{2} \ll \frac{P^{2} \delta}{d_{1} d_{2} d_{3} d_{4}} \sum_{0<|m| \leq H} \sum_{Q<q \leq P} \frac{q^{5 / 2} \tau(q)(q, N)^{1 / 2}\left(q, d_{1}\right) \cdots\left(q, d_{4}\right)}{q^{4}} \sum_{\substack{\left|n_{i}-m d_{i} q \eta_{i}\right|<M_{i} \\\left(q, d_{i}\right) \mid n_{i}, i=1, \ldots, 4}} 1 \tag{29}
\end{equation*}
$$

It is clear that the sum over \vec{n} we have

$$
\begin{aligned}
\sum_{\substack{\left|n_{i}-m d_{i} q \eta_{i}\right|<M_{i} \\
\left(q, d_{i}\right) \mid n_{i}, i=1, \ldots, 4}} 1 & <\prod_{1 \leq i \leq 4} \sum_{\substack{\frac{-M_{i}+m d_{i} q \eta_{i}}{\left(q, d_{i}\right)}<t_{i}<\frac{M_{i}+m d_{i} q \eta_{i}}{\left(q, d_{i}\right)}}} \ll \frac{M_{1} M_{2} M_{3} M_{4}}{\left(q, d_{1}\right)\left(q, d_{2}\right)\left(q, d_{3}\right)\left(q, d_{4}\right)} \ll \frac{P^{\varepsilon} d_{1} d_{2} d_{3} d_{4}}{\left(q, d_{1}\right)\left(q, d_{2}\right)\left(q, d_{3}\right)\left(q, d_{4}\right)}
\end{aligned}
$$

which, together with (5.3) and (13), gives

$$
F_{2} \ll P^{2+\varepsilon} \sum_{Q<q \leq P} \frac{\tau(q)(q, N)^{1 / 2}}{q^{3 / 2}}
$$

Now we apply Cauchy's inequality to get

$$
F_{2} \ll P^{2+\varepsilon}\left(\sum_{Q<q \leq P} \frac{\tau^{2}(q)}{q}\right)^{\frac{1}{2}}\left(\sum_{Q<q \leq P} \frac{(q, N)}{q^{2}}\right)^{\frac{1}{2}} \ll P^{2+\varepsilon}\left(\sum_{\substack{t \leq N \\ t \leq P}} t \sum_{\frac{Q}{t}<q_{1} \leq \frac{P}{t}} \frac{1}{t^{2} q_{1}^{2}}\right)^{\frac{1}{2}}
$$

$(30) \ll \frac{P^{2+\varepsilon}}{Q^{1 / 2}}$.
To evaluate F_{1} we first apply Lemma 5 to get

$$
\int_{|\gamma| \leq \frac{P}{2 q}}\left|J\left(\gamma,\left(m \vec{\eta}-\frac{\vec{n}}{\overrightarrow{d q}}\right) P\right)\right| d \gamma \ll\left(\left|\left(m \vec{\eta}-\frac{\vec{n}}{\overrightarrow{d q}}\right) P\right|\right)^{-1+\varepsilon}
$$

Then using Lemma 7 and (13) we receive

$$
\begin{equation*}
F_{1} \ll \frac{P^{2}}{d_{1} d_{2} d_{3} d_{4}} \sum_{q \leq Q} \frac{q^{5 / 2} \tau(q)(q, N)^{1 / 2}\left(q, d_{1}\right) \cdots\left(q, d_{4}\right)}{q^{4}} \sum_{\substack{\left|n_{i}-m d_{i} q \eta_{i}\right|<M_{i} \\\left(q, d_{i}\right) \mid n_{i}, i=1, \ldots, 4}} \frac{1}{\left|\left(m \vec{\eta}-\frac{\vec{n}}{\vec{d} q}\right) P\right|} \tag{31}
\end{equation*}
$$

It is clear that if $n_{i}=\left(q, d_{i}\right) t_{i}, d_{i}=\left(q, d_{i}\right) d_{i}^{\prime}$ and $\left|\left(m \eta_{i}-\frac{n_{i}}{d_{i} q}\right) P\right|=\frac{P\left(q, d_{i}\right)}{q d_{i}}\left|t_{i}-m d_{i}^{\prime} \eta_{i} q\right|$ then for the sum over $\left(m \vec{\eta}-\frac{\vec{n}}{\overrightarrow{d q}}\right) P$ we obtain

$$
\begin{equation*}
\sum_{\substack{\left|n_{i}-m d_{i} q \eta_{i}\right|<M_{i} \\\left(q, d_{i}\right) \mid n_{i}, i=1, \ldots, 4}} \frac{1}{\left|\left(m \vec{\eta}-\frac{\vec{n}}{\vec{d} q}\right) P\right|} \ll \frac{q}{P} \sum_{\left|t_{i}-m d_{i}^{\prime} q \eta_{i}\right|<\frac{M_{i}}{\left(q, d_{i}\right)}} \frac{1}{\max _{1 \leq i \leq 4}\left(q, d_{i}\right)\left|t_{i}-m d_{i}^{\prime} \eta_{i} q\right| / d_{i}} \tag{32}
\end{equation*}
$$

Without loss of generality we can assume that η_{1} is quadratic irrationality. Let t_{1}^{o} is such that we can assume that η_{1} is quadratic irrationality. Let t_{1}^{o} is such that

$$
\left|t_{1}^{o}-m d_{1}^{\prime} \eta_{1} q\right|=\left\|-m d_{1}^{\prime} \eta_{1} q\right\|=\left\|m d_{1}^{\prime} \eta_{1} q\right\| .
$$

As η_{1} is a quadratic irrational number then $\left\|m d_{1}^{\prime} \eta_{1} q\right\| \neq 0$ and for $t_{1} \neq t_{1}^{o}$ we have $\left|t_{1}-m d_{1}^{\prime} \eta_{1} q\right| \geq 1 / 2$. Hence

$$
\max _{1 \leq i \leq 4} \frac{\left(q, d_{i}\right)\left|t_{i}-m d_{i}^{\prime} \eta_{i} q\right|}{d_{1}} \gg \frac{\left(q, d_{1}\right)}{d_{1}}
$$

which, together with (32), gives

$$
\begin{align*}
& \frac{q}{P} \sum_{\left|t_{i}-m d_{i}^{\prime} q \eta_{i}\right|<\frac{M_{i}}{\left(q, d_{i}\right)}} \frac{1}{\max _{1 \leq i \leq 4}\left(q, d_{i}\right)\left|t_{i}-m d_{i}^{\prime} \eta_{i} q\right| / d_{i}} \\
& \quad \ll \frac{q}{P}\left(\frac{d_{1} M_{1} M_{2} M_{3} M_{4}}{\left(q, d_{1}\right)^{2}\left(q, d_{2}\right)\left(q, d_{3}\right)\left(q, d_{4}\right)}+\frac{d_{1} M_{2} M_{3} M_{4}}{\left(q, d_{1}\right)\left(q, d_{2}\right)\left(q, d_{3}\right)\left(q, d_{4}\right)\left\|m d_{1}^{\prime} \eta_{1} q\right\|}\right) \\
& \quad \ll \frac{q P^{\varepsilon-1} D d_{1} d_{2} d_{3} d_{4}}{\left(q, d_{1}\right)^{2}\left(q, d_{2}\right)\left(q, d_{3}\right)\left(q, d_{4}\right)}+\frac{q P^{\varepsilon-1} d_{1} d_{2} d_{3} d_{4}}{\left(q, d_{1}\right)\left(q, d_{2}\right)\left(q, d_{3}\right)\left(q, d_{4}\right)\left\|m d_{1}^{\prime} \eta_{1} q\right\|} \tag{33}
\end{align*}
$$

As η_{1} is quadratic irrationality it has a periodic continued fraction and if $\frac{a_{n}}{b_{n}}, n \in \mathbb{N}$ is n-th convergent then $b_{n} \leq c^{n}$ for some constant $c>0$. Using that $\left\|m d_{1}^{\prime} q\right\| \leq \frac{H D Q}{\left(d_{1}, q\right)}$ and Liouville's inequality for quadratic numbers (see Lemma 8) we can find convergent
$\frac{a}{b}$ to η with denominator such that

$$
\begin{equation*}
\frac{3 H D Q}{\left(d_{1}, q\right)}<b<_{c} \frac{H D Q}{\left(d_{1}, q\right)} \tag{34}
\end{equation*}
$$

Since $(a, b)=1$ we have $\operatorname{md}_{1}^{\prime} q \frac{a}{b} \notin \mathbb{Z}$. As $\left|\eta_{1}-\frac{a}{b}\right|<\frac{1}{b^{2}}$ and (34) we get

$$
\begin{aligned}
\left\|m d_{1}^{\prime} q \eta_{1}\right\| & \geq\left\|m d_{1}^{\prime} q \frac{a}{b}| |-\right\| m d_{1}^{\prime} q\left(\eta_{1}-\frac{a}{b}\right)\|\geq\| m d_{1}^{\prime} q \frac{a}{b} \|-\frac{|m| d_{1}^{\prime} q}{b^{2}} \\
& >\frac{1}{b}-\frac{|m| d_{1}^{\prime} q\left(d_{1}, q\right)}{3 b H D Q} \geq \frac{1}{b}-\frac{|m| d_{1} q}{3 b H D Q} \\
& >\frac{1}{b}-\frac{|m|}{3 b H} \geq \frac{1}{b}-\frac{1}{3 b}=\frac{2}{3 b} \\
& >\frac{\left(d_{1}, q\right)}{H D Q}
\end{aligned}
$$

From (33) and (32) it follows that

$$
\sum_{\substack{\left|n_{i}-m d_{i} q \eta_{i}\right|<M_{i} \\\left(q, d_{i}\right) \mid n_{i}, i=1, \ldots, 4}} \frac{1}{\left|\left(m \vec{\eta}-\frac{\vec{n}}{\overrightarrow{d q}}\right) P\right|} \ll \frac{q P^{\varepsilon-1} d_{1} d_{2} d_{3} d_{4} H D Q}{\left(q, d_{1}\right)^{2}\left(q, d_{2}\right)\left(q, d_{3}\right)\left(q, d_{4}\right)} .
$$

Then for F_{1} (see (31))we receive

$$
\begin{equation*}
F_{1} \ll \frac{P^{1+\varepsilon} D Q}{\delta} \sum_{q \leq Q} \frac{\tau(q)(q, N)^{1 / 2}}{q^{1 / 2}} \tag{35}
\end{equation*}
$$

Applying Cauchy's inequality we get

$$
\begin{align*}
F_{1} & \ll \frac{P^{1+\varepsilon} D Q}{\delta}\left(\sum_{q \leq Q} \tau^{2}(q)\right)^{\frac{1}{2}}\left(\sum_{q \leq Q} \frac{(q, N)}{q}\right)^{\frac{1}{2}} \\
& \ll \frac{P^{1+\varepsilon} D Q}{\delta} \cdot Q^{1 / 2}(\log Q)^{3 / 2}\left(\sum_{\substack{t \mid N \\
t \leq Q}} \sum_{q_{1} \leq \frac{Q}{t}} \frac{1}{q_{1}}\right)^{\frac{1}{2}} \\
& \ll \frac{P^{1+\varepsilon} D Q^{3 / 2}}{\delta} \tag{36}
\end{align*}
$$

We choose $Q=\delta^{1 / 2} P^{1 / 2} D^{-1 / 2}$. Then

$$
F_{1}, F_{2} \ll P^{7 / 4+\varepsilon} \delta^{-1 / 4} D^{1 / 4}
$$

From the inequalities, (28), (27), (26), (37) it follows that

$$
\begin{equation*}
\Gamma_{1}^{*} \ll D^{17 / 4} P^{7 / 4+\varepsilon} \delta^{-1 / 4} \tag{37}
\end{equation*}
$$

5.4. End of the proof of Theorem. From (22) we have

$$
\Gamma \geq 4 \Gamma_{1}^{0}-3 \Gamma_{5}^{0}+O\left(\Gamma_{1}^{*}\right)+O\left(\Gamma_{5}^{*}\right)+O(1)
$$

According to [8] and [1] for $D \leq P^{1 / 8-\varepsilon}, s=\frac{\log D}{\log z}=3.13$ we obtain the estimate

$$
\begin{equation*}
4 \Gamma_{1}^{0}-3 \Gamma_{5}^{0} \gg \frac{C \delta N}{(\log N)^{4}}+O\left(\delta P^{3 / 2+\varepsilon} D^{4}\right) \tag{38}
\end{equation*}
$$

with some constant C.
Since the sum Γ_{5}^{*} is estimated in the same way as Γ_{1}^{*}, from (22), (37) and (38) we get

$$
\Gamma \gg \frac{\delta N}{(\log N)^{4}}+D^{17 / 4} P^{7 / 4+\varepsilon} \delta^{-1 / 4}
$$

Then for a fixed small $\varepsilon>0, \lambda<\frac{1-8 \varepsilon}{10}, D<N^{\frac{1-10 \lambda-8 \varepsilon}{34}}$ and $z=D^{1 / 3,13}$ we get $\Gamma \gg$ $\frac{\delta N}{(\log N)^{4}}$. Therefore, the equation (1) has solutions in almost-prime numbers $x_{1}, \ldots, x_{4} \in$ $\mathcal{P}_{k}, k=\left[\frac{53,21}{1-10 \lambda-8 \varepsilon}\right]$ such that $\left\|\eta_{1} x_{1}+\eta_{2} x_{2}+\eta_{3} x_{3}+\eta_{4} x_{4}\right\|<N^{-\lambda}$.

REFERENCES

[1] J. Brüdern, E. Fouvry. Lagrange's Four Squares Theorem with almost prime variables. J. Reine Angew. Math., 454 (1994), 59-96.
[2] T. W. Ching. Lagrange's equation with almost-prime variables. J. Number Theory, 212 (2020), 233-264.
[3] S. A. Gritsenko, N. N. Motkina. Hua Loo Keng's problem involving primes of a special type. IAP Tajikistan, 52, No 7 (2009), 497-500.
[4] S. A. Gritsenko, N. N. Motkina. On the solvability of Waring's equation involving natural numbers of a special type. Chebyshevskii Sb., 17, No 1, (2016), 37-51.
[5] S. A. Gritsenko, N. N. Mot'kina. Representation of natural numbers by sums of four squares of integers having a special form. J. Math. Sci., 173, No 2 (2011), 194-200.
[6] S. A. Gritsenko, N. N. Motkina. Waring's problem involving natural numbers of a special type. Chebyshevskii Sb. 15, No 3 (2014), 31-47.
[7] G. H. Hardy, E. M. Wright. An introduction to the theory of numbers, 5th ed, Oxford Univ. Press, 1979.
[8] D. R. Heath-Brown, D. I. Tolev. Lagrange's four squares theorem with one prime and three almost-prime variables. J. Reine Angew. Math., 558 (2003), 159-224.
[9] A. A. Karatsuba. Basic analytic number theory. Springer, 1993.
[10] M. W. Schidt. Diophantine approximation. Springer, 1980.
[11] A. V. Shutov. On the additive problem with fractional numbers. BSUSB Series"Mathematics. Physics", 30, No 5 (148) (2013), 11-120.
[12] A. V. Shutov, A. A. Zhukova. Binary additive problem with numbers of a special type. Chebyshevskii Sb., 16, No 3, (2015), 246-275.
[13] T. L. Todorova, D. I. Tolev. On the equation $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=N$ with variables such that $x_{1} x_{2} x_{3} x_{4}+1$ is an almost-prime. Tatra Mountains Math. Publications, 59 (2014), $1-26$.
[14] Ж. Х. Петров, Т. Л. Тодорова. Теорема на Лагранж с естествени числа от специален вид, Пролетната сесия ФМИ, 2018 (submitted for publication).
[15] Д. И. ТолЕв. Аддитивные задачи в теории чисел, Докторска дисертация, МГУ „М. Ломоносов", Москва, 2001.

Tatyana L. Todorova
Faculty of Mathematics and Informatics
Sofia University "St. Kl. Ohridski"
5, J. Bourchier Blvd
1164 Sofia, Bulgaria
e-mail: tlt@fmi.uni-sofia.bg

ТЕОРЕМА НА ЛАГРАНЖ С ПОЧТИ ПРОСТИ ЧИСЛА ОТ СПЕЦИАЛЕН ТИП

Татяна Л. Тодорова

Разглеждаме проблем, свързан с теоремата на Лагранж за четирите квадрата с почти прости числа от подходящ ред, които удовлетворяват диофантово неравенство.

[^0]: *Supported by Sofia University Grant 80-10-151/2020 and RD-22-725.
 2020 Mathematics Subject Classification: 11P05, 11N36.
 Key words: Lagrange's equation, almost-primes, quadratic irrational numbers.

[^1]: ${ }^{1} \gamma \approx 0.577$, also known as Euler-Mascheroni constant, is defined as the limiting difference between harmonic series and the natural logarithm.

