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В статията е направен обзор на известните резултати върху задачата за нами-
ране на минималната мощност на блокиращо множество в AG(n, q).
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1. Introduction. A set of points B in an affine geometry AG(n, q), q = ph, p a
prime number, is called a t-fold blocking set, or a t-fold intersection set with respect
to hyperplanes, if |B ∩ H| ≥ t for every hyperplane H in AG(n, q) and there exists a
hyperplane H0 with |B ∩H0| = t. A t-fold blocking set B in AG(n, q) with |B| = N is
referred to as an (N, t)-blocking set. In this paper, we deal with the following problem:

Given a positive integer t and a prime power q = ph, determine the minimal size of a
t-fold blocking set in AG(n, q).
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The first results on affine blocking sets were obtained independently by Jamison [11]
and Brouwer and Schrijver [8]. They proved that for a 1-fold blocking set B in AG(n, q)
one has the lower bound

|B| ≥ n(q − 1) + 1.

This has been generalized by Bruen in a seminal paper [9], and later on by Ball and
Blokhuis. Constructions of good affine blocking are scarce and consist mainly in taking
a union of lines with carefully chosen directions.

This survey is structured as follows. In Section 2, we give an overview of the known
lower bounds on the size of a t-fold blocking set. Section 3 contains the known con-
structions for blocking sets meeting Bruen’s bound. In section 4, we present a general
construction in AG(n, q) which gives in many cases optimal blocking sets.

2. Lower bounds on the size of an affine blocking set. The first lower bound
on the size of an affine blocking sets was obtained by Jamison [11].

(1) |B| ≥ n(q − 1) + 1.

The same result was proved by Brouwer and Schrijver in [8]. They pointed out that the
bound is sharp for all dimensions n. In the example below we sketch the proof of the fact
that the size of a blocking set in AG(2, q) has at least 2q− 1 points. The Jamison bound
for an arbitrary dimension is easily obtained by considering polynomials in n variables.

Example 1. Let B be a blocking set in AG(2, q). Without loss of generality one can
take (0, 0) ∈ B. By doing this, we block all lines through (0, 0). The lines not incident
with (0, 0) have equations uX + vY = 1. Define:

F (X,Y ) =
∏

(b1,b2)∈B\{(0,0)}

(b1X + b2Y − 1).

Clearly, F (u, v) = 0 for all (u, v) ∈ F2
q \ {(0, 0)}. The polynomial F can be written in the

form

F (X,Y ) = F1(X,Y )(Xq −X) + F2(X,Y )(Y q − Y ) + G(X,Y ),

where the degree of G in X and in Y does not exceed q − 1, i.e. degX G ≤ q − 1
and degY G ≤ q − 1. Now the polynomials XF (X,Y ) and Y F (X,Y ) are zero for all
(u, v) ∈ F2

q. Hence XG(X,Y ) and Y G(X,Y ) are also zero for all (u, v) ∈ F2
q. By the

Combinatorial Nullstellensatz [1]

XG(X,Y ) = G1(X,Y )(Xq −X) + G2(X,Y )(Y q − Y ),

whence G2 ≡ 0 and Xq−1 − 1 divides G. Similarly, Y q−1 − 1 divides G. Hence

|B| − 1 = degF ≥ degG ≥ 2(q − 1).

A generalization of the Jamison bound to subspaces of arbitrary dimension was given
by Bruen in [9].

Theorem 2 ([9]). For a t-fold blocking set B with respect to the hyperplanes in
AG(n, q) one has

(2) |B| ≥ (n + t− 1)(q − 1) + 1.

In what follows we call this bound the Bruen bound. The bound is non-trivial for
values of t satisfying 1 ≤ t ≤ (n − 1)(q − 1). For t > (n − 1)(q − 1) Bruen’s bound
becomes worse than the trivial bound

|B| ≥ tq,
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obtained by counting the points of the blocking set on q parallel hyperplanes.
The proof of (2) is algebraic and does not give an idea how to construct blocking sets

that meet this bound. It was pointed out by Zanella [17] that for

t >
(n− 1)(q − 1) + 1

2
blocking sets meeting the Bruen bound do not exist.

In [2] Ball proved that the Bruen bound cannot be attained if the parameters t, n and
q satisfy some special numerical condition. Using the polynomial method he proved the
following theorem.

Theorem 3 ([2]). For t < q a t-fold blocking set with respect to hyperplanes in
AG(n, q) has at least (n+t−1)(q−1)+k points provided there exists a j with k−1 ≤ j < t

such that the binomial coefficient

(
k − n− t

j

)
6≡ 0 (mod p).

For k = t, i.e. j = t− 1 one gets the following corollary.
Corollary 4 ([2]). For t < q a t-fold blocking set with respect to hyperplanes in

AG(n, q) has at least (n + t− 1)q − n + 1 points provided(
−n
t− 1

)
6≡ 0 (mod p).

The next two theorems improve the bounds from Theorems 2 and 3. However the
bounds they provide are not explicit. The proofs of these results give no idea about the
structure of the blocking sets that meet the corresponding bounds.

Theorem 5 ([5]). Let there exist an (N, t)-blocking set in AG(n, q), where q = ph,
and p is a prime. Then for all integers ε ≥ 1 the coefficient of XN−tq+ε in

(X − 1)N−q
n

(Xp − 1)
(qn−1−t)q

p

is divisible by qn.
Theorem 6 ([6]). Assume there exists an (N, t)-blocking set in AG(n, q), where q =

ph, and p is a prime, with

N = (t + n + 1− e)q − n− 1− ε,

where e ∈ {1, . . . , t− 1} and ε ≥ 1 is an integer. Then
n−1∑
j=0

(−1)j
(
−t + e− 1

j

)(
N

(t− e + 1)q − ε + j(q − 1)

)
≡ 0 (mod pe).

The proofs of these results are algebraic and use the so-called polynomial method (see
also [3, 4, 7]).

3. Blocking sets meeting Bruen’s bound. Affine blocking sets with t = 1 exist
in affine geometries of arbitrary dimension n. This fact was noted by Brouwer and
Schrijver in [8] who proved that a pencil of n lines in general position is such a blocking
set. This blocking set is clearly not unique. One might also construct such blocking sets
by induction starting from the affine line AG(1, q). Given a blocking set in AG(n, q) of
size n(q − 1) + 1 construct a new blocking set in AG(n + 1, q) by taking n(q − 1) + 1
points in any hyperplane H that form such a blocking set plus q − 1 additional points –
one in each hyperplane parallel to H.

It was noted by Ball in [2] and by Zanella in [17] that a (q2, q − 1)-blocking set in
AG(3, q) can be obtained if we delete a tangent plane from the hyperbolic quadric in
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PG(3, q). Such blocking set meets obviously the Bruen bound for n = 3 and t = q − 1.

A non-trivial example of blocking sets with t = 2 lying on the Bruen bound was
constructed by Ball in [2].

Fix an (n+ 1)-arc with points Pi, i = 1, . . . , n+ 1, in a hyperplane H of PG(n+ 1, q).
Select lines Li in PG(n, q) with Pi ∈ Li in such a way that Li∩Ln = Qi,i+1, Ln+1∩L1 =
Qn+1,1. Let B be the union of these lines outside H. All planes are blocked twice apart
from Hi,i+1 = 〈P1, . . . , Pi−1, Qi,i+1, Pi+2, Pn+1〉 and Hn+1,1 = 〈P2, . . . , Pn, Qn+1,1〉. The
point P ∈ H1,2 ∩ H2,3 ∩ . . . ∩ Hn,n+1 is from AG(n, q) = PG(n, q) \ H. Now for every
Q ∈ Hn+1,n B ∪{P,Q} is an affine 2-fold blocking set of size (n+ 1)q−n+ 3. If one can
choose P = Q then the blocking set has one point less and meets the Bruen bound. By
Theorem 3 this should only be possible for n ≡ 0 (mod p). In [2] Ball shows that this
condition is also sufficient. The construction is presented on the figure below.

Pn+1

P1 P2

P3

Pn
. . .

Q1,2

Q2,3

Qn+1,1 Q3,4

Σ∞

C

PG(n, q)

Fig. 1. An ((n + 1)q − n + ε, 2)-blocking set in AG(n, q)

It has been pointed out by Ball in [2] that in all cases with t + n = q + 2, Theorem 3
does not improve on the Bruen bound. In fact, it was demonstrated in [14] that in this
case blocking sets meeting the Bruen bound can be constructed.

Theorem 7 ([14]). There exists a (q2, q − n + 2)-blocking set in AG(n, q) for every
prime power q and every 3 ≤ n ≤ q − 1.

Proof. Let T be subspace of codimension 2 in Ω ∼= PG(n, q) and denote by
H0, . . . ,Hq the hyperplanes through T in Ω. Fix q + 1 points x1, . . . , xq in T that form
a (q + 1)-arc, a normal rational curve minus a point, say. In each of the hyperplanes Hi,
i = 1, . . . , q, select a line Li meeting T in xi. Now the set of points

B =

q⋃
i=1

(Li \ xi)

is a (q−n+ 2)-fold blocking set in Ω \H0
∼= AG(n, q). This construction is presented on

Figure 2 below. �
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S ∼= PG(n− 2, q)

AG(n− 1, q)

AG(n, q)

K

T \ {P} ∼= AG(1, q)

T ∼= PG(1, q)P

Hq

H2

H1

H0
∼= PG(n− 1, q)

Lq

L1

Fig. 2. The (q2, q − n + 2)-blocking set in AG(n, q)

This construction can be modified further to construct t-fold blocking sets of relatively
small size that are close to being optimal. They are obtained by removing n−2+s points
from each of the lines L1, . . . , Ls chosen as in Theorem 7.

Theorem 8. For every s = 0, 1, . . . , q+1−n, there exist (q2−s(n−2+s), q−(n−2+s))-
blocking sets in AG(n, q).

In the case s = 1 we get an optimal blocking set that meets the bound from Theorem 3.
Corollary 9. For every q there exists an affine blocking set with parameters (q2 −

n + 1, q − n + 1) in AG(n, q). Blocking sets of this size are optimal.

The optimality of the latter is proved by Corollary 4. Indeed, we have(
−n
t− 1

)
=

(−n) · (−n− 1) . . . (−q + 1)

(q − n)!
.

Since for i = 0, . . . , q − n− 1, −n− i and q − n− i are divided by the same power of p,

we get that

(
−n
t− 1

)
6≡ 0 (mod p).

Summing up, up to this moment the only known families of blocking sets meeting the
Bruen bound are the following:

(1) t = 1: for all n and all q (Brouwer-Schrijver);

(2) t = 2: for all n ≡ 0 (mod p), where p = charFq (Ball);

(3) t = q − n + 2: for all 3 ≤ n ≤ q − 1 and all q (Landjev-Rousseva).

It is conjectured that blocking sets meeting the Bruen bound do not exist for t ≥ q.
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4. General constructions. We start this section with a theorem which describes a
general construction for blocking sets in AG(n, q).

Theorem 10 ([15]). Let n ≥ 3 be a positive integer and let q = ph be a prime power.
Assume there exist

– an (M,w)-arc in PG(r, q), where 2 ≤ r ≤ n− 2, and

– an (M ′, u)-blocking set in AG(n− r − 1, q).

Then there exists an (N, t)-blocking set in AG(n, q) with

N = qM, t = min{M − w, aqu},
where a = bM/M ′c.

The theorem is presented on Figure 3 below.

S ∼= PG(r, q)

T \H ∼= AG(n− r − 1, q)

H ∼= PG(n− 1, q)

Fig. 3. General construction for affine blocking sets

An important special case of the theorem is obtained when the arc K and the blocking
set L have the same size.

Corollary 11. Let n ≥ 3 be a positive integer and let q = ph be a prime power. If
there exist

– an (M,w)-arc in PG(r, q), for some r satisfying 1 ≤ r ≤ n− 2, and

– an (M,u)-blocking set in AG(n− r − 1, q)

then there exists an (N, t)-blocking set in AG(n, q) with

N = qM, t = min{M − w, qu}.
The next two examples provide constructions for blocking sets meeting the bound from

Theorem 6. These are the first examples of blocking sets lying on the implicit bound
from Theorem 6. They exploit the connection between linear codes and (multi)sets of
points in finite projective geometries (see also [12, 13, 16]).

Example 12. In this example we consider the parameters n = 9, t = 8, q = 8. By
Theorem 6 (cf. also the tables in [6]) one has that the size of an (N, 8)-blocking set in
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S ∼= PG(r, q)

T \H ∼= AG(n− r − 1, q)

T ∩H ∼= PG(n− r − 2, q)

H ∼= PG(n− 1, q)

Fig. 4. The construction from Corollary 11

AG(9, 8) is lowerbounded by N ≥ 120. Assume that there exists a (119, 8)-blocking set
in AG(9, 8), i.e. N = 119, t = 8, n = 9, q = 8. Now

119 = (t + n + 1− e)q − n− 1− ε = 134− (8e + ε),

whence e = 1, ε = 7. Now by Theorem 6

0 ≡
8∑

j=0

(−1)j
(
−8

j

)(
119

57 + 7j

)
(mod 2)

≡
8∑

j=0

(
7 + j

j

)(
119

57 + 7j

)
(mod 2)

≡
(

119

57

)
+

(
119

113

)
≡ 1 + 0 (mod 2),

a contradiction.

We try our construction for different choices of the dimension r. Let us take r =
n − 3 = 6. For the construction we need an arc in PG(6, 8) and a blocking set in
AG(2, q). We take an arc with parameters (15, 7) associated with the [15, 7, 8]8-code
which is obtained by shortening the quasicyclic [16, 8, 8]8-code (cf. [10]). The blocking
set in AG(2, q) is a (15, 1)-blocking set, e.g. the union of two nonparallel lines. Now
Corollary 11 yields a (120, 8)-blocking set which meets Ball’s lower bound and is therefore
optimal.

A possible generalization of this construction would be the following. Take q = t = 2h,
and n = 2h + 1. Now by Theorem 6 there exists no (N − 1, t− 1) affine blocking set in
AG(n, q) with N = 22h+1 − 2h. Thus a hypothetical (22h+1 − 2h, 2h)-blocking set would
be optimal. In fact, our construction above solves the case h = 3. A possible construction
would use Corollary 11 with a (2h+1, 1)-blocking set in AG(2, 2h) and a (2h+1−1, 2h−1)-
arc in PG(2h − 2, 2h). In coding theoretic terms this arc is associated with a code with
parameters [2h+1 − 1, 2h − 1, 2h]2h . If we were able to construct linear codes with these
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parameters for h ≥ 4, we would immediately get an infinite family blocking sets meeting
the implicit Ball bound from Theorem 6.

Example 13. In this example, we fix q = 4 and n = 4s + 1, where s ≥ 1 is an
integer. We apply Corollary 11 with r = 3s − 1. Thus for the construction we need an
arc K in PG(3s − 1, 4) and a blocking set L in AG(s + 1, 4). A natural choice for L is
a (3s + 4, 1)-blocking set meeting Bruen’s bound. Such a blocking set does exist in all
dimensions. For K we would like to have an arc with parameters (3s + 4, 3s) which is
associated with a linear [3s + 4, 3s, 4]4-code.

It is known that caps are associated with linear codes of dual distance at least four,
i.e. if C is a linear code associated with a cap then d(C⊥) ≥ 4. Hence the orthogonal to
the codes needed in our construction are [3s + 4, 4]4-codes that are associated with caps
in PG(3, 4). Since the maximal size of a cap in PG(3, 4) is 17, we get codes with the
required parameters only if 3s+4 ≤ 17, i.e. for s = 1, 2, 3, 4 (cf. also Grassl’s tables [10]).
In these four cases Corollary 11 produces a (12s + 16, 4)-blocking set in AG(4s + 1, 4).

Remarkably, the constructed four blocking sets are optimal. Calculating the condi-
tions of Theorem 6 we obtain that there is no (12s+5, 4)-blocking set in AG(4s+1, 4) for
s = 1, 2, 3, 4 (the lower bounds for the cases s = 1, 2 are contained also in Table 1 at the
end of [6]). Such a blocking set does not exist also for s = 5. Unfortunately, in this case
we cannot construct a (76, 4)-blocking set from our construction due to the nonexistence
of a [19, 15, 4]4-code. We can take a [20, 15, 4]4-code instead and get a (80, 4)-blocking
set which lies relatively close to the lower bound of 76.
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