МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2024 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2024 Proceedings of the Fifty-Third Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 1–5, 2024

ON THE DISTRIBUTION OF $\alpha p^2 + \beta$ MODULO ONE FOR PRIMES *p* SUCH THAT *p* + 2 HAS NO MORE TWO PRIME DIVISORS^{*}

Tatyana L. Todorova

Faculty of Mathematics and Informatics, Sofia University "St. Kliment Ohridksi", Sofia, Bulgaria e-mail: tlt@fmi.uni-sofia.bg

A classical problem in analytic number theory is to study the distribution of fractional part $\alpha p^k + \beta$, $k \ge 1$ modulo 1, where α is irrational and p runs over the set of primes. We consider the subsequence generated by the primes p such that p + 2 is an almost-prime (the existence of infinitely many such p is another topical result in prime number theory) and prove that its distribution has a similar property. **Keywords:** linear sieve, almost primes, distribution modulo one.

РАЗПРЕДЕЛЕНИЕ НА ДРОБНИТЕ ЧАСТИ НА $\alpha p^2 + \beta$ ПО МОДУЛ 1 ЗА ПРОСТИ ЧИСЛА p, ЗА КОИТО p + 2ИМА НЕ ПОВЕЧЕ ОТ ДВА ПРОСТИ ДЕЛИТЕЛЯ

Татяна Л. Тодорова

Факултет по математика и информатика, Софийски университет "Св. Климент Охридски", София, България e-mail: tlt@fmi.uni-sofia.bg

Класически проблем в аналитичната теория на числата е проблемът за разпределението на дробните части на числата αp^k , $k \ge 1$, където α е ирационално и p пробягва множеството на простите числа. Ние разглеждаме подмножество на множеството на простите числа p, за които p + 2 е почти просто и доказваме, че тяхното разпределение има свойства подобни на тези на разпределението на простите числа.

Ключови думи: линейно решето, почти прости, разпределение по модул 1.

^{*}https://doi.org/10.55630/mem.2024.53.039-056

This work was supported Sofia University Scientific Fund, grant 80-10-99/2023.

²⁰²⁰ Mathematics Subject Classification: 11J71, 11N36.

1. Introduction and statements of the result. The famous prime twins conjecture states that there exist infinitely many primes p such that p + 2 is a prime too. This hypothesis is still unproved but in 1973 Chen [2] proved that there are infinitely many primes p for which $p + 2 = P_2$. (As usual P_r denotes an integer with no more than r prime factors, counted according to multiplicity).

Let α be irrational real number and ||x|| denote the distance from x to the nearest integer. The distribution of fractional parts of the sequence αn^k , $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ was first considered by Hardy, Littlewood [5] and Weyl [19]. The problem of distribution of the fractional parts of αp^k , where p denotes a prime, first was considered by Vinogradov (see Chapter 11 of [17] for the case k = 1, [18] for $k \ge 2$), who showed that for any real β there are infinitely many primes p such that

(1)
$$\|\alpha p + \beta\| < p^{-\theta},$$

where $\theta = 1/5 - \varepsilon$, $\varepsilon > 0$ is arbitrary small. After that many authors improved the upper bound of the exponent θ . The best result is given by Matomäki [10] with $\theta = 1/3 - \varepsilon$. Another interesting problem is the study of the distribution of the fractional part of αp^k with $2 \le k \le 12$, such Baker and Harman [1], Wong [1] etc. For $2 \le k \le 12$ the best result is due to Baker and Harman [1].

In [13] Todorova and Tolev considered the primes p such that $\|\alpha p + \beta\| < p^{-\theta}$ and $p+2=P_r$ and prove existence of such primes with $\theta=1/100$ and r=4. Later Matomäki [10] and San Ying Shi [11] have shown that this actually holds whit $p + 2 = P_2$ and $\theta = 1/1000$ and $\theta = 1.5/100$ respectively.

In [12] Shi and Wu proved existence of infinitely many primes p such that $\|\alpha p^2 + \beta\| < \beta$ $p^{-\theta}$ and $p+2 = P_4$ with $0 < \theta < 2/375$. In 2021 Xue, Li and Zhang [14] improved the result of Shi and Wu with $0 < \theta < 10/1561$.

In this paper we evaluate exponential sums over well-separated numbers and improve the results of Shi, Wu and Xue, Li and Zhang.

We will say that d is a well-separable number of level $D \ge 1$ if for any $H, S \ge 1$ with HS = D, there are integers $h \leq H$, $s \leq S$ such that d = hs.

Theorem 1. Suppose $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ satisfies conditions

(2)
$$\left| \alpha - \frac{a}{q} \right| < \frac{1}{q^2}, \quad a \in \mathbb{Z}, \ q \in \mathbb{N}, \quad (a,q) = 1, \quad q \ge 1,$$

K and D are defined by (8), $\lambda(d)$ are complex numbers defined for $d \leq D$,

(3) $\lambda(d) \ll \tau(d)$ and $\lambda(d) \neq 0$ if d is well-separable number of level D,

 $c(k) \ll 1$ are complex numbers, $0 < |k| \leq K$. Then for any arbitrary small $\varepsilon > 0$ and $b \in \mathbb{Z}$ for the sum

(4)
$$W(x) = \sum_{d \le D} \lambda(d) \sum_{1 \le |k| \le K} c(k) \sum_{\substack{n \ge x \\ n \equiv b \ (d)}} e\big((\alpha n^2 + \beta)k\big)\Lambda(n)$$

we have

(5)
$$W \ll x^{\varepsilon} \left(\frac{xK}{\Delta^{\frac{1}{32}}} + \frac{xK}{q^{\frac{1}{32}}} + \frac{x\Delta^{\frac{1}{2}}K}{q^{\frac{1}{4}}} + x^{\frac{71}{72}}\Delta^{\frac{33}{64}}K + x^{\frac{15}{16}}K^{\frac{31}{32}}q^{\frac{1}{32}} + x^{\frac{1}{2}}\Delta^{\frac{1}{2}}K^{\frac{3}{4}}q^{\frac{1}{4}} \right).$$

Remark 1. It is obvious that the Theorem 1 is true if function $\lambda(d)$ is well-factorable. **Lemma 1.** Suppose $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ satisfies conditions (2), sum W(x) is defined by (4),

 $\lambda(d)$ are complex numbers defined for $d \leq D$ and satisfying (3) and (8), $c(k) \ll 1$ are 40

complex numbers $0 < |k| \le K$. Then there exist a sequence

$$\{x_j\}_{j=1}^{\infty}, \lim_{j \to \infty} x_j = \infty$$

such that

$$W(x_j) \ll x_j^{1-\omega}, \quad j = 1, 2, 3, \dots$$

for any $\omega > 0$.

Theorem 2. Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ satisfies conditions (2), $\beta \in \mathbb{R}$ and let

$$0 < \theta < \frac{1}{1296} - \eta,$$

where η is arbitrary small fixed number. Then there are infinitely many primes p satisfying $p + 2 = P_2$ and such that

$$\|\alpha p^2 + \beta\| < p^{-\theta}.$$

2. Notation. Let x be a sufficiently large real number and θ and ρ be real constants satisfying

(7)
$$0 < \theta < \frac{1}{1296}, \quad \rho > 32\theta, \quad \rho + \frac{64\theta}{33} < \frac{8}{297} \quad \rho + 10\theta > \varepsilon.$$

We shall specify ρ and θ latter. We put

(8)
$$\delta = \delta(x) = x^{-\theta}, \quad K = \delta^{-1} \log^2 x,$$
$$\Delta = x^{\rho}, \quad D = \frac{x^{1/2}}{\Delta K^4}.$$

By p and q we always denote primes. As usual $\varphi(n)$, $\mu(n)$, $\Lambda(n)$ denote respectively Euler's function, Möbius' function and Mangoldt's function. We denote by $\tau_k(n)$ the number of solutions of the equation $m_1m_2\ldots m_k = n$ in natural numbers m_1,\ldots,m_k and $\tau_2(n) = \tau(n)$. Let (m_1,\ldots,m_k) and $[m_1,\ldots,m_k]$ be the greatest common divisor and the least common multiple of m_1,\ldots,m_k respectively. Instead of $m \equiv n \pmod{k}$ we write for simplicity $m \equiv n(k)$. As usual, $\|y\|$ denotes the distance from y to the nearest integer, $e(y) = e^{2\pi i y}$. For positive A and B we write $A \asymp B$ instead of $A \ll B \ll A$ and $k \sim K$ means $K/2 \leq k < K$. The letter ε denotes an arbitrary small positive number, not the same in all appearances. For example this convention allows us to write $x^{\varepsilon} \log x \ll x^{\varepsilon}$.

3. Some lemmas.

Lemma 2. Let k, l, m,
$$n \in \mathbb{N}$$
; $X, \varepsilon \in \mathbb{R}$; $X \ge 2$, $k \ge 2$ and $\varepsilon > 0$. Then
(i) $\sum_{n \le X} (\tau_k(n))^l \ll_{k,l} X(\log X)^{k^l - 1}$;

(ii)
$$n \leq X \\ \tau_k(n) \ll_{k,\varepsilon} n^{\varepsilon}$$
.

Proof. See [16], ch. 3. Lemma 3. Let $X \ge 1$ and α satisfied conditions (2) and $a, d \in \mathbb{N}$. Then $\left| \sum_{\substack{n \le X \\ n \equiv a \pmod{d}}} e(\alpha n) \right| \ll \min\left(\frac{X}{d}, \frac{1}{\|\alpha d\|}\right)$

Proof. See [9], ch.6, §2. \Box Lemma 4. Let $X, Y \in \mathbb{R}$; $k \in \mathbb{N}$; $X, Y \ge 1$; $k \ge 2$ and α satisfied conditions (2). Then

$$\sum_{n \le X} \min\left(\frac{XY}{n}, \frac{1}{\|\alpha n\|}\right) \ll XY\left(\frac{1}{q} + \frac{1}{Y} + \frac{q}{XY}\right)\log(2Xq)$$

Proof. See Lemma 2.2 from [15], ch. 2,§2.1. \Box

Lemma 5. Let $\mu, \zeta \in \mathbb{N}, \alpha \in \mathbb{R} \setminus \mathbb{Q}$, and α satisfy conditions (2). Then for every arbitrary small $\varepsilon > 0$ the inequality

$$\sum_{m \sim M} \tau_{\mu}(m) \sum_{j \sim J} \tau_{\zeta}(j) \min\left\{\frac{x}{m^{2}j}, \frac{1}{\|\alpha m^{2}j\|}\right\} \ll x^{\varepsilon} \left(MJ + \frac{x}{M^{3/2}} + \frac{x}{Mq^{1/2}} + x^{1/2}q^{1/2}\right)$$

is fulfilled.

Proof. See Lemma 8, [10]. \Box

Lemma 6. If d|P(z), $z < D^{1/2}$, λ^{\pm} are Rosser's weights and either $\lambda^+(d) \neq 0$ or $\lambda^{-}(d) \neq 0$ then d is well-separated number.

Proof. See Lemma 12.16, [3]

Theorem 3. Let $2 \le z \le D^{1/2}$ and $s = \frac{\log D}{\log z}$. If

$$\int_{z_1 \le p < z_2} \mathcal{A}_d = \frac{\omega(d)}{d} x + r(x, d) \quad \text{if} \quad \mu(d) \ne 0$$

$$\sum_{z_1 \le p < z_2} \frac{\omega(p)}{p} = \log\left(\frac{\log z_2}{\log z_1}\right) + O\left(\frac{1}{\log z_1}\right), \quad z_2 > z_1 \ge 2$$

where $\omega(d)$ is a multiplicative function, $0 < \omega(p) < p$, x > 1 is independent of d. Then

$$xV(z)\left(f(s) + O\left(\frac{1}{(\log D)^{1/3}}\right)\right) \leq S(\mathcal{A}, z) \leq xV(z)\left(F(s) + O\left(\frac{1}{(\log D)^{1/3}}\right)\right),$$

where d are well-separated numbers of level D, f(s), F(s) are determined by the following differential-difference equations

$$F(s) = \frac{2e^{\gamma}}{s}, \ f(s) = 0 \quad if \quad 0 < s \le 2$$
$$sF(s))' = f(s-1), \quad (sf(s))' = F(s-1) \quad if \quad s > 2,$$

(where γ denote the Euler's constant.

4. Auxiliary results.

Lemma 7. Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ satisfied conditions (2), $M, S, J, x \in \mathbb{R}^+$, $x > M^3 S^2 J$ and $\mu, \sigma, \zeta \in [2, \infty) \cap \mathbb{N},$

$$G = \sum_{m \sim M} \tau_{\mu}(m) \sum_{s \sim S} \tau_{\sigma}(s) \sum_{j \sim J} \tau_{\zeta}(j) \min\left\{\frac{x}{m^3 s^2 j}, \frac{1}{\|\alpha m^3 s^2 j\|}\right\}$$

Then for any $\varepsilon > 0$ the inequalities

(9)
$$G \ll x^{\varepsilon} \left(MSJ + \frac{x}{M^{\frac{9}{4}}S} + \frac{x}{M^2S^{\frac{9}{8}}} + \frac{x}{M^2Sq^{\frac{1}{8}}} + \frac{x^{\frac{1}{8}}q^{\frac{1}{8}}}{M^2S} \right)$$

and

(10)
$$G \ll x^{\varepsilon} \left(MSJ + \frac{x}{M^{\frac{9}{4}}S^{\frac{3}{4}}} + \frac{x}{M^2S^{\frac{3}{4}}q^{\frac{1}{4}}} + \frac{x^{\frac{3}{4}}q^{\frac{1}{4}}}{M^2S^{\frac{3}{4}}} \right)$$

are fulfilled.

Proof. Our proof is similar to proof of Lemma 8, [10]. Let $H = \frac{x}{x}$

(11)
$$H = \frac{1}{M^3 S^2 J}$$

If $H \leq 2$, then trivially from Lemma 2 (iv) we get (12) $G \ll x^{\varepsilon} MSJ.$

So we can assume that H > 2. From Lemma 2 (iv) it is obviously that

$$G \ll x^{\varepsilon} \sum_{m \sim M} \sum_{s \sim S} \sum_{j \sim J} \min\left\{\frac{x}{m^3 s^2 j}, \frac{1}{\|\alpha m^3 s^2 j\|}\right\}.$$

We apply the Fourier expansion to the function $\min\left\{\frac{x}{m^3s^2j}, \frac{1}{\|\alpha m^3s^2j\|}\right\}$ and get

$$\min\left\{\frac{x}{m^3 s^2 j}, \frac{1}{\|\alpha m^3 s^2 j\|}\right\} = \sum_{0 < |h| \le H^2} w(h) e(\alpha m^3 s^2 jh) + O(\log x),$$

where

(13)
$$w(h) \ll \min\left\{\log H, \frac{H}{|h|}\right\}$$

Then

(14)
$$G| \ll x^{\varepsilon} \sum_{0 < |h| \le H^2} |w(h)| \sum_{s \sim S} \sum_{j \sim J} \left| \sum_{m \sim M} e(\alpha m^3 s^2 jh) \right| + MSJ \log x.$$

So if

$$G(H_0) = \sum_{h \sim H_0} \sum_{s \sim S} \sum_{j \sim J} \bigg| \sum_{m \sim M} e(\alpha m^3 s^2 j h) \bigg|.$$

then using (13) we have

(15)
$$G \ll x^{\varepsilon} \left(MSJ + \max_{1 \le H_0 \le H_1} G(H_0) + \max_{H_1 \le H_0 \le H^2} \frac{H}{H_0} G(H_0) \right).$$

We shall evaluate the sum $G(H_0)$. Applying the Cauchy–Schwarz inequality we obtain

$$G^{2}(H_{0}) \ll x^{\varepsilon} H_{0} JS \sum_{h \sim H_{0}} \sum_{s \sim S} \sum_{j \sim J} \left| \sum_{m \sim M} e(\alpha m^{3} s^{2} jh) \right|^{2}$$

$$\ll x^{\varepsilon} H_0 JS \sum_{h \sim H_0} \sum_{s \sim S} \sum_{j \sim J} \sum_{m_1 \sim M} \sum_{m_2 \sim M} e\left(\alpha(m_1^3 - m_2^3)s^2jh\right).$$

Substituting $m_1 = m_2 + t$, where $0 \le |t| \le M$ we get

(16)
$$G^{2}(H_{0}) \ll x^{\varepsilon} \left(H_{0}^{2} J^{2} S^{2} M + H_{0} J S G_{1}(H_{0}) \right),$$

where

$$G_1(H_0) = \sum_{h \sim H_0} \sum_{s \sim S} \sum_{j \sim J} \sum_{0 < |t| < M} \left| \sum_{m_2 \sim M} e\left(\alpha (3m_2^2 t + 3m_2 t^2) s^2 jh\right) \right|.$$

Applying again the Cauchy–Schwarz inequality we obtain

$$G_1^2(H_0) \ll H_0 JSM \sum_{h \sim H_0} \sum_{s \sim S} \sum_{j \sim J} \sum_{0 < |t| < M} \sum_{m_2 \sim M} \sum_{m_3 \sim M} e\left(\alpha(3(m_2^2 - m_3^2)t + 3(m_2 - m_3)t^2)s^2jh\right).$$

Substituting $m_2 = m_3 + \ell$, where $0 \le |\ell| \le M$ we get

 $G_1^2(H_0) \ll H_0^2 J^2 S^2 M^3 +$

$$H_0JSM\sum_{h\sim H_0}\sum_{s\sim S}\sum_{j\sim J}\sum_{0<|t|< M}\sum_{0<|\ell|< M}\left|\sum_{m_3\sim M}e\left(6\alpha m_3t\ell s^2jh\right)\right|.$$

Let $u = 6t\ell hj$. Then using Lemma 3 and Lemma 5 we get

$$G_1^2(H_0) \ll H_0^2 J^2 S^2 M^3 + H_0 JSM \sum_{u \le 24H_0 JM^2} \tau_5(u) \sum_{s \sim S} \left| \sum_{m_3 \sim M} e(\alpha m_3 s^2 u) \right|$$

(17)
$$\ll H_0^2 J^2 S^2 M^3 + H_0 JSM \sum_{u \ll H_0 JM^2} \tau_5(u) \sum_{s \sim S} \min\left\{\frac{H_0 JS^2 M^3}{s^2 u}, \frac{1}{||\alpha s^2 u||}\right\}.$$

We will estimate the above sum in two ways. Using Lemma 5 we obtain

$$G_1^2(H_0) \ll x^{\varepsilon} \left(H_0^2 J^2 S^2 M^3 + H_0^2 J^2 S^{\frac{3}{2}} M^4 + \frac{H_0^2 J^2 S^2 M^4}{q^{\frac{1}{2}}} + H_0^{\frac{3}{2}} J^{\frac{3}{2}} S M^{\frac{5}{2}} q^{\frac{1}{2}} \right)$$

So from (16)

(18)
$$G(H_0) \ll x^{\varepsilon} \left(H_0 J S M^{\frac{3}{4}} + H_0 J S^{\frac{7}{8}} M + \frac{H_0 J S M}{q^{\frac{1}{8}}} + H_0^{\frac{7}{8}} J^{\frac{7}{8}} S^{\frac{3}{4}} M^{\frac{5}{8}} q^{\frac{1}{8}} \right).$$

Choosing $H_0 = H$ from (11), (15) and (18) we get (9).

On the other hand we can write the inequality (17) as

$$G_1^2(H_0) \ll H_0^2 J^2 S^2 M^3 + H_0 J S M \sum_{k \ll H_0 J S^2 M^2} \min\left\{\frac{H_0 J S^2 M^3}{k}, \frac{1}{||\alpha k||}\right\}$$

and using Lemma 4 and (16) we get

(19)
$$G^{2}(H_{0}) \ll x^{\varepsilon} \left(H_{0}^{2} J^{2} S^{3} M^{3} + \frac{H_{0}^{2} J^{2} S^{3} M^{4}}{q} + H_{0} J S M q \right)$$

Now we choose $H_0 = H$. Then from (11), (15) and (19) the inequality (10) is received. \Box

5. Proof of Theorem 1. To prove Theorem 1 we shall evaluate the sum W in two ways:

when $x^{8/27}\Delta \leq D \leq \frac{x^{1/2}}{\Delta K^4}$, we will use the Vaughan's identity; when $D \leq x^{8/27}\Delta$, we will use the Heat-Brown identity. 5.1. Evaluation by Vaughan's identity. Let $x^{8/27}\Delta \leq D \leq \frac{x^{1/2}}{\Delta K^4}$ and $0 < |K| \leq \delta^{-1}\log^2 x$. First we decompose the sum W(x) into $O(\log^2 x)$ sums of type

$$W = W(x, D, K) = \sum_{d \sim D} \lambda(d) \sum_{1 \le |k| \sim K} c(k) \sum_{\substack{n \sim x \\ n+2 \equiv 0 \ (d)}} e((\alpha n^2 + \beta)k) \Lambda(n),$$

where $\lambda(d)$ is Roser weight and in particular a necessary condition for $\lambda(d) \neq 0$ is numbers d are squarefree. So from this point on we will use that numbers d are squarefree. Then by Vaughan's identity we can decompose the sum W into $O(\log x)$ type I sums

$$W_1 = \sum_{\substack{d \sim D \\ (a, d) = 1}} \lambda(d) \sum_{k \sim K} c(k) e(\beta k) \sum_{\substack{m \sim M \\ \ell \sim L \\ mn \equiv a (\text{mod } d)}} a(m) e(\alpha(m\ell)^2 k)$$

or

$$W_1' = \sum_{\substack{d \sim D \\ (a,d)=1}} \lambda(d) \sum_{k \sim K} c(k) e(\beta k) \sum_{\substack{m \sim M \\ \ell \sim L \\ m \ell \equiv a (\text{mod } d)}} \log(n) e(\alpha (m\ell)^2 k)$$

with $M \leq x^{1/3}$ and $O(\log x)$ type II sums

$$W_2 = \sum_{\substack{d \sim D \\ (a,d)=1}} \lambda(d) \sum_{k \sim K} c(k) e(\beta k) \sum_{\substack{m \sim M \\ \ell \sim L \\ m\ell \equiv a \pmod{d}}} a(m) b(\ell) e(\alpha(m\ell)^2 k)$$

with $M \in [x^{1/3}, x^{2/3}]$ and

(20)
$$ML \sim x, \quad a(m) \ll \tau_3(m) \log m, \quad b(\ell) \ll \tau_3(\ell) \log \ell$$

5.1.1. Evaluation of type II sums. The proof follows proof of Theorem 1, [10]. As $x^{1/3} \leq M, L \leq x^{2/3}$ and $ML \sim x$ we will consider only the case $x^{1/2} \leq M \leq x^{2/3}$. The evaluation in the case $x^{1/2} \leq L \leq x^{2/3}$ is the same. Using that d is well-separated numbers we write d = hs, where (h, s) = 1 as d is squarefree. So the sum W_2 is presented as $O(\log^2 x)$ sums of the type

$$W_2 = \sum_{\substack{h \sim H\\(h, a)=1}} \sum_{\substack{s \sim S\\(s, ah)=1}} \lambda(hs) \sum_{k \sim K} c(k) e(\beta k) \sum_{\ell \sim L} \sum_{\substack{m \sim M\\m\ell \equiv a \pmod{hs}}} a(m) b(\ell) e(\alpha(m\ell)^2 k).$$

Here

(21)
$$h \sim H, \quad s \sim S, \quad D \sim HS$$

and H we will choose later. Applying the Cauchy–Schwarz inequality to W_2 and using and Lemma 2(i) we obtain that

$$\begin{array}{ll} (22) \quad W_2^2 \ll x^{\varepsilon} KHM \sum_{k \sim K} \sum_{\substack{h \sim H \\ (h, a) = 1}} \sum_{\substack{s_1' \sim S \\ (s_1', ah) = 1}} \lambda(hs_1') \sum_{\substack{s_2' \sim S \\ (s_2', ah) = 1}} \lambda(hs_2') \\ \times \sum_{\ell_1 \sim L} b(\ell_1) \sum_{\ell_2 \sim L} b(\ell_2) \sum_{\substack{m \sim M \\ m\ell_1 \equiv a(hs_1') \\ m\ell_2 \equiv a(hs_2')}} e(\alpha m^2(\ell_1^2 - \ell_2^2)k). \\ \end{array}$$

$$\begin{array}{l} \text{Let } (s_2', s_1') = r, \, s_1' = rs_1, \, s_2' = rs_2, \, r \sim R, \, R \leq S \text{ and } s_1', \, s_2' \sim S/R. \text{ Then} \\ (23) \quad W_2^2 \ll x^{\varepsilon} KHM \sum_{k \sim K} \sum_{\substack{h \sim H \\ (h, a) = 1}} \sum_{\substack{r \sim R \\ (r, ah) = 1}} \sum_{\substack{s_1 \sim S/R \\ (s_1, ah) = 1}} \lambda(hrs_1) \sum_{\substack{s_2 \sim S/R \\ (s_2, as_1h) = 1}} \lambda(hrs_2) \\ \times \sum_{\ell_1 \sim L} b(\ell_1) \sum_{\ell_2 \sim L} b(\ell_2) \sum_{\substack{m \sim M \\ m\ell_1 \equiv a(hrs_1) \\ m\ell_2 \equiv a(hrs_2)}} e(\alpha m^2(\ell_1^2 - \ell_2^2)k) \end{array}$$

 $= W_{21} + W_{22},$

where W_{21} is this one part of above sum for which

$$\begin{split} \ell_1 &= \ell_2, \quad s_1 \neq s_2 \quad \text{or} \\ \ell_1 &= \ell_2, \quad s_1 = s_2 = 1 \quad r \sim S \quad \text{or} \\ \ell_1 \neq \ell_2, \quad s_1 = s_2 = 1 \quad r \sim S \quad \text{or} \\ \ell_1 \neq \ell_2, \quad s_1 \neq s_2, \quad M < \frac{4HS^2}{R}, \end{split}$$

 W_{22} is the rest part of sum for W_2^2 . To evaluate the sum W_{21} we consider the cases $x^{1/2} \leq M \leq \frac{x}{D}$ and $x^{1/3} \leq L \leq D$. Then using Lemma 2 we get

(24)
$$W_{21} \ll x^{\varepsilon} \left(xMHK^2 + xD^2K^2 + \frac{x^2HK^2}{D} + \frac{xLD^2K^2}{H} \right)$$

It is clear that for sum W_{22} we have $\ell_1 \neq \ell_2$, $s_1 \neq s_2$, $M > \frac{4HS^2}{R}$. From

 $m\ell_1 \equiv a(hrs_1), \ m\ell_2 \equiv a(hrs_2)$ follows that $\ell_1 \equiv \ell_2(hr).$

We apply again the Cauchy–Schwarz inequality and get

$$W_{22}^{2} \ll \frac{x^{2+\varepsilon}D^{2}K^{3}}{R^{2}} \sum_{k \sim K} \sum_{\substack{h \sim H \\ (h, a)=1}} \sum_{\substack{r \sim R \\ (r, ah)=1}} \sum_{\substack{s_{1} \sim S/R \\ (s_{1}, ah)=1}} \sum_{\substack{s_{2} \sim S/R \\ (s_{2}, as_{1}h)=1}} \\ \times \sum_{\ell_{1} \sim L} \sum_{\substack{\ell_{2} \sim L \\ \ell_{2} \equiv \ell_{1}(hr)}} \sum_{\substack{m_{1} \sim M \\ m_{1}\ell_{1} \equiv a(hrs_{1})}} \sum_{\substack{m_{2} \sim M \\ m_{2}\ell_{2} \equiv a(hrs_{2})}} e(\alpha(m_{1}^{2} - m_{2}^{2})(\ell_{1}^{2} - \ell_{2}^{2})k).$$

Let W_{221} be this one part of above sum for which $m_1 = m_2$ and W_{222} be this part for

which $m_1 \neq m_2$. It is not difficult to see that

$$W_{221} \ll \frac{x^{3+\varepsilon}LD^2K^4}{H}$$

Let consider the sum W_{222} . As

$$m_i\ell_1 \equiv a \pmod{hrs_1}$$
 and $m_i\ell_2 \equiv a \pmod{hrs_2}$, $i = 1, 2$

we get

 $m_1 \equiv m_2 \pmod{hrs_1s_2} \equiv f \pmod{hrs_1s_2}$, where $f = f(h, r, s_1, s_2, \ell_1, \ell_2)$ and $\ell_1 \equiv \ell_2 \pmod{hr}$. Let

$$m_1 = m_2 + hrs_1s_2t, \ 0 < |t| \le \frac{8MR}{HS^2}$$
 and $\ell_1 = \ell_2 + hru, \ 0 < |u| \le \frac{2L}{HR}.$

Then

 $m_1^2 - m_2^2 = 2m_2hrs_1s_2t + h^2r^2s_1^2s_2^2t^2$ and $\ell_1^2 - \ell_2^2 = hru(2\ell_2 + hru)$.

So using above equalities and Lemma 3 we obtain $2+\epsilon D^2 K^3$

$$W_{222} \ll \frac{x^{2+\varepsilon} D^2 K^3}{R^2} \sum_{k \sim K} \sum_{\substack{h \sim H \\ (h, a) = 1}} \sum_{\substack{r \sim R \\ (r, ah) = 1}} \sum_{\substack{s_1 \sim S/R \\ (s_1, ah) = 1}} \sum_{\substack{s_2 \sim S/R \\ (s_2, as_1h) = 1}} \\ \times \sum_{\ell \sim L} \sum_{0 < |u| \le \frac{2L}{HR}} \sum_{0 < |t| \le \frac{8MR}{HS^2}} \min\left\{\frac{M}{hrs_1s_2}, \frac{1}{\|2\alpha h^3 r^3 s_1^2 s_2^2 t u \ell k\|}\right\},$$

where $\ell = 2\ell_2 + hru$. We put

$$m = hr, \quad s = s_1 s_2, \quad j = 2tunk, \ j \ll \frac{xLK}{D^2}$$

and it is clear that the sum W_{222} can be represented as a finite number of sums of the type

$$W_{223} = \frac{x^{2+\varepsilon}D^2K^3}{R^2} \sum_{m \sim HR} \tau(m) \sum_{s \sim \frac{S^2}{R^2}} \tau(s) \sum_{j \ll \frac{xLK}{D^2}} \tau_5(j) \min\left\{\frac{x^2K}{m^3s^2j}, \frac{1}{\|\alpha m^3s^2j\|}\right\}.$$

Using Lemma 7, (21), (23), (24) and (25) we get

$$(26) \quad W_{223} \ll x^{\varepsilon} \left(x^{\frac{1}{2}} M^{\frac{1}{2}} H^{\frac{1}{2}} K + x^{\frac{1}{2}} DK + \frac{x^{\frac{1}{2}} L^{\frac{1}{2}} DK}{H^{\frac{1}{2}}} + \frac{x^{\frac{3}{4}} L^{\frac{1}{4}} D^{\frac{1}{2}} K}{H^{\frac{1}{4}}} + \frac{x H^{\frac{1}{2}} K}{D^{\frac{1}{2}}} + \frac{x K}{H^{\frac{1}{16}}} + \frac{x K}{q^{\frac{1}{32}}} + x^{\frac{15}{16}} K^{\frac{31}{32}} q^{\frac{1}{32}} \right).$$

According to D, M and L we have

(27)
$$W_{223} \ll x^{\varepsilon} \left(V_1 + V_2 + V_3 + V_4 \right),$$

where V_1 is the sum with

(28)
$$x^{1/2} \le M \le \frac{x}{D}, \quad x^{2/5} \le D \le \frac{x^{1/2}}{\Delta K^4}$$

 $D \le L \le x^{1/2},$

 V_2 is the sum with

(29)
$$\frac{x}{D} \le M < x^{1/3} D^{2/3}, \quad x^{2/5} \le D \le \frac{x^{1/2}}{\Delta K^4}$$
$$\frac{x^{2/3}}{D^{2/3}} < L \le D,$$

 V_3 is the sum with

(30)
$$x^{1/3}D^{2/3} \le M \le x^{2/3}, \quad x^{2/5} \le D \le \frac{x^{1/2}}{\Delta K^4}$$
$$x^{1/3} \le L \le \frac{x^{2/3}}{D^{2/3}}$$

and V_4 is the sum with

(31)
$$\begin{aligned} x^{1/2} &\leq M \leq x^{2/3}, \quad x^{8/27} \Delta \leq D \leq x^{2/5} \\ x^{1/3} &\leq L \leq x^{1/2}. \end{aligned}$$

For sums V_1 , V_2 , V_3 and V_4 we choose consequently

$$H = \frac{D}{\Delta^{1/2}}, \quad H = \frac{LD^{2/3}}{x^{1/3}}, \quad H = \frac{x^{1/3}}{\Delta}, \quad H = \frac{L^{4/5}D^{9/5}}{x^{4/5}}$$
(28) (20) (20) and (21) we get

and from (26), (28), (29), (30) and (31) we get

$$W_2 \ll \begin{cases} x^{\varepsilon} \left(\frac{xK}{\Delta^{\frac{1}{32}}} + +x^{\frac{5}{6}} D^{\frac{1}{3}} \Delta^{\frac{1}{4}} K + \frac{xK}{q^{\frac{1}{32}}} + x^{\frac{15}{16}} K^{\frac{31}{32}} q^{\frac{1}{32}} \right), & \text{if} \quad x^{2/5} \le D \le \frac{x^{1/2}}{\Delta K^4}, \\ x^{\varepsilon} \left(\frac{x^{\frac{31}{30}} K}{D^{\frac{9}{80}}} + \frac{xK}{q^{\frac{1}{32}}} + x^{\frac{15}{16}} K^{\frac{31}{32}} q^{\frac{1}{32}} \right), & \text{if} \quad x^{8/27} \Delta \le D \le x^{2/5}. \end{cases}$$

So

(32)
$$W_2 \ll x^{\varepsilon} \left(\frac{xK}{\Delta^{\frac{1}{32}}} + x^{\frac{5}{6}} D^{\frac{1}{3}} \Delta^{\frac{1}{4}} K + \frac{xK}{q^{\frac{1}{32}}} + x^{\frac{15}{16}} K^{\frac{31}{32}} q^{\frac{1}{32}} \right).$$

5.1.2. Evaluation of type I sums. In this case we have that $L > x^{\frac{2}{3}}$ and $M < x^{\frac{1}{3}}$. Again we will use that d is well-separated numbers. So we can write d = hs with h and s satisfying conditions (21) and we will choose H later. So the sum W_1 is presented as $O(\log^2 x)$ sums of the type

$$W_1 = \sum_{\substack{h \sim H \\ (h,a)=1}} \sum_{\substack{s \sim S \\ (s,a)=1}} \lambda(hs) \sum_{k \sim K} c(k) e(\beta k) \sum_{\ell \sim L} \sum_{\substack{m\ell \sim M \\ m\ell \equiv a \pmod{d}}} a(m) e(\alpha(m\ell)^2 k).$$

Working in the same way as in the evaluation of the sum W_2 see (22), we get

$$(33) \quad W_1^2 \ll x^{\varepsilon} KHM \sum_{k \sim K} \sum_{\substack{h \sim H \\ (h,a)=1}} \sum_{\substack{r \sim R \\ (r,ah)=1}} \sum_{\substack{s_1 \sim S/R \\ (s_1,ah)=1}} \lambda(hrs_1) \sum_{\substack{s_2 \sim S/R \\ (s_2,as_1h)=1}} \lambda(hrs_2) \\ \times \sum_{\ell_1 \sim L} b(\ell_1) \sum_{\ell_2 \sim L} b(\ell_2) \sum_{\substack{m \sim M \\ m\ell_1 \equiv a(hrs_1) \\ m\ell_2 \equiv a(hrs_2)}} e(\alpha m^2(\ell_1^2 - \ell_2^2)k) \\ = W_{11} + W_{12} + W_{13},$$

where W_{12} is this one part of above sum for which

$$\ell_1 = \ell_2,$$

 W_{13} is this one part of above sum for which

$$\ell_1 \neq \ell_2, \quad s_1 = s_2 = 1 \quad r \sim S$$

and W_{11} is the rest part of sum for W_1^2 . Using that $L > x^{\frac{2}{3}}$ and $M < x^{\frac{1}{3}}$ we get

(34)
$$W_{12} \ll x^{\varepsilon} . x M H K^2.$$

For the sum W_{13} we get

$$W_{13} \ll x^{\varepsilon} KHM \sum_{k \sim K} \sum_{\substack{d \sim D \\ (d, a) = 1}} \sum_{m \sim M} \bigg| \sum_{\substack{\ell_i \sim L \\ m\ell_i \equiv a(d) \\ i = 1, 1}} e(\alpha m^2 (\ell_1^2 - \ell_2^2) k \bigg|.$$

As $\ell_1 \equiv \ell_2 \pmod{d}$ we put

$$\ell_1 = \ell_2 + du, \, 0 < |u| \ll \frac{L}{D}$$

 So

$$W_{13} \ll x^{\varepsilon} KHM \sum_{k \sim K} \sum_{\substack{d \sim D \\ (d, a) = 1}} \sum_{m \sim M} \sum_{u \ll \frac{L}{D}} \left| \sum_{\substack{\ell_2 \sim L \\ m\ell_2 \equiv a(d)}} e(2\alpha m^2 \ell_2 u dk) \right|$$

and from Lemma 3 we get

$$W_{13} \ll x^{\varepsilon} KHM \sum_{k \sim K} \sum_{\substack{d \sim D \\ (d, a) = 1}} \sum_{m \sim M} \sum_{u \ll \frac{L}{D}} \min\left\{\frac{x^2 K}{m^2 d^2(2uk)}, \frac{1}{\|\alpha m^2 d^2(2uk)\|}\right\}$$

The above sum can be represented as a finite number of sums of the type

$$W_{14} \ll x^{\varepsilon} KHM \sum_{z \sim MD} \tau(z) \sum_{t \ll \frac{LK}{D}} \tau_3(t) \min\left\{\frac{x^2 K}{z^2 t}, \frac{1}{\|\alpha z^2 t\|}\right\}$$

Using Lemma 5 and $ML \sim x$ we obtain

$$(35) W_{13}^{\frac{1}{2}} \ll x^{\varepsilon} \left(x^{\frac{1}{2}} M^{\frac{1}{2}} H^{\frac{1}{2}} K + \frac{x^{\frac{3}{4}} L^{\frac{1}{4}} H^{\frac{1}{2}} K}{D^{\frac{3}{4}}} + \frac{x H^{\frac{1}{2}} K}{D^{\frac{1}{2}} q^{\frac{1}{4}}} + \frac{x^{\frac{1}{2}} H^{\frac{1}{2}} q^{\frac{1}{4}} K^{\frac{3}{4}}}{D^{\frac{1}{2}}} \right)$$

Using analogous reasoning for the sum W_{11} we get

$$(36) \quad W_{11} \ll x^{\varepsilon} KHM \sum_{k \sim K} \sum_{\substack{h \sim H \\ (h, a) = 1}} \sum_{\substack{r \sim R \\ (r, ah) = 1}} \sum_{\substack{s_i \sim S/R \\ (s_1 s_2, ah) = 1}} \left| \sum_{\substack{\ell_2 \sim L \\ m\ell_2 \equiv a(hrs_2) \\ m(\ell_2 + uhr) \equiv a(s_1)}} e(2\alpha m^2 \ell_2 uhrk) \right|$$

and from Lemma 3 we obtain

$$W_{11} \ll x^{\varepsilon} KHM \sum_{k \sim K} \sum_{h \sim H} \sum_{r \sim R} \sum_{\substack{s_i \sim S/R \\ i=1,2}} \sum_{m \sim M} \sum_{u \ll \frac{L}{HR}} \min\left\{\frac{L}{hrs_1s_2}, \frac{1}{\|\alpha m^2 h^2 r^2 .2s_1s_2 uk\|}\right\}.$$

Applying Lemma 5 and using that $ML \sim x$ we get

(37)
$$W_{11}^{\frac{1}{2}} \ll x^{\varepsilon} \left(\frac{x^{\frac{1}{2}}DK}{H^{\frac{1}{2}}} + \frac{x^{\frac{3}{4}}L^{\frac{1}{4}}K}{H^{\frac{1}{4}}} + \frac{xK}{q^{\frac{1}{4}}} + x^{\frac{1}{2}}q^{\frac{1}{4}}K^{\frac{3}{4}} \right)$$

Choosing $H = \frac{D}{M^{\frac{1}{2}}}$ from (34), (35), (37), (22) and (5) follows

(38)
$$W_1 \ll x^{\varepsilon} \left(\frac{xK}{D^{\frac{1}{4}}} + \frac{xK}{q^{\frac{1}{4}}} + x^{\frac{1}{2}}K^{\frac{3}{4}}q^{\frac{1}{4}} \right).$$

From (32) and (38) it follows that in the case $x^{8/27}\Delta \leq D \leq \frac{x^{1/2}}{\Delta K^4}$ the estimate

(39)
$$W \ll x^{\varepsilon} \left(\frac{xK}{\Delta^{\frac{1}{32}}} + +x^{\frac{5}{6}} D^{\frac{1}{3}} \Delta^{\frac{1}{4}} K + \frac{xK}{q^{\frac{1}{32}}} + x^{\frac{15}{16}} K^{\frac{31}{32}} q^{\frac{1}{32}} \right)$$

is fulfilled.

5.2. Evaluation by Heat-Brown's identity. Let $D \le x^{8/27} \Delta$. We decompose the sum W(x) into $O(\log^2 x)$ as in (4). Using Heath-Brown's identity [6] with parameters

(40)
$$P = x/2, P_1 = x, u = \frac{x^{\frac{1}{3}}}{2^{21}D^{\frac{1}{32}}}, v = 2^7 x^{\frac{1}{3}}, w = 2^7 x^{\frac{1}{3}} D^{\frac{1}{64}}.$$

we decompose the sum W as a linear combination of $O(\log^6 N)$ sums of first and second type. The sums of the first type are

$$W_1 = \sum_{d \le D} \lambda(d) \sum_{0 < |k| \le K} c(k) e(\beta k) \sum_{M < m \le M_1} a_m \sum_{\substack{L < \ell \le L_1 \\ m\ell \equiv -2(d)}} e(\alpha m^2 \ell^2 k)$$

and

$$W_{1}' = \sum_{d \le D} \lambda(d) \sum_{0 < |k| \le K} c(k) e(\beta k) \sum_{M < m \le M_{1}} a(m) \sum_{\substack{L < \ell \le L_{1} \\ m\ell \equiv -2(d)}} \log \ell e(\alpha m^{2} \ell^{2} k),$$

where

(41)
$$M_1 \le 2M, \quad L_1 \le 2L, \quad ML \asymp x, \quad L \ge w, \quad a(m) \ll x^{\varepsilon}.$$

The sums of the second type are

$$W_2 = \sum_{d \le D} \lambda(d) \sum_{0 < |k| \le K} c(k) e(\beta k) \sum_{L < \ell \le L_1} b(\ell) \sum_{\substack{M < m \le M_1 \\ m\ell \equiv -2(d)}} a(m) e(\alpha m^2 \ell^2 k),$$

where

(42)
$$M_1 \le 2M, \quad L_1 \le 2L, \quad ML \asymp x, \quad u \le L \le v, \quad a(m), \ b(\ell) \ll x^{\varepsilon}.$$

50

5.2.1. Evaluation of type II sums. Applying the Cauchy–Schwarz inequality to W_2 and using Lemma 2(i), (40), (42) and (46) we obtain that

$$(43) \quad W_2^2 \ll x^{\varepsilon} KDM \sum_{k \sim K} \sum_{\substack{d \sim D \\ (d, a) = 1}} \sum_{\substack{\ell_i \sim L \\ i = 1, 2 \\ \ell_1 \equiv \ell_2(d)}} b(\ell_1) b(\ell_2) \sum_{\substack{m \sim M \\ m\ell_i \equiv a(d) \\ i = 1, 2}} e(\alpha m^2 (\ell_1^2 - \ell_2^2) k) \\ = W_{21} + x^{1+\varepsilon} MDK^2$$

where

$$W_{21} = x^{\varepsilon} KDM \sum_{k \sim K} \sum_{\substack{d \sim D \\ (d, a) = 1}} \sum_{\substack{\ell_i \sim L \\ \ell_1 \neq \ell_2 \\ \ell_1 \equiv \ell_2(d)}} b(\ell_1) b(\ell_2) \sum_{\substack{m \sim M \\ m\ell_i \equiv a(d) \\ i = 1, 2}} e(\alpha m^2(\ell_1^2 - \ell_2^2)k)$$

Applying again the Cauchy–Schwarz inequality and substituting

$$m_1 = m_2 + td$$
, $t \ll \frac{M}{D}$ and $\ell_1 = \ell_2 + \omega d$, $\omega \ll \frac{L}{D}$

we sequentially obtain

(44)
$$W_{21}^2 \ll x^{2+\varepsilon} D^2 K^3 \sum_{k \sim K} \sum_{\substack{d \sim D \\ (d, a) = 1}} \sum_{\substack{\ell_i \sim L \\ \ell_1 \neq \ell_2 \\ \ell_1 \equiv \ell_2(d)}} \sum_{\substack{m_i \sim M \\ m_1 \ell_i \equiv a(d) \\ m_1 \neq m_2}} e(\alpha(m_1^2 - m^2)(\ell_1^2 - \ell_2^2)k) + x^{3+\varepsilon} LDK^4$$

 $= W_{22} + x^{3+\varepsilon} LDK^4$

with

$$W_{22} \ll x^{2+\varepsilon} D^2 K^3 \sum_{k \sim K} \sum_{d \sim D} \sum_{\omega \ll \frac{L}{D}} \sum_{\ell_2 \sim L} \sum_{t \ll \frac{M}{D}} \min\left\{\frac{M}{d}, \frac{1}{\|\alpha d^3 t \omega (2\ell_2 + \omega d)k\|} \right\}$$

Putting $\ell = \ell_2 + \omega d$ and $z = \omega \ell k t$ we get

(45)
$$W_{22} \ll x^{2+\varepsilon} D^2 K^3 \sum_{d \sim D} \sum_{z \ll \frac{xLK}{D^2}} \tau_4(z) \min\left\{\frac{x^2 K}{d^3 z}, \frac{1}{\|\alpha d^3 z\|}\right\}$$

If

$$(46) \qquad \qquad \Delta < D \le x^{\frac{8}{27}} \Delta$$

then from inequality (10) of Lemma 7, (45), (43) and (44) we get

(47)
$$W_2 \ll x^{\varepsilon} \left(x^{\frac{71}{72}} \Delta^{\frac{33}{64}} K + \frac{xK}{q^{\frac{1}{16}}} + \frac{xK}{\Delta^{\frac{1}{16}}} + x^{\frac{15}{16}} q^{\frac{1}{32}} K^{\frac{31}{32}} \right).$$

If

$$(48) D \le \Delta$$

we will estimate the sum W_{22} by putting $u = d^3 z$ and applying Lemma 4, Lemma 2 (ii) to find

(49)
$$W_2 \ll x^{\varepsilon} \left(x^{\frac{71}{72}} \Delta^{\frac{33}{64}} K + \frac{x \Delta^{\frac{1}{2}} K}{q^{\frac{1}{4}}} + \frac{x K}{q^{\frac{1}{16}}} + \frac{x K}{\Delta^{\frac{1}{16}}} + x^{\frac{15}{16}} q^{\frac{1}{32}} K^{\frac{31}{32}} + x^{\frac{1}{2}} \Delta^{\frac{1}{2}} K^{\frac{3}{4}} q^{\frac{1}{4}} \right).$$

From (47) and (50) we get

(50)
$$W_2 \ll x^{\varepsilon} \left(x^{\frac{71}{72}} \Delta^{\frac{33}{64}} K + \frac{x \Delta^{\frac{1}{2}} K}{q^{\frac{1}{4}}} + \frac{x K}{q^{\frac{1}{32}}} + \frac{x K}{\Delta^{\frac{1}{16}}} + x^{\frac{15}{16}} q^{\frac{1}{32}} K^{\frac{31}{32}} + x^{\frac{1}{2}} \Delta^{\frac{1}{2}} K^{\frac{3}{4}} q^{\frac{1}{4}} \right).$$

5.2.2. Evaluation of type I sums. Reasoning as in the estimation of the sum W_{13} (see (5.1.2)) we obtain

(51)
$$W_1^2 \ll x^{\varepsilon} MDK \sum_{z \sim MD} \tau(z) \sum_{t \ll \frac{LK}{D}} \tau_3(t) \min\left\{\frac{x^2 K}{z^2 t}, \frac{1}{\|\alpha z^2 t\|}\right\} + x^{\varepsilon} MDK^2.$$

Using Lemma 5 and $ML \sim x$ we obtain

(52)
$$W_1^2 \ll x^{\varepsilon} \left(MDK^2 + \frac{x^2K^2}{(MD)^{\frac{1}{2}}} + \frac{x^2K^2}{q^{\frac{1}{2}}} + xK^{\frac{3}{2}}q^{\frac{1}{2}} \right)$$

Using the inequality (51) we will evaluate the sum W_1 in one more way. Let $u = z^2 t$ and from Lemma 4 (iii) and Lemma 2 (iv) we find

(53)
$$W_1^2 \ll x^{\varepsilon} MDK \sum_{u \ll xMDK} \tau_5(u) \min\left\{\frac{x^2K}{u}, \frac{1}{\|\alpha u\|}\right\}$$
$$\ll x^{\varepsilon} \left(MDKq + xM^2D^2K^2 + \frac{x^2MDK^2}{q}\right)$$

If $MD > \Delta$ using the estimate (52) we get

(54)
$$W_1 \ll x^{\varepsilon} \left(x^{\frac{47}{48}} \Delta^{\frac{63}{128}} K + \frac{xK}{\Delta^{\frac{1}{4}}} + \frac{xK}{q^{\frac{1}{4}}} + x^{\frac{1}{2}} K^{\frac{3}{4}} q^{\frac{1}{4}} \right).$$

If $MD \leq \Delta$ from (53) it follows

(55)
$$W_1 \ll x^{\varepsilon} \left(x^{\frac{1}{2}} \Delta K + \frac{x \Delta^{\frac{1}{2}} K}{q^{\frac{1}{2}}} + \Delta^{\frac{1}{2}} K^{\frac{1}{2}} q^{\frac{1}{2}} \right),$$

then using (54) and (55) we get

(56)
$$W_1 \ll x^{\varepsilon} \left(x^{\frac{47}{48}} \Delta^{\frac{63}{128}} K + \frac{xK}{\Delta^{\frac{1}{4}}} + \frac{xK}{q^{\frac{1}{4}}} + \frac{x\Delta^{\frac{1}{2}}K}{q^{\frac{1}{2}}} + x^{\frac{1}{2}} K^{\frac{3}{4}} q^{\frac{1}{4}} \right).$$

From (39), (50) and (56)

(57)
$$W \ll x^{\varepsilon} \left(\frac{xK}{\Delta^{\frac{1}{32}}} + \frac{xK}{q^{\frac{1}{32}}} + \frac{x\Delta^{\frac{1}{2}}K}{q^{\frac{1}{4}}} + x^{\frac{71}{72}}\Delta^{\frac{33}{64}}K + x^{\frac{15}{16}}K^{\frac{31}{32}}q^{\frac{1}{32}} + x^{\frac{1}{2}}\Delta^{\frac{1}{2}}K^{\frac{3}{4}}q^{\frac{1}{4}} \right).$$

5.3. Proof of Lemma 1. In Theorem 2 choose

(58)
$$x = q, \quad \Delta = K^{\frac{32.34}{33}}, \quad K = x^{\frac{1}{1296} - \eta}, \quad D = \frac{x^{1/2}}{\Delta K^4},$$

where η is arbitrary small fixed number.

6. Proof of Theorem 2. As in [13] we take a periodic function with period 1 such that

(59) $0 < \chi(t) < 1 \quad \text{if} \quad -\delta < t < \delta;$ $\chi(t) = 0 \quad \text{if} \quad \delta \le t \le 1 - \delta,$

and which has a Fourier series

(60)

$$\chi(t) = \delta + \sum_{|k|>0} c(k)e(kt),$$

with coefficients satisfying

(61)

$$c(0) = \delta,$$

$$c(k) \ll \delta \quad \text{for all } k,$$

$$\sum_{|k|>K} |c(k)| \ll x^{-1}$$

and δ and K satisfying the conditions (8).

The existence of such a function is a consequence of a well known lemma of Vinogradov (see [9], ch. 1, §2).

Next we will use sieve methods. As usual, for any sequence \mathcal{A} of integers weighted by the numbers $f_n, n \in \mathcal{A}$, we set

$$S(\mathcal{A}, z) = \sum_{\substack{n \in \mathcal{A} \\ (n, P(z)) = 1}} f_n$$

and denote by \mathcal{A}_d be the subsequence of elements $n \in \mathcal{A}$ with $n \equiv 0 \pmod{d}$. We write

$$P(z) = \prod_{p < z} p, \quad V(z) = \prod_{p | P(z)} \left(1 - \frac{\omega(p)}{p} \right) \text{ and } C_0 = \prod_{p > 2} \left(1 - \frac{1}{(p-1)^2} \right).$$

and we will use the linear sieve due to Iwaniec – this is Theorem 3 (see [7]).

To prove Theorem 2, it suffice to show that

(62)
$$S(\mathcal{A}, N^{1/3}) = \sum_{\substack{n+2 \le x \\ (n+2, P(x^{1/3})=1}} \chi(\alpha n^2 + \beta) \Lambda(n) > 0.$$

Following the exposition in Shi's article (see [11]) we have that

$$S \ge \sum_{\substack{n+2 \le x\\(n+2, P(x^{1/12})=1}} \chi(\alpha n^2 + \beta) \Lambda(n) \left(1 - \frac{1}{2} \sum_{\substack{x^{1/12} \le p_1 < x^{1/3.1}\\n \equiv -2(p_1)}} 1 - \frac{1}{2} \sum_{\substack{n+2=p_1 p_2 p_3\\x^{1/12} \le p_1 < x^{1/3.1}\\x^{1/3.1} \le p_2 < (\frac{x}{p_1})^{1/2}}} 1 - \sum_{\substack{n+2=p_1 p_2 p_3\\x^{1/12} \le p_1 < p_2 < (\frac{x}{p_1})^{1/2}}} 1 + O\left(x^{11/12}\right) \right)$$

So

$$S \ge S(\mathcal{A}, x^{1/12}) - \frac{1}{2} \sum_{x^{1/12} \le p_1 < x^{1/3.1}} S(\mathcal{A}_{p_1}, x^{1/12}) - \frac{1}{2} \sum_{\substack{x^{1/12} \le p_1 < x^{1/3.1} \\ x^{1/3.1} \le p_2 < (\frac{x}{p_1})^{1/2}}} S(\mathcal{A}_{p_1p_2}, x^{1/12}) - \sum_{x^{1/12} \le p_1 < p_2 < (\frac{x}{p_1})^{1/2}} S(\mathcal{A}_{p_1p_2}, x^{1/12}) + O(x^{11/12})$$
$$= S_1 - \frac{1}{2}S_2 - \frac{1}{2}S_3 - S_4 + O(x^{11/12})$$

and it is enough to proof that above expression is positive. Consider a square-free number d. If 2|d, then we write $|\mathcal{A}_d| = |r(\mathcal{A}, d)| \leq 1$. Otherwise we have by the Fourier expansion of $\chi(n)$ that

$$\begin{aligned} |\mathcal{A}_d| &= \sum_{\substack{n \le x-2\\n \equiv -1(d)}} \chi(\alpha n^2 + \beta) \Lambda(n) \\ &= \sum_{\substack{n \le x-2\\n \equiv -1(d)}} \left(\delta + \delta \sum_{0 < |k| < K} c(k) e(\alpha n^2 k) \Lambda(n) + O(x^{-1}) \right) \\ &= \delta \left(\frac{x}{\varphi(d)} + R_1(d) + R_2(d) + O\left(\frac{x}{d(\log x)^A}\right) \right). \end{aligned}$$

Here $c(k) \ll 1$,

$$R_1(d) = \sum_{\substack{p \le x-2\\ p \equiv -1(d)}} 1 - \frac{x}{\varphi(d)}$$

$$R_2(d) = \sum_{0 < |k| < K} c(k) \sum_{\substack{n \le x - 2\\ n \equiv -2(d)}} e(\alpha n^2 k) \Lambda(n)$$

Applying Bombieri–Vinogradov theorem (see [8], Theorem 17.1)

$$\sum_{d \le D} |R_1(d)| \ll \frac{x}{(\log x)^A}$$

On the other hand , Theorem 1 implies that for a well-separated numbers d of level $D = \frac{x^{1/2}}{\Delta K^4}$ and $\lambda(d) \ll \tau(d)$ we get

$$\sum_{d \le D} \lambda(d) R_2(d) \ll \frac{x}{(\log x)^A}$$

when q = x, where a/q convergent to α with a large enough denominator. From here on, the reasoning we go through is the same as in Shi's paper (see [11]). We will only note 54

that to estimate the sum

$$\sum_{x^{1/12} \le p < x^{1/3.1}} \sum_{d \le D} R_2(pd)$$

with $D = \frac{x^{1/2}}{\Delta n K^4}$ first we present it as a $O(\log^4 x)$ number of sums of the type

$$R_2(P) = \sum_{d \sim D} \lambda(d) \sum_{1 \le |k| \sim K} c(k) \sum_{p \sim P} \sum_{\substack{n \sim x \\ n+2 \equiv 0 \ (d) \\ n+2 \equiv 0 \ (p_1)}} e\left(\alpha n^2 k\right) \Lambda(n),$$

where $x^{1/12} \le P < x^{1/3.1}/2$.

If $DP \leq x^{8/27} \Delta$ we put t = dp and represent the sum $R_2(P)$ in type: $R_2(P) = \sum_{1 \le |k| \sim K} c(k) \sum_{t \sim DP} g(t, d) \sum_{\substack{n \sim x \\ n+2 = 0 \ (t)}} e\left(\alpha n^2 k\right) \Lambda(n),$

where

$$g(t, d) = \sum_{\substack{d \sim D \\ d \mid (t, P(z)) \\ t/d > x^{1/12} \\ t/d - \text{prime}}} \lambda(d) \ll \tau(t)$$

and evaluation is in the same way as in $\S 5.2$.

If $DP \ge x^{8/27}\Delta$ then, depending on which interval P falls into, and bearing in mind Remark 2 and the fact that d is well-separated, we choose H so that PH falls into one of the intervals $x^{2/5} \leq PH \leq \frac{x^{1/2}}{\Delta K^4}$ or $x^{8/27}\Delta \leq PH \leq x^{2/5}$. So

$$R_{2}(P) = \sum_{1 \leq |k| \sim K} c(k) \sum_{s \sim S} \sum_{h \sim H} \lambda(hs) \sum_{p_{1} \sim P} \sum_{\substack{n \sim x \\ n+2 \equiv 0 \ (d) \\ n+2 \equiv 0 \ (p_{1})}} e\left(\alpha n^{2}k\right) \Lambda(n)$$
$$= \sum_{1 \leq |k| \sim K} c(k) \sum_{s \sim S} \sum_{t \sim PH} g(t, s) \sum_{\substack{n \sim x \\ n+2 \equiv 0 \ (ts)}} e\left(\alpha n^{2}k\right) \Lambda(n)$$

where

$$g(t, s) = \sum_{\substack{h \sim H \\ h \mid (t, P(z))}} \lambda(hs) \ll \tau(t)$$

and evaluation is in the same way as in $\S5.1$.

Using the same calculation as in [11] with

$$z = x^{\frac{1}{12}}, \quad \Delta = K^{\frac{32\cdot34}{33}}, \quad K = x^{\frac{1}{1296} - \eta}, \qquad D = \frac{x^{1/2}}{\Delta K^4}$$

we get that inequality (62) is true and the proof of Theorem is complete.

REFERENCES

- [1] G. HARMAN, R. C. BAKER. the distribution of αp^k modulo one. *Mathematika*, **38** (1991), 170–184.
- [2] J. R. CHEN. On the representation of a large even integer as the sum of a prime and the product of at most two primes. Sci. Sinica, 16 (1973), 157–176.
- [3] J. B. FRIEDLANDER, H. IWANIEC. Opera de cribro. American Mathematical Society Colloquium Publications, vol. 57. Providence, RI, American Mathematical Society, 2010.
- [4] G. GREAVES. Sieves in number theory. New York, Springer-Verlag, 2001.
- [5] G. H. HARDY, J. E. LITTLEWOOD. Some problems of Diophantine approximation I. On the fractional part of $n^k \lambda$. Acta Math, **37** (1914), 155–191.
- [6] D. R. HEATH-BROWN. Prime numbers in short intervals and a generalized Vaughan identity. Canad. J. Math., 34 (1982), 1365–1377.
- [7] H. IWANIEC. A new form of the error term in the linear sieve. Acta Arith., 37 (1980), 307–320.
- [8] H. IWANIEC, E. KOWALSKI. Analytic Number Theory. American Mathematical Society Colloquium Publications, vol. 53. Providence, RI, Amer. Math. Soc., 2004.
- [9] A. A. KARATSUBA. Principles of analytic number theory. Moscow, Nauka, 1983 (in Russian).
- [10] K. MATOMÄKI. A Bombieri-Vinogradov type exponential sum result with applications. Journal of Number Theory, 129, no. 9 (2009), 2214–2225.
- [11] S.-Y. SHI. On the distribution of αp modulo one for primes p of a special form. Osaka J. Math., 49, no. 4 (2012), 993–1004.
- [12] S.-Y.SHI, Z. WU. On the distribution of αp^2 modulo one for primes p of a special type. Chinese Annals of Mathematics. Series A, **34**, no. 4 (2013), 479–486.
- [13] T. L. TODOROVA, D. I. TOLEV. On the distribution of αp modulo one for primes p of a special form. MATH. SLOVACA **60** (2010), 771–786.
- [14] F. XUE, J. LI, M. ZHANG. On the distribution of αp² modulo one with prime p of a special form. *Journal of Mathematics* 2021 (2021), Article ID 5516049, https://doi.org/ 10.1155/2021/5516049.
- [15] R. C. VAUGHAN. The Hardy-Littlewood method, 2nd. ed. Cambridge, Cambridge Univ. Press, 1997.
- [16] И. М. ВИНОГРАДОВ. Основы теории чисел. Москва, Наука, 1981 [I. M. VINOGRADOV. Osnovy teorii chisel. Moskva, Nauka, 1981].
- [17] I. M. VINOGRADOV. The method of trigonometrical sums in the theory of numbers. Trud. Math. Inst. Steklov, 23, (1947), 1–109, (in Russian).
- [18] I. M. VINOGRADOV. A general distribution law for the fractional parts of values of a polynomial with variable running over primes. C. R. (Doklady) Acad.-Sci. URSS (N.S.), 51 (1946), 491–492 (in Russian).
- [19] H. WEYL. Über die Gleichverteilung von Zahlen mod Eins. Math. Ann., 11 (1916), 313–352.