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A classical problem in analytic number theory is to study the distribution of frac-
tional part αpk + β, k ≥ 1 modulo 1, where α is irrational and p runs over the set
of primes. We consider the subsequence generated by the primes p such that p+ 2 is
an almost-prime (the existence of infinitely many such p is another topical result in
prime number theory) and prove that its distribution has a similar property.
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1. Introduction and statements of the result. The famous prime twins conjecture
states that there exist infinitely many primes p such that p + 2 is a prime too. This
hypothesis is still unproved but in 1973 Chen [2] proved that there are infinitely many
primes p for which p + 2 = P2. (As usual Pr denotes an integer with no more than r
prime factors, counted according to multiplicity).

Let α be irrational real number and ‖x‖ denote the distance from x to the nearest
integer. The distribution of fractional parts of the sequence αnk, α ∈ R \ Q was first
considered by Hardy, Littlewood [5] and Weyl [19]. The problem of distribution of the
fractional parts of αpk, where p denotes a prime, first was considered by Vinogradov (see
Chapter 11 of [17] for the case k = 1, [18] for k ≥ 2), who showed that for any real β
there are infinitely many primes p such that
(1) ‖αp+ β‖ < p−θ,

where θ = 1/5− ε, ε > 0 is arbitrary small. After that many authors improved the upper
bound of the exponent θ. The best result is given by Matomäki [10] with θ = 1/3 − ε.
Another interesting problem is the study of the distribution of the fractional part of αpk

with 2 ≤ k ≤ 12, such Baker and Harman [1], Wong [1] etc. For 2 ≤ k ≤ 12 the best
result is due to Baker and Harman [1].

In [13] Todorova and Tolev considered the primes p such that ‖αp + β‖ < p−θ and
p+2 = Pr and prove existence of such primes with θ = 1/100 and r = 4. Later Matomäki
[10] and San Ying Shi [11] have shown that this actually holds whit p + 2 = P2 and
θ = 1/1000 and θ = 1.5/100 respectively.

In [12] Shi and Wu proved existence of infinitely many primes p such that ‖αp2+β‖ <
p−θ and p + 2 = P4 with 0 < θ < 2/375. In 2021 Xue, Li and Zhang [14] improved the
result of Shi and Wu with 0 < θ < 10/1561.

In this paper we evaluate exponential sums over well-separated numbers and improve
the results of Shi, Wu and Xue, Li and Zhang.

We will say that d is a well-separable number of level D ≥ 1 if for any H,S ≥ 1 with
HS = D, there are integers h ≤ H, s ≤ S such that d = hs.

Theorem 1. Suppose α ∈ R \Q satisfies conditions

(2)
∣∣∣∣α− a

q

∣∣∣∣ < 1

q2
, a ∈ Z, q ∈ N, (a, q) = 1, q ≥ 1,

K and D are defined by (8), λ(d) are complex numbers defined for d ≤ D,
(3) λ(d)� τ(d) and λ(d) 6= 0 if d is well-separable number of level D,

c(k) � 1 are complex numbers, 0 < |k| ≤ K. Then for any arbitrary small ε > 0 and
b ∈ Z for the sum

(4) W (x) =
∑
d≤D

λ(d)
∑

1≤|k|≤K

c(k)
∑
n∼x

n≡b (d)

e
(
(αn2 + β)k

)
Λ(n)

we have

(5) W � xε
(
xK

∆
1
32

+
xK

q
1
32

+
x∆

1
2K

q
1
4

+ x
71
72 ∆

33
64K + x

15
16K

31
32 q

1
32 + x

1
2 ∆

1
2K

3
4 q

1
4

)
.

Remark 1. It is obvious that the Theorem 1 is true if function λ(d) is well-factorable.
Lemma 1. Suppose α ∈ R\Q satisfies conditions (2), sum W (x) is defined by (4),

λ(d) are complex numbers defined for d ≤ D and satisfying (3) and (8), c(k) � 1 are
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complex numbers 0 < |k| ≤ K. Then there exist a sequence
{xj}∞j=1, lim

j→∞
xj =∞,

such that
W (xj)� x1−ωj , j = 1, 2, 3, . . .

for any ω > 0.
Theorem 2. Let α ∈ R\Q satisfies conditions (2), β ∈ R and let

0 < θ <
1

1296
− η,

where η is arbitrary small fixed number. Then there are infinitely many primes p satisfying
p+ 2 = P2 and such that
(6) ‖αp2 + β‖ < p−θ.

2. Notation. Let x be a sufficiently large real number and θ and ρ be real constants
satisfying

(7) 0 < θ <
1

1296
, ρ > 32θ, ρ+

64θ

33
<

8

297
ρ+ 10θ > ε.

We shall specify ρ and θ latter. We put
δ = δ(x) = x−θ, K = δ−1 log2 x,

∆ = xρ, D =
x1/2

∆K4
.

(8)

By p and q we always denote primes. As usual ϕ(n), µ(n), Λ(n) denote respectively
Euler’s function, Möbius’ function and Mangoldt’s function. We denote by τk(n) the
number of solutions of the equation m1m2 . . .mk = n in natural numbers m1, . . . ,mk

and τ2(n) = τ(n). Let (m1, . . . ,mk) and [m1, . . . ,mk] be the greatest common divisor
and the least common multiple of m1, . . . ,mk respectively. Instead of m ≡ n (mod k) we
write for simplicity m ≡ n(k). As usual, ‖y‖ denotes the distance from y to the nearest
integer, e(y) = e2πiy. For positive A and B we write A � B instead of A� B � A and
k ∼ K means K/2 ≤ k < K. The letter ε denotes an arbitrary small positive number, not
the same in all appearances. For example this convention allows us to write xε log x� xε.

3. Some lemmas.
Lemma 2. Let k, l, m, n ∈ N; X, ε ∈ R; X ≥ 2, k ≥ 2 and ε > 0. Then

(i)
∑
n≤X

(
τk(n)

)l �
k,l
X(logX)k

l−1 ;

(ii) τk(n)�
k,ε

nε .

Proof. See [16], ch. 3. �
Lemma 3. Let X ≥ 1 and α satisfied conditions (2) and a, d ∈ N. Then∣∣∣∣ ∑

n≤X
n≡a(mod d)

e(αn)

∣∣∣∣� min

(
X

d
,

1

‖αd‖

)

Proof. See [9], ch.6, §2. �
Lemma 4. Let X, Y ∈ R; k ∈ N; X, Y ≥ 1; k ≥ 2 and α satisfied conditions (2).
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Then ∑
n≤X

min
(XY
n
,

1

‖αn‖

)
� XY

(1

q
+

1

Y
+

q

XY

)
log(2Xq).

Proof. See Lemma 2.2 from [15], ch. 2,§2.1. �
Lemma 5. Let µ, ζ ∈ N, α ∈ R \ Q, and α satisfy conditions (2). Then for every

arbitrary small ε > 0 the inequality∑
m∼M

τµ(m)
∑
j∼J

τζ(j) min

{
x

m2j
,

1

‖αm2j‖

}

� xε
(
MJ +

x

M3/2
+

x

Mq1/2
+ x1/2q1/2

)
is fulfilled.

Proof. See Lemma 8, [10]. �
Lemma 6. If d|P (z), z < D1/2, λ± are Rosser’s weights and either λ+(d) 6= 0 or

λ−(d) 6= 0 then d is well-separated number.

Proof. See Lemma 12.16, [3] �

Theorem 3. Let 2 ≤ z ≤ D1/2 and s =
logD

log z
. If

Ad =
ω(d)

d
x+ r(x, d) if µ(d) 6= 0∑

z1≤p<z2

ω(p)

p
= log

(
log z2
log z1

)
+O

(
1

log z1

)
, z2 > z1 ≥ 2

where ω(d) is a multiplicative function, 0 < ω(p) < p, x > 1 is independent of d. Then

xV (z)

(
f(s) + O

(
1

(logD)1/3

))
≤ S(A, z) ≤ xV (z)

(
F (s) + O

(
1

(logD)1/3

))
,

where d are well-separated numbers of level D, f(s), F (s) are determined by the following
differential-difference equations

F (s) =
2eγ

s
, f(s) = 0 if 0 < s ≤ 2

(sF (s))′ = f(s− 1), (sf(s))′ = F (s− 1) if s > 2,

where γ denote the Euler’s constant.

4. Auxiliary results.
Lemma 7. Let α ∈ R\Q satisfied conditions (2), M, S, J, x ∈ R+, x > M3S2J and

µ, σ, ζ ∈ [2, ∞) ∩ N,

G =
∑
m∼M

τµ(m)
∑
s∼S

τσ(s)
∑
j∼J

τζ(j) min

{
x

m3s2j
,

1

‖αm3s2j‖

}
.

Then for any ε > 0 the inequalities

(9) G� xε
(
MSJ +

x

M
9
4S

+
x

M2S
9
8

+
x

M2Sq
1
8

+
x

7
8 q

1
8

M2S

)
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and

(10) G� xε
(
MSJ +

x

M
9
4S

3
4

+
x

M2S
3
4 q

1
4

+
x

3
4 q

1
4

M2S
3
4

)
are fulfilled.

Proof. Our proof is similar to proof of Lemma 8, [10]. Let

(11) H =
x

M3S2J
.

If H ≤ 2, then trivially from Lemma 2 (iv) we get
(12) G� xεMSJ.

So we can assume that H > 2. From Lemma 2 (iv) it is obviously that

G� xε
∑
m∼M

∑
s∼S

∑
j∼J

min

{
x

m3s2j
,

1

‖αm3s2j‖

}
.

We apply the Fourier expansion to the function min

{
x

m3s2j
,

1

‖αm3s2j‖

}
and get

min

{
x

m3s2j
,

1

‖αm3s2j‖

}
=

∑
0<|h|≤H2

w(h)e(αm3s2jh) +O(log x),

where

(13) w(h)� min

{
logH,

H

|h|

}
.

Then

(14) G| � xε
∑

0<|h|≤H2

|w(h)|
∑
s∼S

∑
j∼J

∣∣∣∣ ∑
m∼M

e(αm3s2jh)

∣∣∣∣+MSJ log x.

So if

G(H0) =
∑
h∼H0

∑
s∼S

∑
j∼J

∣∣∣∣ ∑
m∼M

e(αm3s2jh)

∣∣∣∣.
then using (13) we have

(15) G� xε
(
MSJ + max

1≤H0≤H1

G(H0) + max
H1≤H0≤H2

H

H0
G(H0)

)
.

We shall evaluate the sum G(H0). Applying the Cauchy–Schwarz inequality we obtain

G2(H0)� xεH0JS
∑
h∼H0

∑
s∼S

∑
j∼J

∣∣∣∣ ∑
m∼M

e(αm3s2jh)

∣∣∣∣2

� xεH0JS
∑
h∼H0

∑
s∼S

∑
j∼J

∑
m1∼M

∑
m2∼M

e
(
α(m3

1 −m3
2)s2jh

)
.

Substituting m1 = m2 + t, where 0 ≤ |t| ≤M we get

(16) G2(H0)� xε
(
H2

0J
2S2M +H0JSG1(H0)

)
,
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where

G1(H0) =
∑
h∼H0

∑
s∼S

∑
j∼J

∑
0<|t|<M

∣∣∣∣ ∑
m2∼M

e
(
α(3m2

2t+ 3m2t
2)s2jh

)∣∣∣∣.
Applying again the Cauchy–Schwarz inequality we obtain

G2
1(H0)� H0JSM

∑
h∼H0

∑
s∼S

∑
j∼J

∑
0<|t|<M

∑
m2∼M

×
∑

m3∼M
e
(
α(3(m2

2 −m2
3)t+ 3(m2 −m3)t2)s2jh

)
.

Substituting m2 = m3 + `, where 0 ≤ |`| ≤M we get

G2
1(H0)� H2

0J
2S2M3+

H0JSM
∑
h∼H0

∑
s∼S

∑
j∼J

∑
0<|t|<M

∑
0<|`|<M

∣∣∣∣ ∑
m3∼M

e
(
6αm3t`s

2jh
)∣∣∣∣.

Let u = 6t`hj. Then using Lemma 3 and Lemma 5 we get

G2
1(H0)� H2

0J
2S2M3 +H0JSM

∑
u≤24H0JM2

τ5(u)
∑
s∼S

∣∣∣∣ ∑
m3∼M

e
(
αm3s

2u
)∣∣∣∣

(17) � H2
0J

2S2M3 +H0JSM
∑

u�H0JM2

τ5(u)
∑
s∼S

min

{
H0JS

2M3

s2u
,

1

||αs2u||

}
.

We will estimate the above sum in two ways. Using Lemma 5 we obtain

G2
1(H0)� xε

(
H2

0J
2S2M3 +H2

0J
2S

3
2M4 +

H2
0J

2S2M4

q
1
2

+H
3
2
0 J

3
2SM

5
2 q

1
2

)
.

So from (16)

(18) G(H0) � xε
(
H0JSM

3
4 + H0JS

7
8M +

H0JSM

q
1
8

+ H
7
8
0 J

7
8S

3
4M

5
8 q

1
8

)
.

Choosing H0 = H from (11), (15) and (18) we get (9).
On the other hand we can write the inequality (17) as

G2
1(H0)� H2

0J
2S2M3 +H0JSM

∑
k�H0JS2M2

min

{
H0JS

2M3

k
,

1

||αk||

}
and using Lemma 4 and (16) we get

(19) G2(H0)� xε
(
H2

0J
2S3M3 +

H2
0J

2S3M4

q
+H0JSMq

)
Now we choose H0 = H. Then from (11), (15) and (19) the inequality (10) is received. �

5. Proof of Theorem 1. To prove Theorem 1 we shall evaluate the sum W in two
ways:

when x8/27∆ ≤ D ≤ x1/2

∆K4
,we will use the Vaughan’s identity;

when D ≤ x8/27∆,we will use the Heat-Brown identity.
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5.1. Evaluation by Vaughan’s identity. Let x8/27∆ ≤ D ≤ x1/2

∆K4
and 0 < |K| ≤

δ−1 log2 x. First we decompose the sum W (x) into O(log2 x) sums of type

W = W (x, D, K) =
∑
d∼D

λ(d)
∑

1≤|k|∼K

c(k)
∑
n∼x

n+2≡0 (d)

e
(
(αn2 + β)k

)
Λ(n),

where λ(d) is Roser weight and in particular a necessary condition for λ(d) 6= 0 is numbers
d are squarefree. So from this point on we will use that numbers d are squarefree. Then
by Vaughan’s identity we can decompose the sum W into O(log x) type I sums

W1 =
∑
d∼D

(a, d)=1

λ(d)
∑
k∼K

c(k)e(βk)
∑
m∼M
`∼L

mn≡a(mod d)

a(m)e(α(m`)2k)

or

W ′1 =
∑
d∼D

(a, d)=1

λ(d)
∑
k∼K

c(k)e(βk)
∑
m∼M
`∼L

m`≡a(mod d)

log(n)e(α(m`)2k)

with M ≤ x1/3 and O(log x) type II sums

W2 =
∑
d∼D

(a, d)=1

λ(d)
∑
k∼K

c(k)e(βk)
∑
m∼M
`∼L

m`≡a(mod d)

a(m)b(`)e(α(m`)2k)

with M ∈ [x1/3, x2/3] and

(20) ML ∼ x, a(m)� τ3(m) logm, b(`)� τ3(`) log `

5.1.1. Evaluation of type II sums. The proof follows proof of Theorem 1, [10]. As
x1/3 ≤ M, L ≤ x2/3 and ML ∼ x we will consider only the case x1/2 ≤ M ≤ x2/3.
The evaluation in the case x1/2 ≤ L ≤ x2/3 is the same. Using that d is well-separated
numbers we write d = hs, where (h, s) = 1 as d is squarefree. So the sum W2 is presented
as O(log2 x) sums of the type

W2 =
∑
h∼H

(h, a)=1

∑
s∼S

(s, ah)=1

λ(hs)
∑
k∼K

c(k)e(βk)
∑
`∼L

∑
m∼M

m`≡a(mod hs)

a(m)b(`)e(α(m`)2k).

Here
(21) h ∼ H, s ∼ S, D ∼ HS

and H we will choose later. Applying the Cauchy–Schwarz inequality to W2 and using
and Lemma 2(i) we obtain that
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(22) W 2
2 � xεKHM

∑
k∼K

∑
h∼H

(h, a)=1

∑
s′1∼S

(s′1, ah)=1

λ(hs′1)
∑
s′2∼S

(s′2, ah)=1

λ(hs′2)

×
∑
`1∼L

b(`1)
∑
`2∼L

b(`2)
∑
m∼M

m`1≡a(hs′1)
m`2≡a(hs′2)

e(αm2(`21 − `22)k).

Let (s′2, s
′
1) = r, s′1 = rs1, s′2 = rs2, r ∼ R, R ≤ S and s′1, s

′
2 ∼ S/R. Then

(23) W 2
2 � xεKHM

∑
k∼K

∑
h∼H

(h, a)=1

∑
r∼R

(r, ah)=1

∑
s1∼S/R

(s1, ah)=1

λ(hrs1)
∑

s2∼S/R
(s2, as1h)=1

λ(hrs2)

×
∑
`1∼L

b(`1)
∑
`2∼L

b(`2)
∑
m∼M

m`1≡a(hrs1)
m`2≡a(hrs2)

e(αm2(`21 − `22)k)

= W21 +W22,

where W21 is this one part of above sum for which
`1 = `2, s1 6= s2 or
`1 = `2, s1 = s2 = 1 r ∼ S or
`1 6= `2, s1 = s2 = 1 r ∼ S or

`1 6= `2, s1 6= s2, M <
4HS2

R
,

W22 is the rest part of sum for W 2
2 . To evaluate the sum W21 we consider the cases

x1/2 ≤M ≤ x

D
and x1/3 ≤ L ≤ D. Then using Lemma 2 we get

(24) W21 � xε
(
xMHK2 + xD2K2 +

x2HK2

D
+
xLD2K2

H

)
.

It is clear that for sum W22 we have `1 6= `2, s1 6= s2, M >
4HS2

R
. From

m`1 ≡ a(hrs1), m`2 ≡ a(hrs2) follows that `1 ≡ `2(hr).

We apply again the Cauchy–Schwarz inequality and get

W 2
22 �

x2+εD2K3

R2

∑
k∼K

∑
h∼H

(h, a)=1

∑
r∼R

(r, ah)=1

∑
s1∼S/R

(s1, ah)=1

∑
s2∼S/R

(s2, as1h)=1

×
∑
`1∼L

∑
`2∼L

`2≡`1(hr)

∑
m1∼M

m1`1≡a(hrs1)
m1`2≡a(hrs2)

∑
m2∼M

m2`1≡a(hrs1)
m2`2≡a(hrs2)

e(α(m2
1 −m2

2)(`21 − `22)k).

Let W221 be this one part of above sum for which m1 = m2 and W222 be this part for
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which m1 6= m2. It is not difficult to see that

(25) W221 �
x3+εLD2K4

H
.

Let consider the sum W222. As
mi`1 ≡ a (mod hrs1) and mi`2 ≡ a (mod hrs2), i = 1, 2

we get
m1 ≡ m2(mod hrs1s2) ≡ f(mod hrs1s2), where f = f(h, r, s1, s2, `1, `2)

and `1 ≡ `2(mod hr). Let

m1 = m2 + hrs1s2t, 0 < |t| ≤ 8MR

HS2
and `1 = `2 + hru, 0 < |u| ≤ 2L

HR
.

Then
m2

1 −m2
2 = 2m2hrs1s2t+ h2r2s21s

2
2t

2 and `21 − `22 = hru(2`2 + hru).

So using above equalities and Lemma 3 we obtain

W222 �
x2+εD2K3

R2

∑
k∼K

∑
h∼H

(h, a)=1

∑
r∼R

(r, ah)=1

∑
s1∼S/R

(s1, ah)=1

∑
s2∼S/R

(s2, as1h)=1

×
∑
`∼L

∑
0<|u|≤ 2L

HR

∑
0<|t|≤ 8MR

HS2

min

{
M

hrs1s2
,

1

‖2αh3r3s21s22tu`k‖

}
,

where ` = 2`2 + hru. We put

m = hr, s = s1s2, j = 2tunk, j � xLK

D2

and it is clear that the sum W222 can be represented as a finite number of sums of the
type

W223 =
x2+εD2K3

R2

∑
m∼HR

τ(m)
∑
s∼ S2

R2

τ(s)
∑

j� xLK
D2

τ5(j) min

{
x2K

m3s2j
,

1

‖αm3s2j‖

}
.

Using Lemma 7, (21), (23), (24) and (25) we get

(26) W223 � xε
(
x

1
2M

1
2H

1
2K + x

1
2DK +

x
1
2L

1
2DK

H
1
2

+
x

3
4L

1
4D

1
2K

H
1
4

+
xH

1
2K

D
1
2

+
xK

H
1
16

+
xH

1
16K

D
1
16

+
xK

q
1
32

+ x
15
16K

31
32 q

1
32

)
.

According to D, M and L we have

(27) W223 � xε
(
V1 + V2 + V3 + V4

)
,

where V1 is the sum with

x1/2 ≤M ≤ x

D
, x2/5 ≤ D ≤ x1/2

∆K4

D ≤ L ≤ x1/2,
(28)
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V2 is the sum with
x

D
≤M < x1/3D2/3, x2/5 ≤ D ≤ x1/2

∆K4

x2/3

D2/3
< L ≤ D,

(29)

V3 is the sum with

x1/3D2/3 ≤M ≤ x2/3, x2/5 ≤ D ≤ x1/2

∆K4

x1/3 ≤ L ≤ x2/3

D2/3

(30)

and V4 is the sum with
x1/2 ≤M ≤ x2/3, x8/27∆ ≤ D ≤ x2/5

x1/3 ≤ L ≤ x1/2.
(31)

For sums V1, V2, V3 and V4 we choose consequently

H =
D

∆1/2
, H =

LD2/3

x1/3
, H =

x1/3

∆
, H =

L4/5D9/5

x4/5
.

and from (26), (28), (29), (30) and (31) we get

W2 �


xε
(
xK

∆
1
32

+ +x
5
6D

1
3 ∆

1
4K +

xK

q
1
32

+ x
15
16K

31
32 q

1
32

)
, if x2/5 ≤ D ≤ x1/2

∆K4
,

xε
(
x

31
30K

D
9
80

+
xK

q
1
32

+ x
15
16K

31
32 q

1
32

)
, if x8/27∆ ≤ D ≤ x2/5.

So

(32) W2 � xε
(
xK

∆
1
32

+ x
5
6D

1
3 ∆

1
4K +

xK

q
1
32

+ x
15
16K

31
32 q

1
32

)
.

5.1.2. Evaluation of type I sums. In this case we have that L > x
2
3 and M < x

1
3 .

Again we will use that d is well-separated numbers. So we can write d = hs with h and
s satisfying conditions (21) and we will choose H later. So the sum W1 is presented as
O(log2 x) sums of the type

W1 =
∑
h∼H

(h, a)=1

∑
s∼S

(s, a)=1

λ(hs)
∑
k∼K

c(k)e(βk)
∑
`∼L

∑
m`∼M

m`≡a(mod d)

a(m)e(α(m`)2k).

Working in the same way as in the evaluation of the sum W2 see (22), we get

(33) W 2
1 � xεKHM

∑
k∼K

∑
h∼H

(h, a)=1

∑
r∼R

(r, ah)=1

∑
s1∼S/R

(s1, ah)=1

λ(hrs1)
∑

s2∼S/R
(s2, as1h)=1

λ(hrs2)

×
∑
`1∼L

b(`1)
∑
`2∼L

b(`2)
∑
m∼M

m`1≡a(hrs1)
m`2≡a(hrs2)

e(αm2(`21 − `22)k)

= W11 +W12 +W13,
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where W12 is this one part of above sum for which
`1 = `2,

W13 is this one part of above sum for which
`1 6= `2, s1 = s2 = 1 r ∼ S

and W11 is the rest part of sum for W 2
1 . Using that L > x

2
3 and M < x

1
3 we get

(34) W12 � xε.xMHK2.

For the sum W13 we get

W13 � xεKHM
∑
k∼K

∑
d∼D

(d, a)=1

∑
m∼M

∣∣∣∣ ∑
`i∼L

m`i≡a(d)
i=1,1

e(αm2(`21 − `22)k

∣∣∣∣.
As `1 ≡ `2(mod d) we put

`1 = `2 + du, 0 < |u| � L

D
.

So

W13 � xεKHM
∑
k∼K

∑
d∼D

(d, a)=1

∑
m∼M

∑
u� L

D

∣∣∣∣ ∑
`2∼L

m`2≡a(d)

e(2αm2`2udk)

∣∣∣∣
and from Lemma 3 we get

W13 � xεKHM
∑
k∼K

∑
d∼D

(d, a)=1

∑
m∼M

∑
u� L

D

min

{
x2K

m2d2(2uk)
,

1

‖αm2d2(2uk)‖
.

}
The above sum can be represented as a finite number of sums of the type

W14 � xεKHM
∑

z∼MD

τ(z)
∑
t�LK

D

τ3(t) min

{
x2K

z2t
,

1

‖αz2t‖
.

}
Using Lemma 5 and ML ∼ x we obtain

(35) W
1
2
13 � xε

(
x

1
2M

1
2H

1
2K +

x
3
4L

1
4H

1
2K

D
3
4

+
xH

1
2K

D
1
2 q

1
4

+
x

1
2H

1
2 q

1
4K

3
4

D
1
2

)
Using analogous reasoning for the sum W11 we get

(36) W11 � xεKHM
∑
k∼K

∑
h∼H

(h, a)=1

∑
r∼R

(r, ah)=1

∑
si∼S/R

(s1s2, ah)=1

×
∑
m∼M

∑
u� L

HR

∣∣∣∣ ∑
`2∼L

m`2≡a(hrs2)
m(`2+uhr)≡a(s1)

e(2αm2`2uhrk)

∣∣∣∣
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and from Lemma 3 we obtain

W11 � xεKHM
∑
k∼K

∑
h∼H

∑
r∼R

∑
si∼S/R
i=1,2∑

m∼M

∑
u� L

HR

min

{
L

hrs1s2
,

1

‖αm2h2r2.2s1s2uk‖

}
.

Applying Lemma 5 and using that ML ∼ x we get

(37) W
1
2
11 � xε

(
x

1
2DK

H
1
2

+
x

3
4L

1
4K

H
1
4

+
xK

q
1
4

+ x
1
2 q

1
4K

3
4

)
Choosing H =

D

M
1
2

from (34), (35), (37), (22) and (5) follows

(38) W1 � xε
(
xK

D
1
4

+
xK

q
1
4

+ x
1
2K

3
4 q

1
4

)
.

From (32) and (38) it follows that in the case x8/27∆ ≤ D ≤ x1/2

∆K4
the estimate

(39) W � xε
(
xK

∆
1
32

+ +x
5
6D

1
3 ∆

1
4K +

xK

q
1
32

+ x
15
16K

31
32 q

1
32

)
is fulfilled.

5.2. Evaluation by Heat-Brown’s identity. Let D ≤ x8/27∆. We decompose the
sum W (x) into O(log2 x) as in (4). Using Heath-Brown’s identity [6] with parameters

(40) P = x/2, P1 = x, u =
x

1
3

221D
1
32

, v = 27x
1
3 , w = 27x

1
3D

1
64 .

we decompose the sum W as a linear combination of O(log6N) sums of first and second
type. The sums of the first type are

W1 =
∑
d≤D

λ(d)
∑

0<|k|≤K

c(k)e(βk)
∑

M<m≤M1

am
∑

L<`≤L1

m`≡−2(d)

e(αm2`2k)

and
W ′1 =

∑
d≤D

λ(d)
∑

0<|k|≤K

c(k)e(βk)
∑

M<m≤M1

a(m)
∑

L<`≤L1

m`≡−2(d)

log `e(αm2`2k),

where
(41) M1 ≤ 2M, L1 ≤ 2L, ML � x, L ≥ w, a(m)� xε.

The sums of the second type are

W2 =
∑
d≤D

λ(d)
∑

0<|k|≤K

c(k)e(βk)
∑

L<`≤L1

b(`)
∑

M<m≤M1

m`≡−2(d)

a(m)e(αm2`2k),

where
(42) M1 ≤ 2M, L1 ≤ 2L, ML � x, u ≤ L ≤ v, a(m), b(`)� xε.
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5.2.1. Evaluation of type II sums. Applying the Cauchy–Schwarz inequality to W2

and using Lemma 2(i), (40), (42) and (46) we obtain that

(43) W 2
2 � xεKDM

∑
k∼K

∑
d∼D

(d, a)=1

∑
`i∼L
i=1,2

`1≡`2(d)

b(`1)b(`2)
∑
m∼M

m`i≡a(d)
i=1,2

e(αm2(`21 − `22)k)

= W21 + x1+εMDK2

where
W21 = xεKDM

∑
k∼K

∑
d∼D

(d, a)=1

∑
`i∼L
`1 6=`2
`1≡`2(d)

b(`1)b(`2)
∑
m∼M

m`i≡a(d)
i=1,2

e(αm2(`21 − `22)k)

Applying again the Cauchy–Schwarz inequality and substituting

m1 = m2 + td, t� M

D
and `1 = `2 + ωd, ω � L

D
we sequentially obtain

(44) W 2
21 � x2+εD2K3

∑
k∼K

∑
d∼D

(d, a)=1

∑
`i∼L
`1 6=`2
`1≡`2(d)

∑
mi∼M

m1`i≡a(d)
m2`i≡a(d)
m1 6=m2

e(α(m2
1 −m2)(`21 − `22)k)

+ x3+εLDK4

= W22 + x3+εLDK4

with

W22 � x2+εD2K3
∑
k∼K

∑
d∼D

∑
ω� L

D

∑
`2∼L

∑
t�M

D

min

{
M

d
,

1

‖αd3tω(2`2 + ωd)k‖
.

}
Putting ` = `2 + ωd and z = ω`kt we get

(45) W22 � x2+εD2K3
∑
d∼D

∑
z� xLK

D2

τ4(z) min

{
x2K

d3z
,

1

‖αd3z‖
.

}
If
(46) ∆ < D ≤ x 8

27 ∆

then from inequality (10) of Lemma 7, (45), (43) and (44) we get

(47) W2 � xε
(
x

71
72 ∆

33
64K +

xK

q
1
16

+
xK

∆
1
16

+ x
15
16 q

1
32K

31
32

)
.

If
(48) D ≤ ∆

we will estimate the sum W22 by putting u = d3z and applying Lemma 4, Lemma 2 (ii)
to find

(49) W2 � xε
(
x

71
72 ∆

33
64K +

x∆
1
2K

q
1
4

+
xK

q
1
16

+
xK

∆
1
16

+ x
15
16 q

1
32K

31
32 + x

1
2 ∆

1
2K

3
4 q

1
4

)
.
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From (47) and (50) we get

(50) W2 � xε
(
x

71
72 ∆

33
64K +

x∆
1
2K

q
1
4

+
xK

q
1
32

+
xK

∆
1
16

+ x
15
16 q

1
32K

31
32 + x

1
2 ∆

1
2K

3
4 q

1
4

)
.

5.2.2. Evaluation of type I sums. Reasoning as in the estimation of the sum W13 (see
(5.1.2)) we obtain

(51) W 2
1 � xεMDK

∑
z∼MD

τ(z)
∑
t�LK

D

τ3(t) min

{
x2K

z2t
,

1

‖αz2t‖

}
+ xεMDK2.

Using Lemma 5 and ML ∼ x we obtain

(52) W 2
1 � xε

(
MDK2 +

x2K2

(MD)
1
2

+
x2K2

q
1
2

+ xK
3
2 q

1
2

)
Using the inequality (51) we will evaluate the sum W1 in one more way. Let u = z2t and
from Lemma 4 (iii) and Lemma 2 (iv) we find

(53) W 2
1 � xεMDK

∑
u�xMDK

τ5(u) min

{
x2K

u
,

1

‖αu‖

}
� xε

(
MDKq + xM2D2K2 +

x2MDK2

q

)
If MD > ∆ using the estimate (52) we get

(54) W1 � xε
(
x

47
48 ∆

63
128K +

xK

∆
1
4

+
xK

q
1
4

+ x
1
2K

3
4 q

1
4

)
.

If MD ≤ ∆ from (53) it follows

(55) W1 � xε
(
x

1
2 ∆K +

x∆
1
2K

q
1
2

+ ∆
1
2K

1
2 q

1
2

)
,

then using (54) and (55) we get

(56) W1 � xε
(
x

47
48 ∆

63
128K +

xK

∆
1
4

+
xK

q
1
4

+
x∆

1
2K

q
1
2

+ x
1
2K

3
4 q

1
4

)
.

From (39), (50) and (56)

(57) W � xε
(
xK

∆
1
32

+
xK

q
1
32

+
x∆

1
2K

q
1
4

+ x
71
72 ∆

33
64K + x

15
16K

31
32 q

1
32 + x

1
2 ∆

1
2K

3
4 q

1
4

)
.

5.3. Proof of Lemma 1. In Theorem 2 choose

(58) x = q, ∆ = K
32.34
33 , K = x

1
1296−η, D =

x1/2

∆K4
,

where η is arbitrary small fixed number.

6. Proof of Theorem 2. As in [13] we take a periodic function with period 1 such
that

(59)
0 < χ(t) < 1 if − δ < t < δ;

χ(t) = 0 if δ ≤ t ≤ 1− δ,
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and which has a Fourier series
(60) χ(t) = δ +

∑
|k|>0

c(k)e(kt),

with coefficients satisfying

c(0) = δ,

c(k)� δ for all k,(61) ∑
|k|>K

|c(k)| � x−1

and δ and K satisfying the conditions (8).

The existence of such a function is a consequence of a well known lemma of Vinogradov
(see [9], ch. 1, §2).

Next we will use sieve methods. As usual, for any sequence A of integers weighted by
the numbers fn, n ∈ A, we set

S(A, z) =
∑
n∈A

(n, P (z))=1

fn

and denote by Ad be the subsequence of elements n ∈ A with n ≡ 0 (mod d). We write

P (z) =
∏
p<z

p, V (z) =
∏
p|P (z)

(
1− ω(p)

p

)
and C0 =

∏
p>2

(
1− 1

(p− 1)2

)
.

and we will use the linear sieve due to Iwaniec – this is Theorem 3 (see [7]).

To prove Theorem 2, it suffice to show that

(62) S(A, N1/3) =
∑

n+2≤x
(n+2, P (x1/3)=1

χ(αn2 + β)Λ(n) > 0.

Following the exposition in Shi’s article (see [11]) we have that

S ≥
∑

n+2≤x
(n+2, P (x1/12)=1

χ(αn2 + β)Λ(n)

(
1− 1

2

∑
x1/12≤p1<x1/3.1

n≡−2(p1)

1− 1

2

∑
n+2=p1p2p3

x1/12≤p1<x1/3.1

x1/3.1≤p2<( x
p1

)1/2

1

−
∑

n+2=p1p2p3
x1/12≤p1<p2<( x

p1
)1/2

1 +O
(
x11/12

))
.

So
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S ≥ S(A, x1/12)− 1

2

∑
x1/12≤p1<x1/3.1

S(Ap1 , x1/12)− 1

2

∑
x1/12≤p1<x1/3.1

x1/3.1≤p2<( x
p1

)1/2

S(Ap1p2 , x1/12)

−
∑

x1/12≤p1<p2<( x
p1

)1/2

S(Ap1p2 , x1/12) +O
(
x11/12

)

= S1 −
1

2
S2 −

1

2
S3 − S4 +O

(
x11/12

)
and it is enough to proof that above expression is positive. Consider a square-free number
d. If 2|d, then we write |Ad| = |r(A, d)| ≤ 1. Otherwise we have by the Fourier expansion
of χ(n) that

|Ad| =
∑

n≤x−2
n≡−1(d)

χ(αn2 + β)Λ(n)

=
∑

n≤x−2
n≡−1(d)

(
δ + δ

∑
0<|k|<K

c(k)e(αn2k)Λ(n) +O(x−1)

)

=δ

(
x

ϕ(d)
+R1(d) +R2(d) +O

(
x

d(log x)A

))
.

Here c(k)� 1,

R1(d) =
∑

p≤x−2
p≡−1(d)

1− x

ϕ(d)

R2(d) =
∑

0<|k|<K

c(k)
∑

n≤x−2
n≡−2(d)

e(αn2k)Λ(n)

Applying Bombieri–Vinogradov theorem (see [8], Theorem 17.1)∑
d≤D

|R1(d)| � x

(log x)A
.

On the other hand , Theorem 1 implies that for a well-separated numbers d of level

D =
x1/2

∆K4
and λ(d)� τ(d) we get∑

d≤D

λ(d)R2(d)� x

(log x)A

when q = x, where a/q convergent to α with a large enough denominator. From here on,
the reasoning we go through is the same as in Shi’s paper (see [11]). We will only note
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that to estimate the sum ∑
x1/12≤p<x1/3.1

∑
d≤D

R2(pd)

with D =
x1/2

∆pK4
first we present it as a O(log4 x) number of sums of the type

R2(P ) =
∑
d∼D

λ(d)
∑

1≤|k|∼K

c(k)
∑
p∼P

∑
n∼x

n+2≡0 (d)
n+2≡0 (p1)

e
(
αn2k

)
Λ(n),

where x1/12 ≤ P < x1/3.1/2.

If DP ≤ x8/27∆ we put t = dp and represent the sum R2(P ) in type:

R2(P ) =
∑

1≤|k|∼K

c(k)
∑
t∼DP

g(t, d)
∑
n∼x

n+2≡0 (t)

e
(
αn2k

)
Λ(n),

where
g(t, d) =

∑
d∼D

d|(t, P (z))

t/d>x1/12

t/d−prime

λ(d)� τ(t)

and evaluation is in the same way as in § 5.2.

If DP ≥ x8/27∆ then, depending on which interval P falls into, and bearing in mind
Remark 2 and the fact that d is well-separated, we choose H so that PH falls into one

of the intervals x2/5 ≤ PH ≤ x1/2

∆K4
or x8/27∆ ≤ PH ≤ x2/5. So

R2(P ) =
∑

1≤|k|∼K

c(k)
∑
s∼S

∑
h∼H

λ(hs)
∑
p1∼P

∑
n∼x

n+2≡0 (d)
n+2≡0 (p1)

e
(
αn2k

)
Λ(n)

=
∑

1≤|k|∼K

c(k)
∑
s∼S

∑
t∼PH

g(t, s)
∑
n∼x

n+2≡0 (ts)

e
(
αn2k

)
Λ(n)

where
g(t, s) =

∑
h∼H

h|(t, P (z))

λ(hs)� τ(t)

and evaluation is in the same way as in § 5.1.

Using the same calculation as in [11] with

z = x
1
12 , ∆ = K

32.34
33 , K = x

1
1296−η, D =

x1/2

∆K4
,

we get that inequality (62) is true and the proof of Theorem is complete.
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