ON THE DISTRIBUTION OF $\alpha p^{2}+\beta$ MODULO ONE FOR PRIMES p SUCH THAT $p+2$ HAS NO MORE TWO PRIME DIVISORS*

Tatyana L. Todorova
Faculty of Mathematics and Informatics, Sofia University "St. Kliment Ohridksi", Sofia, Bulgaria
e-mail: tlt@fmi.uni-sofia.bg

A classical problem in analytic number theory is to study the distribution of fractional part $\alpha p^{k}+\beta, k \geq 1$ modulo 1 , where α is irrational and p runs over the set of primes. We consider the subsequence generated by the primes p such that $p+2$ is an almost-prime (the existence of infinitely many such p is another topical result in prime number theory) and prove that its distribution has a similar property.
Keywords: linear sieve, almost primes, distribution modulo one.

РАЗПРЕДЕЛЕНИЕ НА ДРОБНИТЕ ЧАСТИ НА $\alpha p^{2}+\beta$ ПО МОДУЛ 1 ЗА ПРОСТИ ЧИСЛА p, ЗА КОИТО $p+2$ ИМА НЕ ПОВЕЧЕ ОТ ДВА ПРОСТИ ДЕЛИТЕЛЯ

Татяна Л. Тодорова
Факултет по математика и информатика, Софийски университет „Св. Климент Охридски", София, България e-mail: tlt@fmi.uni-sofia.bg

Abstract

Класически проблем в аналитичната теория на числата е проблемът за разпределението на дробните части на числата $\alpha p^{k}, k \geq 1$, където α е ирационално и p пробягва множеството на простите числа. Ние разглеждаме подмножество на множеството на простите числа p, за които $p+2$ е почти просто и доказваме, че тяхното разпределение има свойства подобни на тези на разпределението на простите числа. Ключови думи: линейно решето, почти прости, разпределение по модул 1.

[^0]1. Introduction and statements of the result. The famous prime twins conjecture states that there exist infinitely many primes p such that $p+2$ is a prime too. This hypothesis is still unproved but in 1973 Chen [2] proved that there are infinitely many primes p for which $p+2=\mathrm{P}_{2}$. (As usual P_{r} denotes an integer with no more than r prime factors, counted according to multiplicity).

Let α be irrational real number and $\|x\|$ denote the distance from x to the nearest integer. The distribution of fractional parts of the sequence $\alpha n^{k}, \alpha \in \mathbb{R} \backslash \mathbb{Q}$ was first considered by Hardy, Littlewood [5] and Weyl [19]. The problem of distribution of the fractional parts of αp^{k}, where p denotes a prime, first was considered by Vinogradov (see Chapter 11 of [17] for the case $k=1,[18]$ for $k \geq 2$), who showed that for any real β there are infinitely many primes p such that

$$
\begin{equation*}
\|\alpha p+\beta\|<p^{-\theta} \tag{1}
\end{equation*}
$$

where $\theta=1 / 5-\varepsilon, \varepsilon>0$ is arbitrary small. After that many authors improved the upper bound of the exponent θ. The best result is given by Matomäki [10] with $\theta=1 / 3-\varepsilon$. Another interesting problem is the study of the distribution of the fractional part of αp^{k} with $2 \leq k \leq 12$, such Baker and Harman [1], Wong [1] etc. For $2 \leq k \leq 12$ the best result is due to Baker and Harman [1].

In [13] Todorova and Tolev considered the primes p such that $\|\alpha p+\beta\|<p^{-\theta}$ and $p+2=P_{r}$ and prove existence of such primes with $\theta=1 / 100$ and $r=4$. Later Matomäki [10] and San Ying Shi [11] have shown that this actually holds whit $p+2=P_{2}$ and $\theta=1 / 1000$ and $\theta=1.5 / 100$ respectively.

In [12] Shi and Wu proved existence of infinitely many primes p such that $\left\|\alpha p^{2}+\beta\right\|<$ $p^{-\theta}$ and $p+2=P_{4}$ with $0<\theta<2 / 375$. In 2021 Xue, Li and Zhang [14] improved the result of Shi and Wu with $0<\theta<10 / 1561$.

In this paper we evaluate exponential sums over well-separated numbers and improve the results of Shi, Wu and Xue, Li and Zhang.

We will say that d is a well-separable number of level $D \geq 1$ if for any $H, S \geq 1$ with $H S=D$, there are integers $h \leq H, s \leq S$ such that $d=h s$.

Theorem 1. Suppose $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ satisfies conditions

$$
\begin{equation*}
\left|\alpha-\frac{a}{q}\right|<\frac{1}{q^{2}}, \quad a \in \mathbb{Z}, \quad q \in \mathbb{N}, \quad(a, q)=1, \quad q \geq 1 \tag{2}
\end{equation*}
$$

K and D are defined by (8), $\lambda(d)$ are complex numbers defined for $d \leq D$,
(3) $\quad \lambda(d) \ll \tau(d)$ and $\quad \lambda(d) \neq 0 \quad$ if d is well-separable number of level D, $c(k) \ll 1$ are complex numbers, $0<|k| \leq K$. Then for any arbitrary small $\varepsilon>0$ and $b \in \mathbb{Z}$ for the sum

$$
\begin{equation*}
W(x)=\sum_{d \leq D} \lambda(d) \sum_{1 \leq|k| \leq K} c(k) \sum_{\substack{n \sim x \\ n=b(d)}} e\left(\left(\alpha n^{2}+\beta\right) k\right) \Lambda(n) \tag{4}
\end{equation*}
$$

we have

$$
\begin{equation*}
W \ll x^{\varepsilon}\left(\frac{x K}{\Delta^{\frac{1}{32}}}+\frac{x K}{q^{\frac{1}{32}}}+\frac{x \Delta^{\frac{1}{2}} K}{q^{\frac{1}{4}}}+x^{\frac{71}{72}} \Delta^{\frac{33}{64}} K+x^{\frac{15}{16}} K^{\frac{31}{32}} q^{\frac{1}{32}}+x^{\frac{1}{2}} \Delta^{\frac{1}{2}} K^{\frac{3}{4}} q^{\frac{1}{4}}\right) \tag{5}
\end{equation*}
$$

Remark 1. It is obvious that the Theorem 1 is true if function $\lambda(d)$ is well-factorable.
Lemma 1. Suppose $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ satisfies conditions (2), sum $W(x)$ is defined by (4), $\lambda(d)$ are complex numbers defined for $d \leq D$ and satisfying (3) and (8), $c(k) \ll 1$ are 40
complex numbers $0<|k| \leq K$. Then there exist a sequence

$$
\left\{x_{j}\right\}_{j=1}^{\infty}, \lim _{j \rightarrow \infty} x_{j}=\infty
$$

such that

$$
W\left(x_{j}\right) \ll x_{j}^{1-\omega}, \quad j=1,2,3, \ldots
$$

for any $\omega>0$.
Theorem 2. Let $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ satisfies conditions (2), $\beta \in \mathbb{R}$ and let

$$
0<\theta<\frac{1}{1296}-\eta,
$$

where η is arbitrary small fixed number. Then there are infinitely many primes p satisfying $p+2=\mathrm{P}_{2}$ and such that

$$
\begin{equation*}
\left\|\alpha p^{2}+\beta\right\|<p^{-\theta} . \tag{6}
\end{equation*}
$$

2. Notation. Let x be a sufficiently large real number and θ and ρ be real constants satisfying

$$
\begin{equation*}
0<\theta<\frac{1}{1296}, \quad \rho>32 \theta, \quad \rho+\frac{64 \theta}{33}<\frac{8}{297} \quad \rho+10 \theta>\varepsilon . \tag{7}
\end{equation*}
$$

We shall specify ρ and θ latter. We put

$$
\begin{align*}
\delta & =\delta(x)=x^{-\theta}, \quad K=\delta^{-1} \log ^{2} x \\
\Delta & =x^{\rho}, \quad D=\frac{x^{1 / 2}}{\Delta K^{4}} \tag{8}
\end{align*}
$$

By p and q we always denote primes. As usual $\varphi(n), \mu(n), \Lambda(n)$ denote respectively Euler's function, Möbius' function and Mangoldt's function. We denote by $\tau_{k}(n)$ the number of solutions of the equation $m_{1} m_{2} \ldots m_{k}=n$ in natural numbers m_{1}, \ldots, m_{k} and $\tau_{2}(n)=\tau(n)$. Let $\left(m_{1}, \ldots, m_{k}\right)$ and $\left[m_{1}, \ldots, m_{k}\right]$ be the greatest common divisor and the least common multiple of m_{1}, \ldots, m_{k} respectively. Instead of $m \equiv n(\bmod k)$ we write for simplicity $m \equiv n(k)$. As usual, $\|y\|$ denotes the distance from y to the nearest integer, $e(y)=e^{2 \pi i y}$. For positive A and B we write $A \asymp B$ instead of $A \ll B \ll A$ and $k \sim K$ means $K / 2 \leq k<K$. The letter ε denotes an arbitrary small positive number, not the same in all appearances. For example this convention allows us to write $x^{\varepsilon} \log x \ll x^{\varepsilon}$.

3. Some lemmas.

Lemma 2. Let $k, l, m, n \in \mathbb{N} ; X, \varepsilon \in \mathbb{R} ; X \geq 2, k \geq 2$ and $\varepsilon>0$. Then
(ii)

$$
\begin{align*}
& \sum_{n \leq X}\left(\tau_{k}(n)\right)^{l}<_{k, l} X(\log X)^{k^{l}-1} ; \tag{i}\\
& \tau_{k}(n)<_{k, \varepsilon} n^{\varepsilon} .
\end{align*}
$$

Proof. See [16], ch. 3.
Lemma 3. Let $X \geq 1$ and α satisfied conditions (2) and $a, d \in \mathbb{N}$. Then

$$
\left|\sum_{\substack{n \leq X \\ n \equiv a(\bmod d)}} e(\alpha n)\right| \ll \min \left(\frac{X}{d}, \frac{1}{\|\alpha d\|}\right)
$$

Proof. See [9], ch.6, §2.
Lemma 4. Let $X, Y \in \mathbb{R} ; k \in \mathbf{N} ; X, Y \geq 1 ; k \geq 2$ and α satisfied conditions (2).

Then

$$
\sum_{n \leq X} \min \left(\frac{X Y}{n}, \frac{1}{\|\alpha n\|}\right) \ll X Y\left(\frac{1}{q}+\frac{1}{Y}+\frac{q}{X Y}\right) \log (2 X q)
$$

Proof. See Lemma 2.2 from [15], ch. 2,§2.1.
Lemma 5. Let $\mu, \zeta \in \mathbb{N}$, $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, and α satisfy conditions (2). Then for every arbitrary small $\varepsilon>0$ the inequality

$$
\begin{aligned}
\sum_{m \sim M} \tau_{\mu}(m) \sum_{j \sim J} \tau_{\zeta}(j) \min \left\{\frac{x}{m^{2} j}, \frac{1}{\left\|\alpha m^{2} j\right\|}\right. & \} \\
& \ll x^{\varepsilon}\left(M J+\frac{x}{M^{3 / 2}}+\frac{x}{M q^{1 / 2}}+x^{1 / 2} q^{1 / 2}\right)
\end{aligned}
$$

is fulfilled.
Proof. See Lemma 8, [10].
Lemma 6. If $d \mid P(z), z<D^{1 / 2}, \lambda^{ \pm}$are Rosser's weights and either $\lambda^{+}(d) \neq 0$ or $\lambda^{-}(d) \neq 0$ then d is well-separated number.

Proof. See Lemma 12.16, [3]
Theorem 3. Let $2 \leq z \leq D^{1 / 2}$ and $s=\frac{\log D}{\log z}$. If

$$
\begin{cases}\mathcal{A}_{d}=\frac{\omega(d)}{d} x+r(x, d) & \text { if } \mu(d) \neq 0 \\ \sum_{z_{1} \leq p<z_{2}} \frac{\omega(p)}{p}=\log \left(\frac{\log z_{2}}{\log z_{1}}\right)+O\left(\frac{1}{\log z_{1}}\right), & z_{2}>z_{1} \geq 2\end{cases}
$$

where $\omega(d)$ is a multiplicative function, $0<\omega(p)<p, x>1$ is independent of d. Then

$$
x V(z)\left(f(s)+O\left(\frac{1}{(\log D)^{1 / 3}}\right)\right) \leq S(\mathcal{A}, z) \leq x V(z)\left(F(s)+O\left(\frac{1}{(\log D)^{1 / 3}}\right)\right)
$$

where d are well-separated numbers of level $D, f(s), F(s)$ are determined by the following differential-difference equations

$$
\begin{aligned}
F(s) & =\frac{2 e^{\gamma}}{s}, f(s)=0 \quad \text { if } \quad 0<s \leq 2 \\
(s F(s))^{\prime} & =f(s-1), \quad(s f(s))^{\prime}=F(s-1) \quad \text { if } \quad s>2
\end{aligned}
$$

where γ denote the Euler's constant.

4. Auxiliary results.

Lemma 7. Let $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ satisfied conditions (2), $M, S, J, x \in \mathbb{R}^{+}, x>M^{3} S^{2} J$ and $\mu, \sigma, \zeta \in[2, \infty) \cap \mathbb{N}$,

$$
G=\sum_{m \sim M} \tau_{\mu}(m) \sum_{s \sim S} \tau_{\sigma}(s) \sum_{j \sim J} \tau_{\zeta}(j) \min \left\{\frac{x}{m^{3} s^{2} j}, \frac{1}{\left\|\alpha m^{3} s^{2} j\right\|}\right\}
$$

Then for any $\varepsilon>0$ the inequalities

$$
\begin{equation*}
G \ll x^{\varepsilon}\left(M S J+\frac{x}{M^{\frac{9}{4}} S}+\frac{x}{M^{2} S^{\frac{9}{8}}}+\frac{x}{M^{2} S q^{\frac{1}{8}}}+\frac{x^{\frac{7}{8}} q^{\frac{1}{8}}}{M^{2} S}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
G \ll x^{\varepsilon}\left(M S J+\frac{x}{M^{\frac{9}{4}} S^{\frac{3}{4}}}+\frac{x}{M^{2} S^{\frac{3}{4}} q^{\frac{1}{4}}}+\frac{x^{\frac{3}{4}} q^{\frac{1}{4}}}{M^{2} S^{\frac{3}{4}}}\right) \tag{10}
\end{equation*}
$$

are fulfilled.

Proof. Our proof is similar to proof of Lemma 8, [10]. Let

$$
\begin{equation*}
H=\frac{x}{M^{3} S^{2} J} \tag{11}
\end{equation*}
$$

If $H \leq 2$, then trivially from Lemma 2 (iv) we get

$$
\begin{equation*}
G \ll x^{\varepsilon} M S J . \tag{12}
\end{equation*}
$$

So we can assume that $H>2$. From Lemma 2 (iv) it is obviously that

$$
G \ll x^{\varepsilon} \sum_{m \sim M} \sum_{s \sim S} \sum_{j \sim J} \min \left\{\frac{x}{m^{3} s^{2} j}, \frac{1}{\left\|\alpha m^{3} s^{2} j\right\|}\right\} .
$$

We apply the Fourier expansion to the function $\min \left\{\frac{x}{m^{3} s^{2} j}, \frac{1}{\left\|\alpha m^{3} s^{2} j\right\|}\right\}$ and get

$$
\min \left\{\frac{x}{m^{3} s^{2} j}, \frac{1}{\left\|\alpha m^{3} s^{2} j\right\|}\right\}=\sum_{0<|h| \leq H^{2}} w(h) e\left(\alpha m^{3} s^{2} j h\right)+O(\log x),
$$

where

$$
\begin{equation*}
w(h) \ll \min \left\{\log H, \frac{H}{|h|}\right\} . \tag{13}
\end{equation*}
$$

Then

$$
\begin{equation*}
G\left|\ll x^{\varepsilon} \sum_{0<|h| \leq H^{2}}\right| w(h)\left|\sum_{s \sim S} \sum_{j \sim J}\right| \sum_{m \sim M} e\left(\alpha m^{3} s^{2} j h\right) \mid+M S J \log x . \tag{14}
\end{equation*}
$$

So if

$$
G\left(H_{0}\right)=\sum_{h \sim H_{0}} \sum_{s \sim S} \sum_{j \sim J}\left|\sum_{m \sim M} e\left(\alpha m^{3} s^{2} j h\right)\right| .
$$

then using (13) we have

$$
\begin{equation*}
G \ll x^{\varepsilon}\left(M S J+\max _{1 \leq H_{0} \leq H_{1}} G\left(H_{0}\right)+\max _{H_{1} \leq H_{0} \leq H^{2}} \frac{H}{H_{0}} G\left(H_{0}\right)\right) . \tag{15}
\end{equation*}
$$

We shall evaluate the sum $G\left(H_{0}\right)$. Applying the Cauchy-Schwarz inequality we obtain

$$
\begin{aligned}
G^{2}\left(H_{0}\right) & \ll x^{\varepsilon} H_{0} J S \sum_{h \sim H_{0}} \sum_{s \sim S} \sum_{j \sim J}\left|\sum_{m \sim M} e\left(\alpha m^{3} s^{2} j h\right)\right|^{2} \\
& \ll x^{\varepsilon} H_{0} J S \sum_{h \sim H_{0}} \sum_{s \sim S} \sum_{j \sim J} \sum_{m_{1} \sim M} \sum_{m_{2} \sim M} e\left(\alpha\left(m_{1}^{3}-m_{2}^{3}\right) s^{2} j h\right) .
\end{aligned}
$$

Substituting $m_{1}=m_{2}+t$, where $0 \leq|t| \leq M$ we get

$$
\begin{equation*}
G^{2}\left(H_{0}\right) \ll x^{\varepsilon}\left(H_{0}^{2} J^{2} S^{2} M+H_{0} J S G_{1}\left(H_{0}\right)\right) \tag{16}
\end{equation*}
$$

where

$$
G_{1}\left(H_{0}\right)=\sum_{h \sim H_{0}} \sum_{s \sim S} \sum_{j \sim J} \sum_{0<|t|<M}\left|\sum_{m_{2} \sim M} e\left(\alpha\left(3 m_{2}^{2} t+3 m_{2} t^{2}\right) s^{2} j h\right)\right| .
$$

Applying again the Cauchy-Schwarz inequality we obtain

$$
\begin{aligned}
G_{1}^{2}\left(H_{0}\right) \ll H_{0} J S M \sum_{h \sim H_{0}} \sum_{s \sim S} \sum_{j \sim J} & \sum_{0<|t|<M} \sum_{m_{2} \sim M} \\
& \times \sum_{m_{3} \sim M} e\left(\alpha\left(3\left(m_{2}^{2}-m_{3}^{2}\right) t+3\left(m_{2}-m_{3}\right) t^{2}\right) s^{2} j h\right) .
\end{aligned}
$$

Substituting $m_{2}=m_{3}+\ell$, where $0 \leq|\ell| \leq M$ we get

$$
\begin{aligned}
& G_{1}^{2}\left(H_{0}\right) \ll H_{0}^{2} J^{2} S^{2} M^{3}+ \\
& \quad H_{0} J S M \sum_{h \sim H_{0}} \sum_{s \sim S} \sum_{j \sim J} \sum_{0<|t|<M} \sum_{0<|\ell|<M}\left|\sum_{m_{3} \sim M} e\left(6 \alpha m_{3} t \ell s^{2} j h\right)\right| .
\end{aligned}
$$

Let $u=6 t \ell h j$. Then using Lemma 3 and Lemma 5 we get

$$
\begin{align*}
G_{1}^{2}\left(H_{0}\right) & \ll H_{0}^{2} J^{2} S^{2} M^{3}+H_{0} J S M \sum_{u \leq 24 H_{0} J M^{2}} \tau_{5}(u) \sum_{s \sim S}\left|\sum_{m_{3} \sim M} e\left(\alpha m_{3} s^{2} u\right)\right| \\
& \ll H_{0}^{2} J^{2} S^{2} M^{3}+H_{0} J S M \sum_{u \ll H_{0} J M^{2}} \tau_{5}(u) \sum_{s \sim S} \min \left\{\frac{H_{0} J S^{2} M^{3}}{s^{2} u}, \frac{1}{\left\|\alpha s^{2} u\right\|}\right\} . \tag{17}
\end{align*}
$$

We will estimate the above sum in two ways. Using Lemma 5 we obtain

$$
G_{1}^{2}\left(H_{0}\right) \ll x^{\varepsilon}\left(H_{0}^{2} J^{2} S^{2} M^{3}+H_{0}^{2} J^{2} S^{\frac{3}{2}} M^{4}+\frac{H_{0}^{2} J^{2} S^{2} M^{4}}{q^{\frac{1}{2}}}+H_{0}^{\frac{3}{2}} J^{\frac{3}{2}} S M^{\frac{5}{2}} q^{\frac{1}{2}}\right)
$$

So from (16)

$$
\begin{equation*}
G\left(H_{0}\right) \lll x^{\varepsilon}\left(H_{0} J S M^{\frac{3}{4}}+H_{0} J S^{\frac{7}{8}} M+\frac{H_{0} J S M}{q^{\frac{1}{8}}}+H_{0}^{\frac{7}{8}} J^{\frac{7}{8}} S^{\frac{3}{4}} M^{\frac{5}{8}} q^{\frac{1}{8}}\right) \tag{18}
\end{equation*}
$$

Choosing $H_{0}=H$ from (11), (15) and (18) we get (9).
On the other hand we can write the inequality (17) as

$$
G_{1}^{2}\left(H_{0}\right) \ll H_{0}^{2} J^{2} S^{2} M^{3}+H_{0} J S M \sum_{k \ll H_{0} J S^{2} M^{2}} \min \left\{\frac{H_{0} J S^{2} M^{3}}{k}, \frac{1}{\|\alpha k\|}\right\}
$$

and using Lemma 4 and (16) we get

$$
\begin{equation*}
G^{2}\left(H_{0}\right) \ll x^{\varepsilon}\left(H_{0}^{2} J^{2} S^{3} M^{3}+\frac{H_{0}^{2} J^{2} S^{3} M^{4}}{q}+H_{0} J S M q\right) \tag{19}
\end{equation*}
$$

Now we choose $H_{0}=H$. Then from (11), (15) and (19) the inequality (10) is received.
5. Proof of Theorem 1. To prove Theorem 1 we shall evaluate the sum W in two ways:
when $x^{8 / 27} \Delta \leq D \leq \frac{x^{1 / 2}}{\Delta K^{4}}$, we will use the Vaughan's identity;
when $D \leq x^{8 / 27} \Delta$, we will use the Heat-Brown identity.
5.1. Evaluation by Vaughan's identity. Let $x^{8 / 27} \Delta \leq D \leq \frac{x^{1 / 2}}{\Delta K^{4}}$ and $0<|K| \leq$ $\delta^{-1} \log ^{2} x$. First we decompose the sum $W(x)$ into $O\left(\log ^{2} x\right)$ sums of type

$$
W=W(x, D, K)=\sum_{d \sim D} \lambda(d) \sum_{\substack{1 \leq|k| \sim K}} c(k) \sum_{\substack{n \sim x \\ n+2 \equiv 0(d)}} e\left(\left(\alpha n^{2}+\beta\right) k\right) \Lambda(n),
$$

where $\lambda(d)$ is Roser weight and in particular a necessary condition for $\lambda(d) \neq 0$ is numbers d are squarefree. So from this point on we will use that numbers d are squarefree. Then by Vaughan's identity we can decompose the sum W into $O(\log x)$ type I sums

$$
W_{1}=\sum_{\substack{d \sim D \\(a, d)=1}} \lambda(d) \sum_{k \sim K} c(k) e(\beta k) \sum_{\substack{m \sim M \\ \ell \sim \neq a(\bmod d)}} a(m) e\left(\alpha(m \ell)^{2} k\right)
$$

or

$$
W_{1}^{\prime}=\sum_{\substack{d \sim D \\(a, d)=1}} \lambda(d) \sum_{k \sim K} c(k) e(\beta k) \sum_{\substack{m \sim M \\ \ell \sim \\ m \ell \equiv a(\bmod d)}} \log (n) e\left(\alpha(m \ell)^{2} k\right)
$$

with $M \leq x^{1 / 3}$ and $O(\log x)$ type II sums

$$
W_{2}=\sum_{\substack{d \sim D \\(a, d)=1}} \lambda(d) \sum_{k \sim K} c(k) e(\beta k) \sum_{\substack{m \sim M \\ \ell \sim L \\ m \ell \equiv a(\bmod d)}} a(m) b(\ell) e\left(\alpha(m \ell)^{2} k\right)
$$

with $M \in\left[x^{1 / 3}, x^{2 / 3}\right]$ and

$$
\begin{equation*}
M L \sim x, \quad a(m) \ll \tau_{3}(m) \log m, \quad b(\ell) \ll \tau_{3}(\ell) \log \ell \tag{20}
\end{equation*}
$$

5.1.1. Evaluation of type II sums. The proof follows proof of Theorem 1, [10]. As $x^{1 / 3} \leq M, L \leq x^{2 / 3}$ and $M L \sim x$ we will consider only the case $x^{1 / 2} \leq M \leq x^{2 / 3}$. The evaluation in the case $x^{1 / 2} \leq L \leq x^{2 / 3}$ is the same. Using that d is well-separated numbers we write $d=h s$, where $(h, s)=1$ as d is squarefree. So the sum W_{2} is presented as $O\left(\log ^{2} x\right)$ sums of the type

$$
W_{2}=\sum_{\substack{h \sim H \\(h, a)=1}} \sum_{\substack{s \sim S \\(s, a h)=1}} \lambda(h s) \sum_{k \sim K} c(k) e(\beta k) \sum_{\ell \sim L} \sum_{\substack{m \sim M \\ m \ell \equiv a(\bmod h s)}} a(m) b(\ell) e\left(\alpha(m \ell)^{2} k\right) .
$$

Here

$$
\begin{equation*}
h \sim H, \quad s \sim S, \quad D \sim H S \tag{21}
\end{equation*}
$$

and H we will choose later. Applying the Cauchy-Schwarz inequality to W_{2} and using and Lemma 2(i) we obtain that

$$
\begin{align*}
W_{2}^{2} \ll x^{\varepsilon} K H M \sum_{k \sim K} \sum_{\substack{h \sim H \\
(h, a)=1}} & \sum_{\substack{s_{1}^{\prime} \sim S \\
\left(s_{1}^{\prime}, a h\right)=1}} \lambda\left(h s_{1}^{\prime}\right) \tag{22}\\
& \sum_{\substack{s_{s}^{\prime} \sim S \\
\left(s_{2}^{\prime}, a h\right)=1}} \lambda\left(h s_{2}^{\prime}\right) \\
& \times \sum_{\ell_{1} \sim L} b\left(\ell_{1}\right) \sum_{\substack{\ell_{2} \sim L}} b\left(\ell_{2}\right) \sum_{\substack{m \sim M \\
m \ell_{1} \equiv a\left(h s_{1}^{\prime}\right) \\
m \ell_{2} \equiv a\left(h s_{2}^{\prime}\right)}} e\left(\alpha m^{2}\left(\ell_{1}^{2}-\ell_{2}^{2}\right) k\right) .
\end{align*}
$$

Let $\left(s_{2}^{\prime}, s_{1}^{\prime}\right)=r, s_{1}^{\prime}=r s_{1}, s_{2}^{\prime}=r s_{2}, r \sim R, R \leq S$ and $s_{1}^{\prime}, s_{2}^{\prime} \sim S / R$. Then
(23) $W_{2}^{2} \ll x^{\varepsilon} K H M \sum_{k \sim K} \sum_{\substack{h \sim H \\(h, a)=1}} \sum_{\substack{r \sim R \\(r, a h)=1}} \sum_{\substack{s_{1} \sim S / R \\\left(s_{1}, a h\right)=1}} \lambda\left(h r s_{1}\right) \sum_{\substack{s_{2} \sim S / R \\\left(s_{2}, a s_{1} h\right)=1}} \lambda\left(h r s_{2}\right)$

$$
\times \sum_{\ell_{1} \sim L} b\left(\ell_{1}\right) \sum_{\ell_{2} \sim L} b\left(\ell_{2}\right) \sum_{\substack{m \ell_{1} \equiv a \sim M \\ m \ell_{2} \equiv a\left(h r s_{1}\right) \\ \text { min }}} e\left(\alpha m^{2}\left(\ell_{1}^{2}-\ell_{2}^{2}\right) k\right)
$$

$$
=W_{21}+W_{22},
$$

where W_{21} is this one part of above sum for which

$$
\begin{array}{ll}
\ell_{1}=\ell_{2}, & s_{1} \neq s_{2} \quad \text { or } \\
\ell_{1}=\ell_{2}, & s_{1}=s_{2}=1 \quad r \sim S \quad \text { or } \\
\ell_{1} \neq \ell_{2}, & s_{1}=s_{2}=1 \quad r \sim S \quad \text { or } \\
\ell_{1} \neq \ell_{2}, & s_{1} \neq s_{2}, \quad M<\frac{4 H S^{2}}{R}
\end{array}
$$

W_{22} is the rest part of sum for W_{2}^{2}. To evaluate the sum W_{21} we consider the cases $x^{1 / 2} \leq M \leq \frac{x}{D}$ and $x^{1 / 3} \leq L \leq D$. Then using Lemma 2 we get

$$
\begin{equation*}
W_{21} \ll x^{\varepsilon}\left(x M H K^{2}+x D^{2} K^{2}+\frac{x^{2} H K^{2}}{D}+\frac{x L D^{2} K^{2}}{H}\right) . \tag{24}
\end{equation*}
$$

It is clear that for sum W_{22} we have $\ell_{1} \neq \ell_{2}, s_{1} \neq s_{2}, M>\frac{4 H S^{2}}{R}$. From

$$
m \ell_{1} \equiv a\left(h r s_{1}\right), m \ell_{2} \equiv a\left(h r s_{2}\right) \quad \text { follows that } \quad \ell_{1} \equiv \ell_{2}(h r) .
$$

We apply again the Cauchy-Schwarz inequality and get

$$
\begin{aligned}
W_{22}^{2} \ll & \frac{x^{2+\varepsilon} D^{2} K^{3}}{R^{2}} \sum_{k \sim K} \sum_{\substack{h \sim H \\
(h, a)=1}} \sum_{\substack{r \sim R \\
(r, a h)=1}} \sum_{\substack{s_{1} \sim S / R \\
\left(s_{1}, a h\right)=1}} \sum_{\substack{s_{2} \sim S / R \\
\left(s_{2}, a s_{1} h\right)=1}} \sum_{\substack{m_{2} \sim M\\
}} e\left(\alpha\left(m_{1}^{2}-m_{2}^{2}\right)\left(\ell_{1}^{2}-\ell_{2}^{2}\right) k\right) . \\
& \times \sum_{\substack{\ell_{1} \sim L \\
\ell_{1} \sim L}} \sum_{\substack{\ell_{2} \sim L \\
\ell_{2} \equiv 1_{1}(h r) \\
m_{1} \sim M \\
m_{1} \ell_{1}=a\left(h r s_{1}\right) \\
m_{1} \ell_{2} \equiv a\left(h r s_{2}\right) m_{2} \ell_{1} \ell_{2} \equiv a\left(h r s_{1}\right) \\
m_{2} \equiv a\left(h r s_{2}\right)}}
\end{aligned}
$$

Let W_{221} be this one part of above sum for which $m_{1}=m_{2}$ and W_{222} be this part for
which $m_{1} \neq m_{2}$. It is not difficult to see that

$$
\begin{equation*}
W_{221} \ll \frac{x^{3+\varepsilon} L D^{2} K^{4}}{H} . \tag{25}
\end{equation*}
$$

Let consider the sum W_{222}. As

$$
m_{i} \ell_{1} \equiv a \quad\left(\bmod h r s_{1}\right) \quad \text { and } \quad m_{i} \ell_{2} \equiv a \quad\left(\bmod h r s_{2}\right), \quad i=1,2
$$

we get

$$
m_{1} \equiv m_{2}\left(\bmod h r s_{1} s_{2}\right) \equiv f\left(\bmod h r s_{1} s_{2}\right), \quad \text { where } \quad f=f\left(h, r, s_{1}, s_{2}, \ell_{1}, \ell_{2}\right)
$$

and $\ell_{1} \equiv \ell_{2}(\bmod h r)$. Let

$$
m_{1}=m_{2}+h r s_{1} s_{2} t, 0<|t| \leq \frac{8 M R}{H S^{2}} \quad \text { and } \quad \ell_{1}=\ell_{2}+h r u, 0<|u| \leq \frac{2 L}{H R}
$$

Then

$$
m_{1}^{2}-m_{2}^{2}=2 m_{2} h r s_{1} s_{2} t+h^{2} r^{2} s_{1}^{2} s_{2}^{2} t^{2} \quad \text { and } \quad \ell_{1}^{2}-\ell_{2}^{2}=h r u\left(2 \ell_{2}+h r u\right) .
$$

So using above equalities and Lemma 3 we obtain

$$
\begin{aligned}
W_{222} \ll & \frac{x^{2+\varepsilon} D^{2} K^{3}}{R^{2}} \sum_{k \sim K} \sum_{\substack{h \sim H \\
(h, a)=1}} \sum_{\substack{r \sim R \\
(r, a h)=1}} \sum_{\substack{s_{1} \sim S / R \\
\left(s_{1}, a h\right)=1}} \sum_{\substack{s_{2} \sim S / R \\
\left(s_{2}, a s_{1} h\right)=1}} \\
& \times \sum_{\ell \sim L} \sum_{0<|u| \leq \frac{2 L}{H R}} \sum_{0<|t| \leq \frac{8 M R}{H S^{2}}} \min \left\{\frac{M}{h r s_{1} s_{2}}, \frac{1}{\left\|2 \alpha h^{3} r^{3} s_{1}^{2} s_{2}^{2} t u \ell k\right\|}\right\},
\end{aligned}
$$

where $\ell=2 \ell_{2}+h r u$. We put

$$
m=h r, \quad s=s_{1} s_{2}, \quad j=2 \text { tunk }, j \ll \frac{x L K}{D^{2}}
$$

and it is clear that the sum W_{222} can be represented as a finite number of sums of the type

$$
W_{223}=\frac{x^{2+\varepsilon} D^{2} K^{3}}{R^{2}} \sum_{m \sim H R} \tau(m) \sum_{s \sim \frac{S^{2}}{R^{2}}} \tau(s) \sum_{j \ll \frac{x L K}{D^{2}}} \tau_{5}(j) \min \left\{\frac{x^{2} K}{m^{3} s^{2} j}, \frac{1}{\left\|\alpha m^{3} s^{2} j\right\|}\right\}
$$

Using Lemma 7, (21), (23), (24) and (25) we get

$$
\begin{align*}
W_{223} \ll x^{\varepsilon}\left(x^{\frac{1}{2}} M^{\frac{1}{2}} H^{\frac{1}{2}} K+x^{\frac{1}{2}} D K+\right. & \frac{x^{\frac{1}{2}} L^{\frac{1}{2}} D K}{H^{\frac{1}{2}}}+\frac{x^{\frac{3}{4}} L^{\frac{1}{4}} D^{\frac{1}{2}} K}{H^{\frac{1}{4}}}+\frac{x H^{\frac{1}{2}} K}{D^{\frac{1}{2}}} \tag{26}\\
& \left.+\frac{x K}{H^{\frac{1}{16}}}+\frac{x H^{\frac{1}{16}} K}{D^{\frac{1}{16}}}+\frac{x K}{q^{\frac{1}{32}}}+x^{\frac{15}{16}} K^{\frac{31}{32}} q^{\frac{1}{32}}\right)
\end{align*}
$$

According to D, M and L we have

$$
\begin{equation*}
W_{223} \ll x^{\varepsilon}\left(V_{1}+V_{2}+V_{3}+V_{4}\right) \tag{27}
\end{equation*}
$$

where V_{1} is the sum with

$$
\begin{align*}
& x^{1 / 2} \leq M \leq \frac{x}{D}, \quad x^{2 / 5} \leq D \leq \frac{x^{1 / 2}}{\Delta K^{4}} \tag{28}\\
& D \leq L \leq x^{1 / 2}
\end{align*}
$$

V_{2} is the sum with

$$
\begin{align*}
& \frac{x}{D} \leq M<x^{1 / 3} D^{2 / 3}, \quad x^{2 / 5} \leq D \leq \frac{x^{1 / 2}}{\Delta K^{4}} \tag{29}\\
& \frac{x^{2 / 3}}{D^{2 / 3}}<L \leq D
\end{align*}
$$

V_{3} is the sum with

$$
\begin{align*}
& x^{1 / 3} D^{2 / 3} \leq M \leq x^{2 / 3}, \quad x^{2 / 5} \leq D \leq \frac{x^{1 / 2}}{\Delta K^{4}} \tag{30}\\
& x^{1 / 3} \leq L \leq \frac{x^{2 / 3}}{D^{2 / 3}}
\end{align*}
$$

and V_{4} is the sum with

$$
\begin{align*}
& x^{1 / 2} \leq M \leq x^{2 / 3}, \quad x^{8 / 27} \Delta \leq D \leq x^{2 / 5} \\
& x^{1 / 3} \leq L \leq x^{1 / 2} \tag{31}
\end{align*}
$$

For sums V_{1}, V_{2}, V_{3} and V_{4} we choose consequently

$$
H=\frac{D}{\Delta^{1 / 2}}, \quad H=\frac{L D^{2 / 3}}{x^{1 / 3}}, \quad H=\frac{x^{1 / 3}}{\Delta}, \quad H=\frac{L^{4 / 5} D^{9 / 5}}{x^{4 / 5}}
$$

and from (26), (28), (29), (30) and (31) we get

$$
W_{2} \ll \begin{cases}x^{\varepsilon}\left(\frac{x K}{\Delta^{\frac{1}{32}}}++x^{\frac{5}{6}} D^{\frac{1}{3}} \Delta^{\frac{1}{4}} K+\frac{x K}{q^{\frac{1}{32}}}+x^{\frac{15}{16}} K^{\frac{31}{32}} q^{\frac{1}{32}}\right), & \text { if } \quad x^{2 / 5} \leq D \leq \frac{x^{1 / 2}}{\Delta K^{4}} \\ x^{\varepsilon}\left(\frac{x^{\frac{31}{30}} K}{D^{\frac{9}{80}}}+\frac{x K}{q^{\frac{1}{32}}}+x^{\frac{15}{16}} K^{\frac{31}{32}} q^{\frac{1}{32}}\right), & \text { if } \quad x^{8 / 27} \Delta \leq D \leq x^{2 / 5}\end{cases}
$$

So

$$
\begin{equation*}
W_{2} \ll x^{\varepsilon}\left(\frac{x K}{\Delta^{\frac{1}{32}}}+x^{\frac{5}{6}} D^{\frac{1}{3}} \Delta^{\frac{1}{4}} K+\frac{x K}{q^{\frac{1}{32}}}+x^{\frac{15}{16}} K^{\frac{31}{32}} q^{\frac{1}{32}}\right) \tag{32}
\end{equation*}
$$

5.1.2. Evaluation of type I sums. In this case we have that $L>x^{\frac{2}{3}}$ and $M<x^{\frac{1}{3}}$. Again we will use that d is well-separated numbers. So we can write $d=h s$ with h and s satisfying conditions (21) and we will choose H later. So the sum W_{1} is presented as $O\left(\log ^{2} x\right)$ sums of the type

$$
W_{1}=\sum_{\substack{h \sim H \\(h, a)=1}} \sum_{\substack{s \sim S \\(s, a)=1}} \lambda(h s) \sum_{k \sim K} c(k) e(\beta k) \sum_{\ell \sim L} \sum_{\substack{m \ell \sim M \\ m \ell \equiv a(\bmod d)}} a(m) e\left(\alpha(m \ell)^{2} k\right) .
$$

Working in the same way as in the evaluation of the sum W_{2} see (22), we get

$$
\begin{array}{r}
W_{1}^{2} \ll x^{\varepsilon} K H M \sum_{k \sim K} \sum_{\substack{h \sim H \\
(h, a)=1}} \sum_{\substack{r \sim R \\
(r, a h)=1}} \sum_{\substack{s_{1} \sim S / R \\
\left(s_{1}, a h\right)=1}} \lambda\left(h r s_{1}\right) \sum_{\substack{s_{2} \sim S / R \\
\left(s_{2}, a s_{1} h\right)=1 \\
\ell_{1} \sim L}} \lambda\left(h r s_{2}\right) \tag{33}\\
\times \sum_{\left.\ell_{1}\right) \sum_{\ell_{2} \sim L} b\left(\ell_{2}\right) \sum_{\substack{m \sim M \\
m \ell_{1} \equiv a\left(h r s_{1}\right) \\
m \ell_{2} \equiv a\left(h r s_{2}\right)}} e\left(\alpha m^{2}\left(\ell_{1}^{2}-\ell_{2}^{2}\right) k\right)}=W_{11}+W_{12}+W_{13},
\end{array}
$$

where W_{12} is this one part of above sum for which

$$
\ell_{1}=\ell_{2}
$$

W_{13} is this one part of above sum for which

$$
\ell_{1} \neq \ell_{2}, \quad s_{1}=s_{2}=1 \quad r \sim S
$$

and W_{11} is the rest part of sum for W_{1}^{2}. Using that $L>x^{\frac{2}{3}}$ and $M<x^{\frac{1}{3}}$ we get

$$
\begin{equation*}
W_{12} \ll x^{\varepsilon} \cdot x M H K^{2} \tag{34}
\end{equation*}
$$

For the sum W_{13} we get

$$
W_{13} \ll x^{\varepsilon} K H M \sum_{k \sim K} \sum_{\substack{d \sim D \\(d, a)=1}} \sum_{m \sim M} \mid \sum_{\substack{\ell_{i} \sim L \\ \ell_{i}=a(d) \\ i=1,1}} e\left(\alpha m^{2}\left(\ell_{1}^{2}-\ell_{2}^{2}\right) k \mid\right.
$$

As $\ell_{1} \equiv \ell_{2}(\bmod d)$ we put

$$
\ell_{1}=\ell_{2}+d u, 0<|u| \ll \frac{L}{D}
$$

So

$$
W_{13} \ll x^{\varepsilon} K H M \sum_{k \sim K} \sum_{\substack{d \sim D \\(d, a)=1}} \sum_{m \sim M} \sum_{u \ll \frac{L}{D}}\left|\sum_{\substack{\ell_{2} \sim L \\ m \ell_{2} \equiv a(d)}} e\left(2 \alpha m^{2} \ell_{2} u d k\right)\right|
$$

and from Lemma 3 we get

$$
W_{13} \ll x^{\varepsilon} K H M \sum_{k \sim K} \sum_{\substack{d \sim D \\(d, a)=1}} \sum_{m \sim M} \sum_{u \ll \frac{L}{D}} \min \left\{\frac{x^{2} K}{m^{2} d^{2}(2 u k)}, \frac{1}{\left\|\alpha m^{2} d^{2}(2 u k)\right\|} \cdot\right\}
$$

The above sum can be represented as a finite number of sums of the type

$$
W_{14} \ll x^{\varepsilon} K H M \sum_{z \sim M D} \tau(z) \sum_{t \ll \frac{L K}{D}} \tau_{3}(t) \min \left\{\frac{x^{2} K}{z^{2} t}, \frac{1}{\left\|\alpha z^{2} t\right\|}\right.
$$

Using Lemma 5 and $M L \sim x$ we obtain

$$
\begin{equation*}
W_{13}^{\frac{1}{2}} \ll x^{\varepsilon}\left(x^{\frac{1}{2}} M^{\frac{1}{2}} H^{\frac{1}{2}} K+\frac{x^{\frac{3}{4}} L^{\frac{1}{4}} H^{\frac{1}{2}} K}{D^{\frac{3}{4}}}+\frac{x H^{\frac{1}{2}} K}{D^{\frac{1}{2}} q^{\frac{1}{4}}}+\frac{x^{\frac{1}{2}} H^{\frac{1}{2}} q^{\frac{1}{4}} K^{\frac{3}{4}}}{D^{\frac{1}{2}}}\right) \tag{35}
\end{equation*}
$$

Using analogous reasoning for the sum W_{11} we get

$$
\begin{align*}
W_{11} \ll x^{\varepsilon} K H M \sum_{k \sim K} \sum_{\substack{h \sim H \\
(h, a)=1}} \sum_{\substack{r \sim R \\
(r, a h)=1}} \sum_{\substack{s_{i} \sim S / R \\
\left(s_{1} s_{2}, a h\right)=1}} & \times \sum_{m \sim M} \sum_{\substack{ \\
u \ll \frac{L}{H R}}}\left|\sum_{\substack{\ell_{2} \sim L \\
m \ell_{2} \\
m\left(\ell_{2}+u h r\right) \equiv a\left(s_{1}\right)}} e\left(2 \alpha m^{2} \ell_{2} u h r k\right)\right| \tag{36}
\end{align*}
$$

and from Lemma 3 we obtain

$$
\begin{aligned}
& W_{11} \ll x^{\varepsilon} K H M \sum_{k \sim K} \sum_{h \sim H} \sum_{r \sim R} \\
& \sum_{\substack{s_{i} \sim S / R \\
i=1,2}} \\
& \sum_{m \sim M} \sum_{u \ll \frac{L}{H R}} \min \left\{\frac{L}{h r s_{1} s_{2}}, \frac{1}{\left\|\alpha m^{2} h^{2} r^{2} .2 s_{1} s_{2} u k\right\|}\right\} .
\end{aligned}
$$

Applying Lemma 5 and using that $M L \sim x$ we get

$$
\begin{equation*}
W_{11}^{\frac{1}{2}} \ll x^{\varepsilon}\left(\frac{x^{\frac{1}{2}} D K}{H^{\frac{1}{2}}}+\frac{x^{\frac{3}{4}} L^{\frac{1}{4}} K}{H^{\frac{1}{4}}}+\frac{x K}{q^{\frac{1}{4}}}+x^{\frac{1}{2}} q^{\frac{1}{4}} K^{\frac{3}{4}}\right) \tag{37}
\end{equation*}
$$

Choosing $H=\frac{D}{M^{\frac{1}{2}}}$ from (34), (35), (37), (22) and (5) follows

$$
\begin{equation*}
W_{1} \ll x^{\varepsilon}\left(\frac{x K}{D^{\frac{1}{4}}}+\frac{x K}{q^{\frac{1}{4}}}+x^{\frac{1}{2}} K^{\frac{3}{4}} q^{\frac{1}{4}}\right) \tag{38}
\end{equation*}
$$

From (32) and (38) it follows that in the case $x^{8 / 27} \Delta \leq D \leq \frac{x^{1 / 2}}{\Delta K^{4}}$ the estimate

$$
\begin{equation*}
W \ll x^{\varepsilon}\left(\frac{x K}{\Delta^{\frac{1}{32}}}++x^{\frac{5}{6}} D^{\frac{1}{3}} \Delta^{\frac{1}{4}} K+\frac{x K}{q^{\frac{1}{32}}}+x^{\frac{15}{16}} K^{\frac{31}{32}} q^{\frac{1}{32}}\right) \tag{39}
\end{equation*}
$$

is fulfilled.
5.2. Evaluation by Heat-Brown's identity. Let $D \leq x^{8 / 27} \Delta$. We decompose the sum $W(x)$ into $O\left(\log ^{2} x\right)$ as in (4). Using Heath-Brown's identity [6] with parameters

$$
\begin{equation*}
P=x / 2, P_{1}=x, u=\frac{x^{\frac{1}{3}}}{2^{21} D^{\frac{1}{32}}}, v=2^{7} x^{\frac{1}{3}}, w=2^{7} x^{\frac{1}{3}} D^{\frac{1}{64}} . \tag{40}
\end{equation*}
$$

we decompose the sum W as a linear combination of $O\left(\log ^{6} N\right)$ sums of first and second type. The sums of the first type are

$$
W_{1}=\sum_{d \leq D} \lambda(d) \sum_{0<|k| \leq K} c(k) e(\beta k) \sum_{M<m \leq M_{1}} a_{m} \sum_{\substack{L<\ell \leq L_{1} \\ m \ell \equiv-2(d)}} e\left(\alpha m^{2} \ell^{2} k\right)
$$

and

$$
W_{1}^{\prime}=\sum_{d \leq D} \lambda(d) \sum_{0<|k| \leq K} c(k) e(\beta k) \sum_{M<m \leq M_{1}} a(m) \sum_{\substack{L<\ell \leq L_{1} \\ m \ell \equiv-2(d)}} \log \ell e\left(\alpha m^{2} \ell^{2} k\right),
$$

where

$$
\begin{equation*}
M_{1} \leq 2 M, \quad L_{1} \leq 2 L, \quad M L \asymp x, \quad L \geq w, \quad a(m) \ll x^{\varepsilon} . \tag{41}
\end{equation*}
$$

The sums of the second type are

$$
W_{2}=\sum_{d \leq D} \lambda(d) \sum_{0<|k| \leq K} c(k) e(\beta k) \sum_{L<\ell \leq L_{1}} b(\ell) \sum_{\substack{M<m \leq M_{1} \\ m \ell \equiv-2(d)}} a(m) e\left(\alpha m^{2} \ell^{2} k\right),
$$

where

$$
\begin{equation*}
M_{1} \leq 2 M, \quad L_{1} \leq 2 L, \quad M L \asymp x, \quad u \leq L \leq v, \quad a(m), b(\ell) \ll x^{\varepsilon} \tag{42}
\end{equation*}
$$

5.2.1. Evaluation of type II sums. Applying the Cauchy-Schwarz inequality to W_{2} and using Lemma 2(i), (40), (42) and (46) we obtain that

$$
\begin{align*}
& W_{2}^{2} \ll x^{\varepsilon} K D M \sum_{k \sim K} \sum_{\substack{d \sim D \\
(d, a)=1}} \sum_{\substack{\ell_{i} \sim L \\
i=1,2 \\
\ell_{1} \equiv \ell_{2}(d)}} b\left(\ell_{1}\right) b\left(\ell_{2}\right) \sum_{\substack{m \sim M \\
m \ell_{i} \equiv a(d) \\
i=1,2}} e\left(\alpha m^{2}\left(\ell_{1}^{2}-\ell_{2}^{2}\right) k\right) \tag{43}\\
&=W_{21}+x^{1+\varepsilon} M D K^{2}
\end{align*}
$$

where

$$
W_{21}=x^{\varepsilon} K D M \sum_{k \sim K} \sum_{\substack{d \sim D \\(d, a)=1}} \sum_{\substack{\ell_{i} \sim L \\ \ell_{1} \neq \ell_{2} \\ \ell_{1} \neq \ell_{2}(d)}} b\left(\ell_{1}\right) b\left(\ell_{2}\right) \sum_{\substack{m \sim M \\ m \ell_{i}=a(d) \\ i=1,2}} e\left(\alpha m^{2}\left(\ell_{1}^{2}-\ell_{2}^{2}\right) k\right)
$$

Applying again the Cauchy-Schwarz inequality and substituting

$$
m_{1}=m_{2}+t d, \quad t \ll \frac{M}{D} \quad \text { and } \quad \ell_{1}=\ell_{2}+\omega d, \quad \omega \ll \frac{L}{D}
$$

we sequentially obtain

$$
\begin{align*}
& W_{21}^{2} \ll x^{2+\varepsilon} D^{2} K^{3} \sum_{k \sim K} \sum_{\substack{d \sim D \\
(d, a)=1}} \sum_{\substack{\ell_{i} \sim L \\
\ell_{1} \neq \ell_{2} \\
\ell_{1} \equiv \ell_{2}(d) \\
m_{1} m_{i} \neq a\left(m_{i} \equiv a(d) \\
m_{1} \neq m_{2}\right.}} \sum_{\substack{ \\
m_{1}}} e\left(\alpha\left(m_{1}^{2}-m^{2}\right)\left(\ell_{1}^{2}-\ell_{2}^{2}\right) k\right) \tag{44}\\
&+x^{3+\varepsilon} L D K^{4} \\
&=W_{22}+x^{3+\varepsilon} L D K^{4}
\end{align*}
$$

with

$$
W_{22} \ll x^{2+\varepsilon} D^{2} K^{3} \sum_{k \sim K} \sum_{d \sim D} \sum_{\omega \ll \frac{L}{D}} \sum_{\ell_{2} \sim L} \sum_{t \ll \frac{M}{D}} \min \left\{\frac{M}{d}, \frac{1}{\left\|\alpha d^{3} t \omega\left(2 \ell_{2}+\omega d\right) k\right\|} \cdot\right\}
$$

Putting $\ell=\ell_{2}+\omega d$ and $z=\omega \ell k t$ we get

$$
\begin{equation*}
W_{22} \ll x^{2+\varepsilon} D^{2} K^{3} \sum_{d \sim D} \sum_{z \ll \frac{x L K}{D^{2}}} \tau_{4}(z) \min \left\{\frac{x^{2} K}{d^{3} z}, \frac{1}{\left\|\alpha d^{3} z\right\|} \cdot\right\} \tag{45}
\end{equation*}
$$

If

$$
\begin{equation*}
\Delta<D \leq x^{\frac{8}{27}} \Delta \tag{46}
\end{equation*}
$$

then from inequality (10) of Lemma 7, (45), (43) and (44) we get

$$
\begin{equation*}
W_{2} \ll x^{\varepsilon}\left(x^{\frac{71}{7^{2}}} \Delta^{\frac{33}{64}} K+\frac{x K}{q^{\frac{1}{16}}}+\frac{x K}{\Delta^{\frac{1}{16}}}+x^{\frac{15}{16}} q^{\frac{1}{32}} K^{\frac{31}{32}}\right) \tag{47}
\end{equation*}
$$

If

$$
\begin{equation*}
D \leq \Delta \tag{48}
\end{equation*}
$$

we will estimate the sum W_{22} by putting $u=d^{3} z$ and applying Lemma 4, Lemma 2 (ii) to find

$$
\begin{equation*}
W_{2} \ll x^{\varepsilon}\left(x^{\frac{71}{72}} \Delta^{\frac{33}{64}} K+\frac{x \Delta^{\frac{1}{2}} K}{q^{\frac{1}{4}}}+\frac{x K}{q^{\frac{1}{16}}}+\frac{x K}{\Delta^{\frac{1}{16}}}+x^{\frac{15}{16}} q^{\frac{1}{32}} K^{\frac{31}{32}}+x^{\frac{1}{2}} \Delta^{\frac{1}{2}} K^{\frac{3}{4}} q^{\frac{1}{4}}\right) \tag{49}
\end{equation*}
$$

From (47) and (50) we get

$$
\begin{equation*}
W_{2} \ll x^{\varepsilon}\left(x^{\frac{71}{72}} \Delta^{\frac{33}{64}} K+\frac{x \Delta^{\frac{1}{2}} K}{q^{\frac{1}{4}}}+\frac{x K}{q^{\frac{1}{32}}}+\frac{x K}{\Delta^{\frac{1}{16}}}+x^{\frac{15}{16}} q^{\frac{1}{32}} K^{\frac{31}{32}}+x^{\frac{1}{2}} \Delta^{\frac{1}{2}} K^{\frac{3}{4}} q^{\frac{1}{4}}\right) \tag{50}
\end{equation*}
$$

5.2.2. Evaluation of type I sums. Reasoning as in the estimation of the sum W_{13} (see (5.1.2)) we obtain

$$
\begin{equation*}
W_{1}^{2} \ll x^{\varepsilon} M D K \sum_{z \sim M D} \tau(z) \sum_{t \ll \frac{L K}{D}} \tau_{3}(t) \min \left\{\frac{x^{2} K}{z^{2} t}, \frac{1}{\left\|\alpha z^{2} t\right\|}\right\}+x^{\varepsilon} M D K^{2} \tag{51}
\end{equation*}
$$

Using Lemma 5 and $M L \sim x$ we obtain

$$
\begin{equation*}
W_{1}^{2} \ll x^{\varepsilon}\left(M D K^{2}+\frac{x^{2} K^{2}}{(M D)^{\frac{1}{2}}}+\frac{x^{2} K^{2}}{q^{\frac{1}{2}}}+x K^{\frac{3}{2}} q^{\frac{1}{2}}\right) \tag{52}
\end{equation*}
$$

Using the inequality (51) we will evaluate the sum W_{1} in one more way. Let $u=z^{2} t$ and from Lemma 4 (iii) and Lemma 2 (iv) we find

$$
\begin{align*}
W_{1}^{2} \ll x^{\varepsilon} M D K \sum_{u \ll x M D K} \tau_{5}(u) \min & \left\{\frac{x^{2} K}{u}, \frac{1}{\|\alpha u\|}\right\} \tag{53}\\
& \ll x^{\varepsilon}\left(M D K q+x M^{2} D^{2} K^{2}+\frac{x^{2} M D K^{2}}{q}\right)
\end{align*}
$$

If $M D>\Delta$ using the estimate (52) we get

$$
\begin{equation*}
W_{1} \ll x^{\varepsilon}\left(x^{\frac{47}{48}} \Delta^{\frac{63}{128}} K+\frac{x K}{\Delta^{\frac{1}{4}}}+\frac{x K}{q^{\frac{1}{4}}}+x^{\frac{1}{2}} K^{\frac{3}{4}} q^{\frac{1}{4}}\right) . \tag{54}
\end{equation*}
$$

If $M D \leq \Delta$ from (53) it follows

$$
\begin{equation*}
W_{1} \ll x^{\varepsilon}\left(x^{\frac{1}{2}} \Delta K+\frac{x \Delta^{\frac{1}{2}} K}{q^{\frac{1}{2}}}+\Delta^{\frac{1}{2}} K^{\frac{1}{2}} q^{\frac{1}{2}}\right) \tag{55}
\end{equation*}
$$

then using (54) and (55) we get

$$
\begin{equation*}
W_{1} \ll x^{\varepsilon}\left(x^{\frac{47}{48}} \Delta^{\frac{63}{128}} K+\frac{x K}{\Delta^{\frac{1}{4}}}+\frac{x K}{q^{\frac{1}{4}}}+\frac{x \Delta^{\frac{1}{2}} K}{q^{\frac{1}{2}}}+x^{\frac{1}{2}} K^{\frac{3}{4}} q^{\frac{1}{4}}\right) \tag{56}
\end{equation*}
$$

From (39), (50) and (56)

$$
\begin{equation*}
W \ll x^{\varepsilon}\left(\frac{x K}{\Delta^{\frac{1}{32}}}+\frac{x K}{q^{\frac{1}{32}}}+\frac{x \Delta^{\frac{1}{2}} K}{q^{\frac{1}{4}}}+x^{\frac{71}{72}} \Delta^{\frac{33}{64}} K+x^{\frac{15}{16}} K^{\frac{31}{22}} q^{\frac{1}{32}}+x^{\frac{1}{2}} \Delta^{\frac{1}{2}} K^{\frac{3}{4}} q^{\frac{1}{4}}\right) \tag{57}
\end{equation*}
$$

5.3. Proof of Lemma 1. In Theorem 2 choose

$$
\begin{equation*}
x=q, \quad \Delta=K^{\frac{32.34}{33}}, \quad K=x^{\frac{1}{1296}-\eta}, \quad D=\frac{x^{1 / 2}}{\Delta K^{4}} \tag{58}
\end{equation*}
$$

where η is arbitrary small fixed number.
6. Proof of Theorem 2. As in [13] we take a periodic function with period 1 such that

$$
\begin{align*}
& 0<\chi(t)<1 \quad \text { if } \quad-\delta<t<\delta ; \\
& \chi(t)=0 \quad \text { if } \quad \delta \leq t \leq 1-\delta, \tag{59}
\end{align*}
$$

and which has a Fourier series

$$
\begin{equation*}
\chi(t)=\delta+\sum_{|k|>0} c(k) e(k t) \tag{60}
\end{equation*}
$$

with coefficients satisfying

$$
\begin{align*}
c(0) & =\delta, \\
c(k) & \ll \delta \quad \text { for all } k, \tag{61}\\
\sum_{|k|>K}|c(k)| & \ll x^{-1}
\end{align*}
$$

and δ and K satisfying the conditions (8).
The existence of such a function is a consequence of a well known lemma of Vinogradov (see [9], ch. 1, §2).

Next we will use sieve methods. As usual, for any sequence \mathcal{A} of integers weighted by the numbers $f_{n}, n \in \mathcal{A}$, we set

$$
S(\mathcal{A}, z)=\sum_{\substack{n \in \mathcal{A} \\(n, P(z))=1}} f_{n}
$$

and denote by \mathcal{A}_{d} be the subsequence of elements $n \in \mathcal{A}$ with $n \equiv 0(\bmod d)$. We write

$$
P(z)=\prod_{p<z} p, \quad V(z)=\prod_{p \mid P(z)}\left(1-\frac{\omega(p)}{p}\right) \quad \text { and } \quad C_{0}=\prod_{p>2}\left(1-\frac{1}{(p-1)^{2}}\right) .
$$

and we will use the linear sieve due to Iwaniec - this is Theorem 3 (see [7]).
To prove Theorem 2, it suffice to show that

$$
\begin{equation*}
S\left(\mathcal{A}, N^{1 / 3}\right)=\sum_{\substack{n+2 \leq x \\\left(n+2, P\left(x^{1 / 3}\right)=1\right.}} \chi\left(\alpha n^{2}+\beta\right) \Lambda(n)>0 . \tag{62}
\end{equation*}
$$

Following the exposition in Shi's article (see [11]) we have that

$$
\begin{aligned}
& S \geq \sum_{\substack{n+2 \leq x \\
\left(n+2, P\left(x^{1 / 12}\right)=1\right.}} \chi\left(\alpha n^{2}+\beta\right) \Lambda(n)\left(1-\frac{1}{2} \sum_{\substack{x^{1 / 12} \leq p_{1}<x^{1 / 3.1} \\
n \equiv-2\left(p_{1}\right)}} 1-\frac{1}{2} \sum_{\substack{n+2=p_{1} p_{2} p_{3} \\
\begin{array}{c}
x^{1 / 12} \leq p_{1}<x^{1 / 3.1} \\
x^{1 / 3.1} \leq p_{2}<\left(\frac{x}{p_{1}}\right)^{1 / 2}
\end{array}}} 1\right. \\
&\left.-\sum_{\substack{n+2=p_{1} p_{2} p_{3} \\
x^{1 / 12} \leq p_{1}<p_{2}<\left(\frac{x}{p_{1}}\right)^{1 / 2}}} 1+O\left(x^{11 / 12}\right)\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
& S \geq S\left(\mathcal{A}, x^{1 / 12}\right)-\frac{1}{2} \sum_{x^{1 / 12} \leq p_{1}<x^{1 / 3.1}} S\left(\mathcal{A}_{p_{1}}, x^{1 / 12}\right)-\frac{1}{2} \sum_{\substack{x^{1 / 12} \leq p_{1}<x^{1 / 3.1} \\
x^{1 / 3.1} \leq p_{2}<\left(\frac{x}{p_{1}}\right)^{1 / 2}}} S\left(\mathcal{A}_{p_{1} p_{2}}, x^{1 / 12}\right) \\
&-\sum_{x^{1 / 12} \leq p_{1}<p_{2}<\left(\frac{x}{p_{1}}\right)^{1 / 2}} S\left(\mathcal{A}_{p_{1} p_{2}}, x^{1 / 12}\right)+O\left(x^{11 / 12}\right) \\
&=S_{1}-\frac{1}{2} S_{2}-\frac{1}{2} S_{3}-S_{4}+O\left(x^{11 / 12}\right)
\end{aligned}
$$

and it is enough to proof that above expression is positive. Consider a square-free number d. If $2 \mid d$, then we write $\left|\mathcal{A}_{d}\right|=|r(\mathcal{A}, d)| \leq 1$. Otherwise we have by the Fourier expansion of $\chi(n)$ that

$$
\begin{aligned}
\left|\mathcal{A}_{d}\right| & =\sum_{\substack{n \leq x-2 \\
n \equiv-1(d)}} \chi\left(\alpha n^{2}+\beta\right) \Lambda(n) \\
& =\sum_{\substack{n \leq x-2 \\
n \equiv-1(d)}}\left(\delta+\delta \sum_{0<|k|<K} c(k) e\left(\alpha n^{2} k\right) \Lambda(n)+O\left(x^{-1}\right)\right) \\
& =\delta\left(\frac{x}{\varphi(d)}+R_{1}(d)+R_{2}(d)+O\left(\frac{x}{d(\log x)^{A}}\right)\right) .
\end{aligned}
$$

Here $c(k) \ll 1$,

$$
\begin{aligned}
& R_{1}(d)=\sum_{\substack{p \leq x-2 \\
p \equiv-1(d)}} 1-\frac{x}{\varphi(d)} \\
& R_{2}(d)=\sum_{0<|k|<K} c(k) \sum_{\substack{n \leq x-2 \\
n \equiv-2(d)}} e\left(\alpha n^{2} k\right) \Lambda(n)
\end{aligned}
$$

Applying Bombieri-Vinogradov theorem (see [8], Theorem 17.1)

$$
\sum_{d \leq D}\left|R_{1}(d)\right| \ll \frac{x}{(\log x)^{A}}
$$

On the other hand, Theorem 1 implies that for a well-separated numbers d of level $D=\frac{x^{1 / 2}}{\Delta K^{4}}$ and $\lambda(d) \ll \tau(d)$ we get

$$
\sum_{d \leq D} \lambda(d) R_{2}(d) \ll \frac{x}{(\log x)^{A}}
$$

when $q=x$, where a / q convergent to α with a large enough denominator. From here on, the reasoning we go through is the same as in Shi's paper (see [11]). We will only note
that to estimate the sum

$$
\sum_{x^{1 / 12} \leq p<x^{1 / 3.1}} \sum_{d \leq D} R_{2}(p d)
$$

with $D=\frac{x^{1 / 2}}{\Delta p K^{4}}$ first we present it as a $O\left(\log ^{4} x\right)$ number of sums of the type

$$
R_{2}(P)=\sum_{d \sim D} \lambda(d) \sum_{\substack{1 \leq|k| \sim K}} c(k) \sum_{\substack { p \sim P \\
\begin{subarray}{c}{n+2 \cong 0(d) \\
n+2 \equiv 0\left(p_{1}\right){ p \sim P \\
\begin{subarray} { c } { n + 2 \cong 0 (d) \\
n + 2 \equiv 0 (p _ { 1 }) } }\end{subarray}} e\left(\alpha n^{2} k\right) \Lambda(n),
$$

where $x^{1 / 12} \leq P<x^{1 / 3.1} / 2$.

If $D P \leq x^{8 / 27} \Delta$ we put $t=d p$ and represent the sum $R_{2}(P)$ in type:

$$
R_{2}(P)=\sum_{1 \leq|k| \sim K} c(k) \sum_{t \sim D P} g(t, d) \sum_{\substack{n \sim x \\ n+2 \equiv 0(t)}} e\left(\alpha n^{2} k\right) \Lambda(n),
$$

where

$$
g(t, d)=\sum_{\substack{d \sim D \\ d \mid(t, P(z)) \\ t / d>x^{1 / 12} \\ t / d-\text { prime }}} \lambda(d) \ll \tau(t)
$$

and evaluation is in the same way as in $\S 5.2$.

If $D P \geq x^{8 / 27} \Delta$ then, depending on which interval P falls into, and bearing in mind Remark 2 and the fact that d is well-separated, we choose H so that $P H$ falls into one of the intervals $x^{2 / 5} \leq P H \leq \frac{x^{1 / 2}}{\Delta K^{4}}$ or $x^{8 / 27} \Delta \leq P H \leq x^{2 / 5}$. So

$$
\begin{aligned}
& R_{2}(P)=\sum_{1 \leq|k| \sim K} c(k) \sum_{s \sim S} \sum_{h \sim H} \lambda(h s) \sum_{\substack{p_{1} \sim P}} \sum_{\substack{n \sim x \\
n+2 \equiv 0(d) \\
n+2 \equiv 0\left(p_{1}\right)}} e\left(\alpha n^{2} k\right) \Lambda(n) \\
&=\sum_{1 \leq|k| \sim K} c(k) \sum_{s \sim S} \sum_{t \sim P H} g(t, s) \sum_{\substack{n \sim x \\
n+2 \equiv 0(t s)}} e\left(\alpha n^{2} k\right) \Lambda(n)
\end{aligned}
$$

where

$$
g(t, s)=\sum_{\substack{h \sim H \\ h \mid(t, P(z))}} \lambda(h s) \ll \tau(t)
$$

and evaluation is in the same way as in $\S 5.1$.

Using the same calculation as in [11] with

$$
z=x^{\frac{1}{12}}, \quad \Delta=K^{\frac{32.34}{33}}, \quad K=x^{\frac{1}{1296}-\eta}, \quad D=\frac{x^{1 / 2}}{\Delta K^{4}}
$$

we get that inequality (62) is true and the proof of Theorem is complete.

REFERENCES

[1] G. Harman, R. C. Baker. the distribution of αp^{k} modulo one. Mathematika, $\mathbf{3 8}$ (1991), 170-184.
[2] J. R. Chen. On the representation of a large even integer as the sum of a prime and the product of at most two primes. Sci. Sinica, 16 (1973), 157-176.
[3] J. B. Friedlander, H. Iwaniec. Opera de cribro. American Mathematical Society Colloquium Publications, vol. 57. Providence, RI, American Mathematical Society, 2010.
[4] G. Greaves. Sieves in number theory. New York, Springer-Verlag, 2001.
[5] G. H. Hardy, J. E. Littlewood. Some problems of Diophantine approximation I. On the fractional part of $n^{k} \lambda$. Acta Math, 37 (1914), 155-191.
[6] D. R. Heath-Brown. Prime numbers in short intervals and a generalized Vaughan identity. Canad. J. Math., 34 (1982), 1365-1377.
[7] H. Iwaniec. A new form of the error term in the linear sieve. Acta Arith., $\mathbf{3 7}$ (1980), 307-320.
[8] H. Iwaniec, E. Kowalski. Analytic Number Theory. American Mathematical Society Colloquium Publications, vol. 53. Providence, RI, Amer. Math. Soc., 2004.
[9] A. A. Karatsuba. Principles of analytic number theory. Moscow, Nauka, 1983 (in Russian).
[10] K. МатомÄкi. A Bombieri-Vinogradov type exponential sum result with applications. Journal of Number Theory, 129, no. 9 (2009), 2214-2225.
[11] S.-Y. Shi. On the distribution of αp modulo one for primes p of a special form. Osaka J. Math., 49, no. 4 (2012), 993-1004.
[12] S.-Y.Shi, Z. Wu. On the distribution of αp^{2} modulo one for primes p of a special type. Chinese Annals of Mathematics. Series A, 34, no. 4 (2013), 479-486.
[13] T. L. Todorova, D. I. Tolev. On the distribution of αp modulo one for primes p of a special form. Math. Slovaca 60 (2010), 771-786.
[14] F. Xue, J. Li, M. Zhang. On the distribution of αp^{2} modulo one with prime p of a special form. Journal of Mathematics 2021 (2021), Article ID 5516049, https://doi. org/ 10.1155/2021/5516049.
[15] R. C. Vaughan. The Hardy-Littlewood method, 2nd. ed. Cambridge, Cambridge Univ. Press, 1997.
[16] И. М. Виноградов. Основы теории чисел. Москва, Наука, 1981 [I. M. Vinogradov. Osnovy teorii chisel. Moskva, Nauka, 1981].
[17] I. M. Vinogradov. The method of trigonometrical sums in the theory of numbers. Trud. Math. Inst. Steklov, 23, (1947), 1-109, (in Russian).
[18] I. M. Vinogradov. A general distribution law for the fractional parts of values of a polynomial with variable running over primes. C. R. (Doklady) Acad.-Sci. URSS (N.S.), 51 (1946), 491-492 (in Russian).
[19] H. Weyl. Über die Gleichverteilung von Zahlen mod Eins. Math. Ann., 11 (1916), 313-352.

[^0]: *https://doi.org/10.55630/mem.2024.53.039-056
 This work was supported Sofia University Scientific Fund, grant 80-10-99/2023.
 2020 Mathematics Subject Classification: 11J71, 11N36.

