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In the present work we consider two widely used definitions of a branching process
with migration, related to the controlled branching processes framework, classical and
multiple. We simulate the two processes with equal offspring and migration charac-
teristics and estimate the offspring mean via the weighted conditional least squares
estimators based on two sampling schemes – on the generation sizes only and the gen-
eration sizes and the migration components. We propose a robust modification of the
second estimator in the case when several trajectories of the process are observed.
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В настоящата статия разглеждаме две широко използвани дефиниции на разк-
лоняващи се процеси с миграция, класическа и многомерна, които от своя страна
са свързани с регулируемите разклоняващи се процеси. Симулираме двата про-
цеса, използвайки едни и същи характеристики за наследниците и мигрантите.
Също така, използваме две оценки по метода на претеглените най-малки квадра-
ти. Първата оценка зависи само от размера на поколенията, докато във втората
участва и миграционната компонента. Предлагаме и робастна модификация на
втората оценка, когато са наблюдавани няколко траектории на процеса.
Ключови думи: разклоняващи се процеси, миграция, статистическа оценка,
симулация, робастни оценки
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1. Introduction: history. Branching processes, a vital mathematical tool for mod-
eling family name extinction dynamics, originated with Irénée-Jules Bienaymé, a pio-
neering French mathematician [2]. Despite the lack of a formal proof, Bienaymé’s work
remained undiscovered until 1972 when Heyde and Seneta brought it to light [6]. Analyz-
ing the mean ratio’s influence on family extinction, Bienaymé explored scenarios where
a mean ratio less than unity (m < 1) revealed the inevitable decline of families. For
(m = 1), families faded at a slower pace, and for (m > 1), families demonstrated growth,
with a positive probability of continued expansion across successive generations. This
intricate mathematical dynamic underscores the profound impact of branching processes
on understanding the generational fate of family lineages.

Contributions from Francis Galton and Henry Watson further shaped branching pro-
cesses. Galton’s 1873 problem, published in the Educational Times, addressed the pop-
ulation dynamics of a large nation where adult males colonize a district with distinct
surnames. Watson initially attempted to solve this problem but made an error in his
analysis, incorrectly predicting the extinction of all family lines. Although this proposi-
tion was later disproven, Galton, Watson, and Bienaymé are recognized for their contri-
butions to the earliest model of a branching process.

There are many sources where the formulation of the model (for example [1], [5] and
[14]) can be found, but we will use the one given in [3, p. 2], which is as follows: Let
(Ω,A, P ) be a probability space on which an array of non-negative integer-valued random
variables {Xn(i) : n = 0, 1, . . . ; i = 1, 2, . . . } is given, where {Xn(i)} are independent and
identically distributed (i.i.d.) with a common probability mass function (p.m.f.) {pk}k≥0
(offspring distribution). To avoid trivialities, we assume that p0 > 0, p0 + p1 < 1
and therefore pj 6= 1 for any j. If any pj were equal to 1, it would essentially mean
that the corresponding event always happens, which might trivialize the analysis or the
model being discussed. The Bienaymé–Galton–Watson (BGW) process is a discrete time
homogeneous Markov chain {Zn}n≥0 defined inductively by Z0 = 1 and for n = 0, 1, 2, . . .

Zn+1 =


Zn∑
i=1

Xn(i), Zn > 0,

0, Zn = 0.

The notation Zn+1 is employed to represent the total number of individuals in the
(n + 1)st generation, while Xn(i) denotes the number of offspring of the ith individual
living in the nth generation. The population initiates with a single individual, signified
by Z0 = 1. In this definition it is not possible to regulate the number of individuals
throughout the generations.

In 1974, Sevastyanov and Zubkov [9] laid the foundation for controlled branching
processes. Two years later, in 1976, N. Yanev introduced a special case of a φ-controlled
branching process with random control functions [12]. Building upon this, in 1980, N.
Yanev and K. Mitov [13], along with independent work by S. Nagaev and L. Khan [7],
expanded on the concept by introducing the branching process with random migration.

Beyond its biological modeling origins, it is essential to recognize the broader impli-
cations of these processes. Their relevance extends into fields like quantum optics and
atomic physics, showcasing the versatility and significance of these concepts across diverse
scientific domains.
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Building on foundational concepts laid out by Sevastyanov, Yanev, and others, our
article serves as an overview of controlled branching processes and branching processes
with random migration. We focus on understanding how individual means are estimated
within these dynamic systems. By presenting numerical results and metrics evaluating
estimation effectiveness, we aim to offer valuable insights into the practical applications
of these established models. This analysis contributes to a deeper understanding of
controlled branching processes. To guide readers through the paper’s structure, Section
2 introduces models and notation, while Section 3 delves into sampling schemes and
weighted least squares estimators for the offspring mean. The concluding Section 4 offers
a presentation of simulations and the corresponding numerical results.

2. Models with migration. There are numerous sources providing the definition
of a controlled branching process introduced by Sevastyanov in [9]. For the purpose of
this article, we will give the formulation presented in [4].

Definition 1. The multiple controlled branching (MCB) process {Zn}n≥0 is defined
recursively as

(1) Z0 = I0 > 0, Zn+1 =
(∑
d∈D

φn,d(Zn)∑
i=1

Xn,d(i)
)+
, n = 0, 1, . . . ,

where I0 is an integer and a+ = max{0, a}.

In this definition, D is an index set, such that for each d ∈ D: {Xn,d(i)}n≥0,i≥1 are
i.i.d. integer-valued random variables (r.v.), which are independent for different values
of d, and {φn,d(k)}n≥0 are non-negative integer-valued r.v. for fixed values of d and k
(independent from the previous ones for different values of d).

A special case of the MCB process is the one with random migration [4]. Let X =
{Xn(i), n = 0, 1, . . . ; i = 1, 2, . . . }, η = {(ηn,1, ηn,2)} and I = {In} are independent
sets of non-negative integer-valued i.i.d. r.v. Additionally, {ξn, n = 0, 1, . . . } are i.i.d.
r.v. (independent from the previous ones), with P (ξn = −1) = p, P (ξn = 0) = q,
P (ξn = +1) = r and p+ q + r = 1.

If D = {1, 2, 3}, Xn,1(i) = Xn(i), Xn,2(i) = −ηn,2 (individual emigration), Xn,3(i) =
In (immigration), φn,1(Zn) = min{Zn, Zn + ξnηn,1}+, φn,2(Zn) = ξ−n 1{Zn>0} and

φn,3(Zn) = ξ+n 1{Zn>0}, where ξ−n = max{0,−ξn} and ξ+n = max{0, ξn}. Using this
notations in (1), we can write it as:

(2) Zn+1 =

φn,1(Zn)∑
i=1

Xn(i)−
φn,2(Zn)∑
i=1

ηn,2 +

φn,3(Zn)∑
i=1

In

In this context, φn,1(·) serves to determine whether family emigration occurs. If it
happens, an individual is removed from the population and does not contribute to future
reproduction. This action effectively excludes the individual’s entire family from the next
generation, reflecting a parallel absence in subsequent reproductive cycles. φn,2(·) indi-
cates the occurrence of individual emigration, specifically, emigration after reproduction.
φn,3(·) shows if there is an immigration in the nth generation, i.e. if we add individuals
that will take part in the reproductive cycle of the next generation.

It is easy to check that (2) gives us:
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Definition 2.

(3) Z0 > 0, Zn+1 =
( Zn∑
i=1

Xn(i) +Mn1{Zn>0}

)+
, n = 0, 1, . . . ,

where

Mn =


−
ηn,1∑
j=1

Xn(j)− ηn,2, with probability p

0, with probability q

In, with probability r

,

with

x∑
k=1

= 0 if x ≤ 0.

This model closely resembles the one defined in [8], with a key distinction that in [8] 0
is not an absorbing state (if 0 is an absorbing state, the process concludes once it reaches
zero), but I = {(In, I0n)} and with probability r, Mn = In1{Zn>0} + I0n1{Zn=0}, i.e

Definition 3.

(4) Z0 ≥ 0, Zn+1 =
( Zn∑
i=1

Xn(i) +Mn

)+
, n = 0, 1, . . . ,

where

Mn =


−
ηn,1∑
j=1

Xn(j)− ηn,2, with probability p

0, with probability q

In1{Zn>0} + I0n1{Zn=0}, with probability r

.

In both Definition 2 and Definition 3, the condition p+ q + r = 1 holds true.
A simpler variant of model (3), introduced above, is presented in [3], where emigration

and immigration take place before the reproduction phase.
Definition 4. The CB process {Zn}n≥0 is defined recursively as

(5) Z0 = I0 > 0, Zn+1 =

φn(Zn)∑
i=1

Xn(i), n = 0, 1, . . .

Here, the control function dictates three possible scenarios:

• Zn − φn(Zn) individuals are removed from the population if φn(Zn) < Zn and do
not participate in the evolution of the process;

• φn(Zn)− Zn are added to the population before reproduction if φn(Zn) > Zn;

• No individual are removed or added if φn(Zn) = Zn.

This model provides a more straightforward framework where migration events pre-
cede the reproductive phase.

3. Estimators for the offspring mean. Understanding the offspring distribution
in branching processes is fundamental to reveal the overall behavior of the process. Es-
timating the offspring mean, m = E[X1(1)], is an important step toward grasping the
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dynamics across generations in various scenarios. We will explore two types of condi-
tional weighted least squares (CWLS) estimators connected to the processes introduced
earlier.

Using the CWLS method, Yanev and Nitcheva, [8], proposed the following estimator
for the offspring mean of the process defined in (4)

(6) m̃n =

n∑
i=1

Zi
n∑
i=1

1

1 + Zi−1
− n

n∑
i=1

Zi

1 + Zi−1
n∑
i=1

(1 + Zi−1)
n∑
i=1

1

1 + Zi−1
− n2

.

We see that the only thing we need for the estimator is the number of individuals in
each generation, although that is not always an easy task. Furthermore, conducting an
analytical analysis of the estimator presents challenges and is a subject for future work.

To obtain this estimator, the method involves minimizing the sum of squared weighted
residuals with respect to two parameters, m and M (representing the migration mean,
which is currently not of our interest). This method is also applied in [10] for the offspring
mean of the process defined in (5). The resulting estimator is given by:

(7) m̂n =
( n∑
i=1

Ziε(Zi−1)

ε(Zi−1) + 1

)( n∑
i=1

ε2(Zi−1)

ε(Zi−1) + 1

)−1
,

where ε(Zi−1) is the expectation of the control function, denoted as ε(k) = E[φn(k)].
The asymptotic behavior of (7) has been studied with respect to the criticality of the
process, and it has been proven that the estimator exhibits asymptotic normality and
consistency. It is noteworthy that in this case, the minimization is solely with respect to
m, assuming prior knowledge of ε(k) for each generation. Consequently, obtaining more
information about the family tree becomes crucial. However, in [10], they also mentioned
that if ε(k) is not known, it can be replaced ε(Zi−1) with φi−1(Zi−1) and the modified
estimator is:

(8) m̂n =
( n∑
i=1

Ziφi−1(Zi−1)

φi−1(Zi−1) + 1

)( n∑
i=1

φ2i−1(Zi−1)

φi−1(Zi−1) + 1

)−1
.

4. Simulation study. We present the outcomes of simulations, each including 1000
paths, spanning across different generations (n = 10, 50, 100) for both the processes de-
tailed in (4) and (5). In the first model, emigration can occur both before and after
reproduction, while in the second, it is only possible before. Another significant distinc-
tion is that immigration in (4) happens after the new individuals are produced, but in
(5), it occurs before.

To generate the offspring distribution, as well as the distributions for emigrants and
immigrants, Python is employed to randomize the values (also it is used for simulating
the models). The resulting distributions are presented in the following three tables.

The following graphics, Figure 1 and Figure 2, display only a single path, providing
a basic understanding of the two processes.

From both figures, we observe that up to the 50th generation, the two processes
exhibit very similar behavior. However, in the third plots, we notice that process (5)
demonstrates more rapid growth. This difference arises because we allow very few emi-
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Table 1. Offspring distribution

0 1 2

0.0718 0.7571 0.1711

Table 2. Emigrant distribution

1 2 3

0.1979 0.5996 0.2025

Table 3. Immigrant distribution

1 2 3

0.2951 0.0243 0.6806

(1) n = 10 (2) n = 50 (3) n = 100

Fig. 1. Process with migration, model (4)

(1) n = 10 (2) n = 50 (3) n = 100

Fig. 2. Process with migration, model (5)

grants before reproduction, and at some point, they become insignificant for (5). On the
contrary, (4) shows slower growth because this process involves individual emigration,
meaning that certain individuals are removed after reproduction and do not participate
to the next generation.

Additionally, we provide corresponding estimators for m as given by equations (6)
and (8). For each case, we calculate the mean of the estimated m-s in every path and
present the resulting value (the same approach is used in [8]), i.e.

avgN (m̃) =
1

N

N∑
j=1

m̃n(j), avgN (m̂) =
1

N

N∑
j=1

m̂n(j),

where N is the number of simulated paths, which, in our case, is set to N = 1000 for
each scenario.

For the simulation of (5), we once again assume that p, q, and r represent the prob-
abilities of emigration, no migration, and immigration, respectively. This is analog of
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Gawton-Watson process with migration defined in [3], in which the control function is a
random variable, depending on p, q and r. Here p = 0.03, q = 0.2046, r = 0.7654 and
the offspring mean is m ≈ 1.0993, starting from Z0 = 1. The results are presented in
Table 4.

Table 4. Values of avgN (m̃) and avgN (m̂)

n avgN (m̃) avgN (m̂)

10 0.9963 1.0418

50 1.0245 1.0168

100 1.0172 1.0019

The simulation results indicate the effective performance of both methods. However,
an interesting question for a future work is whether it is possible to employ a similar
estimator as (8) for a process that involves three control functions, such as (2).

The simulated process is supercritical. This allows us to use the asymptotic normality

of the estimator (8). According to [3], Theorem 5.7,
√
An(m̂n −m)

d−→ N(0, σ2) as n→

∞, where An =

n∑
i=1

ε2(Zi−1)

ε(Zi−1) + 1
and σ2 > 0 is a constant. Having observedN trajectories

{S1, . . . , SN} of the process, carrying information about the generation sizes and the
value of the migration function, and supposing that some of the trajectories contain
outliers (“contaminated” data which influence the correct estimation of the offspring
mean), robust modifications of the estimators (8) can be constructed. Following the
methodology, described in [11], the weighted least trimmed modification of (8) is defined
as

m(k) = arg min
m∈R

k∑
i=1

−wif(Est(Sν(i),m))

where k is the trimming factor, f(x) is the logarithm of the density function of the stan-
dard normal distribution, ν is a permutation of the indexes, such that f(Est(Sν(1),m)) ≥

f(Est(Sν(2),m)) ≥ · · · ≥ f(Est(Sν(n),m)). With Est(Si,m) =

√
An
σ

(
m̂(i)
n −m

)
we

note the transformation of the offspring mean estimator, which asymptotically behaves
like a standard normal r.v. The weights wi ≥ 0, i = 1, . . . , k, are such that an index
k = max{i : wi > 0} exists. Following the steps in [11], Theorem 1, it can be proved
that this estimator exists and its breakdown point is not less than (N − k)/n if n ≥ 3,
(N + 1)/2 ≤ k ≤ N − 1. Hence the estimator m(k) is robust and it incorporates only
the most “probable” or “typical” trajectories of the process. The trajectories leading to
untypical for the standard normal distribution values Est(Si,m) are indicated as “outlier
trajectories” and are excluded from the final form of the estimator m(k).

Acknowledgements. The authors would like to thank the referee for the construc-
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680–683.

[7] S. V. Nagaev, L. V. Khan. Limit theorems for Galton–Watson branching processes with
migration. Theory Probability Appl., 25 (1980), 523–534.

[8] D. Nitcheva, N. M. Yanev. A system for simulation and estimation of branching pro-
cesses. Pliska Stud. Math. Bulg. 13 (2000), 173–178.

[9] B. A. Sevast’yanov, A. M. Zubkov. Controlled Branching Processes. Theory Probability
Appl., 19, no. 1 (1974), 14–24.

[10] T. N. Sriram, A. Bhattacharya, M. Gonzalez, R. Martinez, I. Del Puerto. Es-
timation of the offspring mean in a controlled branching process with a random control
function. Stochastic Process. Appl., 117, no. 7 (2007), 928–946.

[11] V. Stoimenova, D. Atanasov, N. M. Yanev. Robust Estimation and Simulation of
Branching Processes. C. R. Acad. Bulg. Sci. 57, no. 5 (2004), 19–22.

[12] N. M. Yanev. Conditions for degeneracy of φ-branching processes with random φ. Theory
Probab. Appl., 20 (1976), 421–428.

[13] N. M. Yanev, K. V. Mitov. Controlled branching processes: the case of random migra-
tion. C. R. Acad. Bulg. Sci., 33, no. 4 (1980), 473–475.

[14] М. Славчова-Божкова, Н. Янев. Разклоняващи се стохастични процеси. Универ-
ситетско издателство

”
Св. Климент Охридски“, 2007 [M. Slavchova-Bozhkova, N.

Yanev. Razklonyavashti se stohastichni protsesi. Universitetsko izdatelstvo “Sv. Kliment
Ohridski”, 2007] (in Bulgarian).

106


