Probability Distributions: New Results on their Moment Determinacy

Jordan Stoyanov (stoyanovj@gmail.com)

IMI BAS \& Newcastle University (UK)

National Colloquium in Mathematics
UBM \& IMI-BAS, Sofia, BULGARIA
29 November 2017, 16:15

Brief Historical Comments:

Chebyshev: proved the C.L.T. for arbitrary seq. of random variables. He showed that the moments of the centered normalized sums convergence to those of the normal distribution $\mathcal{N}(0,1)$. Hence ... job done!

Markov: refined the proof, asking the Teacher if it is possible to have more than one distribution corresponding to a moment sequence.

Chebyshev sent this to Hermite, who ... passed to Stieltjes all Chebyshev stuff (papers, ideas, continued fractions, integral inequalities) Stieltjes did a great job! 1894 Name, "iff" conditions, two examples of distributions on \mathbb{R}_{+}which are non-unique in terms of the moments. Later, strong interest: Hamburger, Hardy, Carleman, Riesz, Fréchet, Cramér, Hausdorff, Akhiezer, Krein, Nudelman, Karlin, ...

Probability Theory ... or Measures and Functions
Probability space $(\Omega, \mathcal{F}, \mathbf{P})$, random events, variables, vectors, etc.
Random variable X, range of values $\mathbb{R}, \mathbb{R}_{+}$of a subset.
Distribution function $F(x)=\mathbf{P}[\omega: X(\omega) \leq x], x \in \mathbb{R}$. Properties, supp.
Density $f(x)=F^{\prime}(x), x \in \mathbb{R}$ (not always !)
Distribution $\mu=\mu_{F}$, the measure on $(\mathbb{R}, \mathcal{B})$ generated by F.
Characteristic function $\psi(t):=\mathbf{E}\left[\mathrm{e}^{\mathrm{i} t X}\right], t \in \mathbb{R}$ (Fourier Transform, FT)
Moment generating function If $M(t)=\mathbf{E}\left[\mathrm{e}^{t X}\right]<\infty, t \in\left(-t_{0}, t_{0}\right), t_{0}>0$
Bellow we use standard abbreviations: r.v., d.f., ch.f., m.g.f.

Kolmogorov Theorem: Given a d.f. G, then there exists a probability space and a r.v. Y such that the d.f. of Y is exactly G.

Given a r.v. $X \sim F$, expectation (expected value, mean value, \ldots) is:
$\mathbf{E}[X]=\int_{\Omega} X(\omega) \mathrm{d} \mathbf{P}(\omega)=\int x \mathrm{~d} F(x)=\int x f(x) \mathrm{d} x=\int x \mu(\mathrm{~d} x)$.
Assume X has absolute moments: $\mathbf{E}\left[|X|^{k}\right]<\infty, k=1,2, \ldots$. Then $m_{k}=\mathbf{E}\left[X^{k}\right]$, moment of order $k ;\left\{m_{k}, k=1,2, \ldots\right\}$ moment seq. of F, X.

Question: We have $\left\{m_{k}\right\}$. Is there a d.f. $G \neq F$ with the same moments? Answer: Sometime 'yes', sometime 'no'.

Equivalently: If $f(x)$ is a function and $\hat{f}(t)$ its FT , can we recover f if we know all derivatives of $\hat{f}(t)$ at $t=0$? Recall: $\left.\frac{d^{k}}{d t^{k}} \hat{f}(t)\right|_{t=0}=m_{k}$. Notice, $\left\{m_{k}\right\}$ is a discrete info, f and F are infinite ... Inverse Fourier. Numerical methods.

Terminology: Name of the moment problem, depends on the $\operatorname{supp}(F)$:
$[0,1]$ (Hausdorff); $\mathbb{R}_{+}=[0, \infty)$ (Stieltjes); $\mathbb{R}=(-\infty, \infty)$ (Hamburger)
Fact 1: For any X, F, f, μ with finite moments $\left\{m_{k}\right\}$ there are two possibilities, (a) or (b):
(a) F is M-determinate, or unique with these moments (M-det), i.e.

$$
\int x^{k} \mathrm{~d} F(x)=\int x^{k} \mathrm{~d} G(x) \text { for all } k=1,2, \ldots \Rightarrow F=G
$$

(b) F is M-indeterminate (M-indet) if there is at least one d.f. G with

$$
\int x^{k} \mathrm{~d} F(x)=\int x^{k} \mathrm{~d} G(x) \text { for all } k=1,2, \ldots, \text { but } G \neq F \text {. }
$$

Fact 2: For any M-indet F, there are infinitely many absolutely continuous distributions, infinitely many discrete distributions, and infinitely many singular distributions, all having the same moments as F.

The latter can be extracted from a series of works by C. Berg and co.
Notion: Stieltjes class. See next page.
Importance of \mathbf{M}-uniqueness: Fréchet-Shohat Theorem:
Sequence of measures $\mu_{n}, n=1,2, \ldots$ s.t. for each $k, \int x^{k} \mathrm{~d} \mu_{n} \rightarrow m_{k}$ as $n \rightarrow \infty$. Then $\left\{m_{k}\right\}$ is the moment sequence of a measure, say μ, and if μ is M-det, then μ_{n} converges weakly to μ.
Wide applications in graph theory, number theory, statistical physics, ..., combinatorics.

Statistical Inference: Recall skewness and kurtosis coefficients. Risky business. Optimization problems, including in Financial Mathematics.

Log-normal distribution:
$Z \sim \mathcal{N}(0,1), \varphi(x)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2}, x \in \mathbb{R}, m_{2 k+1}=0, m_{2 k}=(2 k-1)!!$.
Then $X=\mathrm{e}^{Z} \sim \log \mathcal{N}(0,1)$, density

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \frac{1}{x} \exp \left[-\frac{1}{2}(\ln x)^{2}\right], x>0 ; f(x)=0, x \leq 0 .
$$

About X : No m.g.f., HT, $m_{k}=\mathbf{E}\left[X^{k}\right]=e^{k^{2} / 2}, k=1,2, \ldots$
Two infinite sets of r.v.s, one absolutely continuous, one discrete:
$X_{\varepsilon}, \varepsilon \in[-1,1]:$ density $f_{\varepsilon}(x)=f(x)[1+\varepsilon \sin (2 \pi \ln x)], x>0$
$Y_{a}, a>0: \mathbf{P}\left[Y_{a}=a e^{n}\right]=a^{-n} \mathrm{e}^{-n^{2} / 2} / A, n=0, \pm 1, \pm 2, \ldots$
Shocking property: $\quad \mathbf{E}\left[X_{\varepsilon}^{k}\right]=\mathbf{E}\left[Y_{a}^{k}\right]=\mathbf{E}\left[X^{k}\right]=\mathrm{e}^{k^{2} / 2}, k=1,2, \ldots$.
Conclusion: LogN is M-indet! So 'many' others, the same moments.

Classical Conditions: Back to Stieltjes and Hamburger: moment seq. $\left\{m_{k}, k=1,2, \ldots\right\}$, write an infinite seq. of Hankel matrices: H_{N} involves $m_{0}=1, m_{1}, \ldots, m_{N}, \ldots, m_{N}, \ldots, m_{2 N}, N=1,2 \ldots$
If all H_{N} are non-negative, or positive-definite, then the is a measure μ with these moments, and it is unique. Advanced case (O.K., Ark. Math. 2010): complex-valued, pseudo-positive-definite ...

Recently, Berg, Chen, Ismail (Math. Scand. 2002): If λ_{N} is the smallest eigenvalue of H_{N}, then $\lambda_{N} \searrow$ as $N \rightarrow \infty$. Moreover, there is a unique measure μ with the moments $\left\{m_{k}\right\}$ iff $\lambda_{N} \rightarrow 0$ as $N \rightarrow \infty$.

Not easy to check. For a century, find checkable conditions, even if they are only sufficient, or only necessary for either M-det or M-indet.

All is done!? MathSciNet, 2017="moment problem", 226 new papers.

Cramér condition: For a r.v. $X \sim F$ on \mathbb{R}, let the m.g.f. exists:

$$
M(t)=\mathbf{E}\left[\mathrm{e}^{t X}\right]<\infty, t \in\left(-t_{0}, t_{0}\right), t_{0}>0 \text { (light tails). }
$$

- X has all moments finite; - X, i.e. F, is M-det.

Remark: Existence of m.g.f. \Leftrightarrow analytic ch.f. More, strong Cramér: $M(t)<\infty$ for all $t \in \mathbb{R} \Leftrightarrow$ real analytic ch.f.

Examples: Bounded supp (F) (Hausdorff case), Exp, \mathcal{N}, Laplace.
If F has heavy tail(s) (no m.g.f.), F is either M-det or M-indet
Question: When is a heavy tailed F unique? And when non-unique?
We will see that we may have uniqueness even if the tail(s) are 'heavy', but not too much, and non-uniqueness comes out if the tail(s) of the distribution is 'very heavy'. Later, example with Exp.
"New" Condition: G. Hardy (1917/1918). The Math. Messenger Statement (Hardy): r.v. $X>0, X \sim F$. Suppose \sqrt{X} has m.g.f.:
$\mathbf{E}\left[\mathrm{e}^{t \sqrt{x}}\right]<\infty$ for $t \in\left[0, t_{0}\right), t_{0}>0 \quad(H)=$ Hardy's condition; $\frac{1}{2}$-Cramér.
Then all $m_{k}=\mathbf{E}\left[X^{k}\right]<\infty, k=1,2, \ldots$ and F is the only d.f. with $\left\{m_{k}\right\}$.
Hint: Details in S\&L TPA (2012/2013). The main, F is arbitrary. More, condition $(\mathrm{H}) \Longleftrightarrow m_{k}(X) \leq c^{k}(2 k)!\Rightarrow \mathrm{C}\left[\left\{m_{k}\right\}\right]=\infty \Rightarrow X$ is M-det.

Notice: The condition is on \sqrt{X} but the conclusion is for X.
Corollary: If a r.v. $X>0$ has a m.g.f., then its square X^{2} is M -det.
Result: $\ln (H), \frac{1}{2}$ is the best possible constant for X to be M-det. For each $\rho \in\left(0, \frac{1}{2}\right)$ there is a r.v. Y with $\mathbf{E}\left[\mathrm{e}^{t Y^{\rho}}\right]<\infty$ s.t. Y is M -indet.
Comment: Hardy's condition is sufficient but not necessary for M-det.

Carleman: Quasi-analytic functions, book 1926.
Known are all moments $m_{k}=\mathbf{E}\left[X^{k}\right], k=1,2, \ldots$
For X in \mathbb{R} or \mathbb{R}_{+}, define the following Carleman quantity:

$$
\mathrm{C}=\sum_{k=1}^{\infty} \frac{1}{\left(m_{2 k}\right)^{1 / 2 k}}, \quad \mathrm{C}=\sum_{k=1}^{\infty} \frac{1}{\left(m_{k}\right)^{1 / 2 k}} .
$$

Theorem 1 (Carleman): $\mathrm{C}=\infty \Rightarrow F$ is M-det. (Only sufficient!)
Remark: If F is M -indet, then necessarily $\mathrm{C}<\infty$ (converse Carleman's).
Theorem 2: (Koosis and Pakes) Suppose $C<\infty$. If F has a density f such that $-\ln f\left(\mathrm{e}^{x}\right)$ is convex for $x>x_{0}>0$, then F is M -indet.

Krein: Let $X \sim F$, density $f>0$, finite moments. For X in \mathbb{R} or \mathbb{R}_{+}, define the Krein quantity (Krein 1944 and Slud 1993):

$$
\mathrm{K}[f] \equiv \int_{-\infty}^{\infty} \frac{-\ln f(y)}{1+y^{2}} \mathrm{~d} y, \quad \mathrm{~K}[f] \equiv \int_{a}^{\infty} \frac{-\ln f\left(y^{2}\right)}{1+y^{2}} \mathrm{~d} y, a \geq 0 .
$$

Theorem 1: $\mathrm{K}[f]<\infty \Rightarrow F$ is M -indet. (Only sufficient!)
Remark: If F is M -det, then necessarily $\mathrm{K}[f]=\infty$ (converse Krein's).
We say that Lin's condition is satisfied if $f>0, f$ is smooth and

$$
L_{f}(x):=\frac{-x f^{\prime}(x)}{f(x)} \not \nearrow \infty \text { as } x_{0}<x \rightarrow \infty .
$$

Theorem 2: (Lin 1997) $\mathrm{K}[f]=\infty+$ Lin's condition $\Rightarrow F$ is M-det.
Remark: There are variations and extensions (Pedersen, Berg, ...).

Rate of Growth of the Moments and (In)Determinacy:

Stieltjes case: $X \sim F$, unbounded $\operatorname{supp}(F) \subset \mathbb{R}_{+}, \quad m_{k}=\mathbf{E}\left[X^{k}\right]$.
Property 1: (i) $\left\{m_{k}\right\}$ is log-convex. (ii) As $k \rightarrow \infty, m_{k} \not \subset \infty$. How much lager m_{k+1} is compared with m_{k} ? Involve the ratio

$$
\Delta_{k}=\frac{m_{k+1}}{m_{k}}, k=1,2, \ldots \Rightarrow \Delta_{k} \nearrow \text { strictly } \Rightarrow \text { unique } \lim _{k \rightarrow \infty} \Delta_{k} .
$$

Property 2: Case $\lim _{k \rightarrow \infty} \Delta_{k}=c_{*}=$ const $<\infty \Leftrightarrow X$ is bounded.
Assume now $\Delta_{k} \nearrow \infty$ is $R V(\delta)$, some $\delta \geq 0$ (in Karamata's sense):

$$
\Delta_{k} \approx k^{\delta} \ell_{k} \text { for large } k \text {, with a monotone }\left\{\ell_{k}\right\} \in S V \text {. }
$$

Def.: $\delta=$ rate of growth of the moments of X. We have $0 \leq \delta \leq \infty$.
Hamburger case: Now $X \sim F, \operatorname{supp}(F) \subset \mathbb{R}$, we work with even order moments. As above we have $m_{2 k} \nearrow \infty$, etc., involve

$$
\Delta_{k}=\frac{m_{2 k+2}}{m_{2 k}} \approx k^{\delta} \ell_{k} \quad \text { as } k \rightarrow \infty
$$

Remark: Two boundary cases. If $X \in[0,1]$ or $[-1,1]$, moments \searrow, easy to see $\delta=0$. Take $X \sim \log \mathcal{N}, m_{k}=\mathrm{e}^{k^{2} / 2}, \Delta_{k}=m_{k+1} / m_{k}=\mathrm{e}^{k+1 / 2} \nearrow+\infty$ as $k \rightarrow \infty$ faster than any power of k, hence $\delta=\infty$.

Three statements for both cases (Stieltjes and Hamburger):
Statement 1: If $\delta \leq 2$, then X is M -det.
Statement 2: $\delta=2$ is the best possible constant for which X is M-det. Equiv: There is a r.v. Y with $\Delta_{k} \approx k^{2+\varepsilon} \ell_{k}, \varepsilon>0$, s.t. Y is M -indet.

Statement 3: If $\delta>2$ and Lin's condition holds, then X is M -indet.
Remark: Interestingly, Lin's condition is essentially involved with the converse Krein to get M-det, and here, with 'fast' rate δ, to get M-indet.

Example 1: $\xi \sim \operatorname{Exp}(1), \mathrm{e}^{-x}, x>0, m_{k}=k!$, m.g.f. $=1 /(1-t), t<1$.
Clearly, ξ is M-det. And we know everything for any power $\xi^{r}, r>0$.
$\mathbf{r}=2: \quad \xi^{2}, \quad m_{k}=(2 k)!$, fast π, still ξ^{2} is M-det. Notice, no m.g.f.!
How to show that $f(x)=\frac{1}{2} x^{-1 / 2} \exp \left(-x^{-1 / 2}\right), x>0$ is the only solution of

$$
\int_{0}^{\infty} x^{k} f(x) \mathrm{d} x=(2 k)!, k=1,2, \ldots ?
$$

$\mathbf{r}=3: \xi^{3}, m_{k}=(3 k)!$, very fast π, ξ^{3} is M -indet. How to show that

$$
\int_{0}^{\infty} x^{k} f(x) \mathrm{d} x=(3 k)!, k=1,2, \ldots
$$

has infinitely many solutions? Take, e.g. the Stieltjes class

$$
f_{\varepsilon}(x)=f(x)[1+\varepsilon h(x)], x>0, \varepsilon \in[-1,1]
$$

where $f(x)=\frac{1}{3} x^{-2 / 3} \mathrm{e}^{-x^{1 / 3}}$ and $h(x)=\sin \left(\frac{\pi}{6}-\sqrt{3} x^{1 / 3}\right)$.

Example 2: $Z \sim \mathcal{N}(0,1), \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2}, m_{2 k+1}=0, m_{2 k}=(2 k-1)!!$.
We have, e.g., Z is M -det, Z^{2} is M -det, Z^{4} is M -det, but Z^{3} is M -indet.
Strange Case: While $X=Z^{3}$ is M -indet, it turns out, $|X|$ is M -det.
Hint: X is in \mathbb{R} (Hamburger), $|X|$ in \mathbb{R}_{+}(Stieltjes). Density of X :
$g_{X}(x)=\frac{1}{3 \sqrt{\pi}}|x|^{-2 / 3} \exp \left[-|x|^{2 / 3}\right], x \in \mathbb{R} \Rightarrow \mathrm{~K}\left[g_{x}\right]<\infty, X$ is M -indet.
Or: $m_{2 k}(X)=(6 k-1)!$!, rate $\delta_{X}=3$, Lin's cond. holds $\Rightarrow X$ is M-indet.
Stieltjes class: For some $h, \mathbf{S}(g, h)=\left\{g_{\varepsilon}=g[1+\varepsilon h], \varepsilon \in[-1,1]\right\}$.
Next, for $|Z|, \quad m_{k}=\mathbf{E}\left[|Z|^{k}\right]=\frac{2^{k / 2}}{\sqrt{\pi}} \Gamma\left(\frac{k+1}{2}\right), g_{|X|}(x)=2 g_{x}(x), x>0$, $\mathrm{K}\left[g_{|X|}\right]=\infty, g_{|X|}$ satisfies Lin's condition, hence $|X|$ is M -det.
Also: $m_{k}(|X|)=m_{3 k}(|Z|)=\frac{2^{3 k / 2}}{\sqrt{\pi}} \Gamma\left(\frac{3 k+1}{2}\right)$, rate $\delta_{|X|}=3 / 2<2,|X|$ is M -det.

Current topics (a few random choices from the boxes):

- Multivariate distributions/measures and related moment problems.
- How to write Lin's condition for discrete distributions?
- Class of distributions F_{a}, density f_{a} satisfies 2 nd order ODE:

$$
f^{\prime \prime}(x)-a(x) f(x)=0 \quad(+ \text { initial conditions })
$$

Find $a(\cdot)$ so that f is density, either Krein's condition, or converse Krein's

+ Lin's condition. Hence, a r.v. $X \sim f$ is either M-indet or M-det.
All above are parts of a joint project with P. Kopanov.
- Distributions whose densities satisfy Kolmogorov PDEs, connection with Itô SDEs. Joint work with M. Zhitlukhin.
- More topics on functions, MaxEnt approach, Lévy processes, etc. with G.D. Lin, A. Tagliani, M. Milev, M. Savov, K. Penson.

Few Final Comments. Open Questions (to me):

Question: Two measures, μ and ν, both with all moments finite. Let

$$
\int x^{k} \mathrm{~d} \mu \leq \int x^{k} \mathrm{~d} \nu \text { for all } k=1,2, \ldots \text { (M-domination). }
$$

(1) We know that μ is M -indet, does this imply that ν is also M -indet?
(2) We know that ν is M -det, does this imply that μ is also M -det?

Open Question: In dim. $n \geq 2$, how to write Krein's condition?
Open Question: Find discrete r.v. on \mathbb{R}_{+}with moments $\{(3 k)$!\}. Equivalently: Find reals, $x_{1}<x_{2}<\ldots<x_{n}<\ldots$ (unbounded) and $p_{1}, p_{2}, \ldots, p_{n}, \ldots$, all >0 with $\sum_{n=1}^{\infty} p_{n}=1$ (disc. probab. distr.) such that

$$
\sum_{n=1}^{\infty} x_{n}^{k} p_{n}=(3 k)!\text { for any } k=1,2, \ldots .
$$

Open Question: Find discrete r.v. with $m_{2 k-1}=0, m_{2 k}=(6 k-1)!!$.

References: Books: Akhiezer/Krein 1938, Shohat/Tamarkin 1943, Akhiezer 1961/1965, Berg \& co. 1981, Vorobyev 1984, Lasserre 2010, and ... Schmüdgen, The Moment Problem, 13 Dec 2017

Hardy, GH (1917/1918): The Mathematical Messenger 46/47
Berg, C (1988): Ann. Probab. 16 910-913; JOTP (2005)
Pedersen, HL (1988): J. Approx. Theory 95 90-100
Lin, GD (1997): Statist. Probab. Letters 35 85-90
Pakes, A (2007): J. Math. Anal. Appl. 326 1268-1290.
Putinar, M, Schmüdgen, K (2008): Indiana Univ. Math. J. 57 2931-68
Kleiber, C, Stoyanov, J (2011/2013): J. Multivar. Analysis 113 7-18
Stoyanov, J, Lin, GD (2012): Theory Probab. Appl. 57 811-820
[SIAM edition: TPA 57 (2013) 699-708]
Lin, GD, Stoyanov, J (2014 - 2016): JOTP, JSPI, PMS
Stoyanov, J (2013): Counterexamples in Probability. 3rd edn.
Dover, New York. (1st ed, 2nd ed: Wiley 1987, 1997)

