CHAIN RING ANALOGUES OF SOME THEOREMS FROM EXTREMAL SET THEORY

Ivan Landjev

Institute of Mathematics and Informatics

and
New Bulgarian University

1. Preliminaries

A family \mathcal{F} of subsets of a gound set $\Omega=\{1,2, \ldots, n\}$ is intersecting if any two sets from \mathcal{F} have at least one element in common.

More generally, it is t-intersecting if any two sets from \mathcal{F} have at least t elements in common.

Theorem. (Erdôs, Ko, Rado, 1961)
Let Ω be a finite set with n elements and let $k \leq n / 2$ be an integer. If \mathcal{F} is an intersecting family of k-element subsets of Ω then

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

If $k<n / 2$ and \mathcal{F} meets the bound then it is canonically intersecting.

The reason this theorem is important is that it has many interesting applications. let us restate it as a question in graph theory

The Kneser graph $K(n, k)$
Vertices: all k-subsets of Ω
Edges: (X, Y) is an edge iff $X \cap Y=\varnothing$

An intersecting family: a coclique in the Kneser graph
The EKR-theorem characterizes the maximal co-cliques in the Kneser graph.

Theorem. (Erdős, Ko, Rado,Frankl, Wilson)

Let Ω be a finite set with $|\Omega|=n$ and let k and $t, t<k$, be integers. Let \mathcal{F} be a t-intersecting family of k-subsets of Ω. There exists a constant $f(k, t)$ such that if $n>f(k, t)$

$$
|\mathcal{F}| \leq\binom{ n-t}{k-t}
$$

and \mathcal{F} meets the bound iff it is canonically intersecting.

- In the original EKR-paper from 1961:

If $n>t+(k-t)\binom{k}{t}^{3}$ and \mathcal{F} is not canonically t-intersecting then $|\mathcal{F}|<\binom{n-t}{k-t}$.

- EKR point out that their bound is not optimal. For $n=8, k=4, t=2$ take the following 2-intersecting set:

1234	1235	1236	1237	1238	1245
1246	1247	1248	1345	1346	1347
1348	2345	2346	2347	2348	

These are all 4 -element subsets containing at least three elements from $\{1,2,3,4\}$.

The above family has 17 subsets but $\binom{n-t}{k-t}=\binom{6}{2}=15$.

- The exact value $f(k, t)=(t+1)(k-t+1)$ is due to Frankl (1978) and Wilson (1984).
- In 1997 R. Ahlswede and L. Khachatrian determined the largest t-intersecting k-set systems for all n.

For each choice of n, k, and t they find the maximum size of the t-intersecting families and the exact structure of the families that reach this size.

Johnson graphs $J(n, k), n \geq 2 k$.
Vertices: all k-subsets of Ω
Edges: (X, Y) is an edge iff $|X \cap Y|=k-1$.
$J(n, k)$ has diameter k and two subsets are adjacent in $K(n, k)$ iff they are at maximum possible distance in $J(n, k)$.

Width of a subset of vertices: maximum possible distance between two vertices in the subset.

The first version of the EKR theorem characterizes the subsets of maximum possible size of width $k-1$ in $J(n, k)$.

The second version characterizes the subsets of maximum size of width $k-t$.

Theorem. (Hsieh,Frankl,Wilson, Tanaka)

Let t and k be integers with $0 \leq t \leq k$. Let \mathcal{F} be a set of k-dimensional subspaces in $\operatorname{PG}(n, q)$ pairwise intersecting in at least a t-dimensional subspace.

If $n \geq 2 k+1$, then $|\mathcal{F}| \leq\left[\begin{array}{l}n-t \\ k-t\end{array}\right]_{q}$.
Equality holds if and only if \mathcal{F} is the set of all k-dimensional subspaces, containing a fixed t-dimensional subspace of $\operatorname{PG}(n, q)$, or in case of $n=2 k+1, \mathcal{F}$ is the set of all k-dimensional subspaces in a fixed $(2 k-t)$-dimensional subspace.

If $2 k-t \leq n \leq 2 k$, then $|\mathcal{F}| \leq\left[\begin{array}{c}2 k-t+1 \\ k-t\end{array}\right]_{q}$. Equality holds if and only if \mathcal{F} is the set of all k-dimensional subspaces in a fixed $(2 k-t)$-dimensional subspace.

Consider $\operatorname{PG}(n, q)$.

Let $d \leq e$ be integers with $d+e=n-1$.
Fix a subspace W with $\operatorname{dim} W=e$.
Let \mathcal{U} be the set of all subspaces U in $\operatorname{PG}(n, q)$ with $\operatorname{dim} U=d, U \cap W=\varnothing$.

Theorem. (Tanaka, 2006)
Let $0 \leq t \leq d$ be an integer and let \mathcal{F} be a family of subspaces from \mathcal{U} with $\operatorname{dim}\left(U^{\prime} \cap U^{\prime \prime}\right) \geq t$ for every two $U^{\prime}, U^{\prime \prime} \in \mathcal{U}$. Then

$$
|\mathcal{F}| \leq q^{(d+1-t)(e+1)}
$$

Equality holds iff
(a) \mathcal{F} consists of all subspaces U through a fixed t-dimensional subspace U_{0} with $U_{0} \cap W=\varnothing ;$
(b) in case of $e=d, \mathcal{F}$ is the set of all elements of \mathcal{U} contained in a fixed $(2 d-t)$-dimensional subspace V with $\operatorname{dim} V \cap W=d-t$.

Objects	Definition of intersection
k-element sets blocks in a design multisets	a commont element
vector space over a field subspaces in a finite geometry lines in a partial geometry subspaces of fixed shape in PHG (n, R)	a common 1-dim subspace a common point a common point
permutations	both map the element i to the element j or $\sigma \tau^{-1}$ has a fixed point a common cycle
permutations	a common class
set partitions	a tile in the same place
tilings	a common vertex
cocliques in a graph	a common triangle
triangulations of a polygon	

Object	Atoms
Sets	elements from $\{1, \ldots, n\}$
Integer sequences	pairs (a, i), entry a in position i
Permutations	pairs $(i, j)(i \rightarrow j)$
Permutations	cycle subsets (cells in the partition) points Set partitions Subspaces in PG (n, q) Subspaces of a fixed dimension points

- Two objects intersect if they share a common atom.
- A canonically intersecting set is the set of all objects that contain a fixed atom.
- Objects have the EKR-property if a canonically intersecting set is the only largest intersecting set.

2. The Structure of Projective Hjelmslev Geometries

Theorem.

Let R be a finite chain ring of length m. For any finite module ${ }_{R} M$ there exists a uniquely determined sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ with

$$
m \geq \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}>0,
$$

such that ${ }_{R} M$ is a direct sum of cyclic modules:

$$
{ }_{R} M \cong R /(\operatorname{rad} R)^{\lambda_{1}} \oplus R /(\operatorname{rad} R)^{\lambda_{2}} \oplus \ldots \oplus R /(\operatorname{rad} R)^{\lambda_{k}} .
$$

The sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ is called the shape of ${ }_{R} M$.
The sequence $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{m}^{\prime}\right)$, where λ_{i}^{\prime} is the number of λ_{j} 's with $\lambda_{j} \geq i$ is called the dual shape of ${ }_{R} M$.

The integer k is called the rank of ${ }_{R} M$.
The integer λ_{m}^{\prime} is called the free rank of ${ }_{R} M$.
$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$
$N=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}$,
the conjugate partition $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots\right)$ is defined by
$\lambda_{i}^{\prime}=$ number of parts in λ that are greater or equal to i
$N=\lambda_{1}^{\prime}+\lambda_{2}^{\prime}+\ldots$,

$$
\lambda=(4,3,2,2,1) \quad \lambda^{\prime}=(5,4,2,1)
$$

Theorem.

Let R be a chain ring of length m with residue field of order q. Let ${ }_{R} M$ be an R-module of shape $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. For every sequence $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$, $\mu_{1} \geq \ldots \geq \mu_{n} \geq 0$, satisfying $\mu \leq \lambda$ (i.e. $\mu_{i} \leq \lambda_{i}$ for all i) the module ${ }_{R} M$ has exactly

$$
\left[\begin{array}{l}
\lambda \\
\mu
\end{array}\right]_{q^{m}}=\prod_{i=1}^{m} q^{\mu_{i+1}^{\prime}\left(\lambda_{i}^{\prime}-\mu_{i}^{\prime}\right)} \cdot\left[\begin{array}{c}
\lambda_{i}^{\prime}-\mu_{i+1}^{\prime} \\
\mu_{i}^{\prime}-\mu_{i+1}^{\prime}
\end{array}\right]_{q}
$$

submodules of shape μ. Here

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(q^{n}-1\right) \ldots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right) \ldots(q-1)}
$$

are the Gaussian coefficients.

- $M={ }_{R} R^{n+1}$;
- \mathcal{P} - all free submodules of M of rank 1;
- \mathcal{L} - all free submodules of M of rank 2;
- $I \subseteq \mathcal{P} \times \mathcal{L}$ - incidence relation;
- \bigcirc_{i} - neighbour relation:
$X \bigcirc_{i} Y$ iff $\eta_{i}(X)=\eta_{i}(Y)$, where η_{i} is the canonical epimorphism $\eta_{i}: R \rightarrow R /(\operatorname{rad} R)^{i}$.
- Hjelmslev subspaces of dimension k - free submodules of rank $k+1$;
- subspaces of shape λ - submodules of shape λ;
- Notation: $\operatorname{PHG}\left({ }_{R} R^{n+1}\right)$, or $\operatorname{PHG}(n, R)$.

$\operatorname{PHG}\left(2, \mathbb{Z}_{9}\right)$

S - a Hjelmslev subspace with $\operatorname{dim} S=k$
Points: $[X]^{(i)} \cap T$, where $T \in[S]^{(i)}$ is a k-dimensional Hjelmslev subspace
Subspaces: the sets of points in $T \cap[S]^{(i)}$, where T is a subspace in $\operatorname{PHG}(n, R)$
Incidence: the incidence inherited from $\operatorname{PHG}(n, R)$;

Theorem.

The obtained structure can be imbedded isomorphically into

$$
\operatorname{PHG}\left(n, R /(\operatorname{rad} R)^{m-i}\right)
$$

The missing part is isomorphic to $\operatorname{PHG}\left(n-k-1, R /(\operatorname{rad} R)^{m-i}\right)$.

A Neighbour Class of Lines in $\operatorname{PHG}\left(3, \mathbb{Z}_{4}\right)$

The structure is ismorphic to $\operatorname{PG}(3,2)-\operatorname{PG}(1, q)$.

A Neighbour Class of Planes in $\operatorname{PHG}\left(3, \mathbb{Z}_{4}\right)$

The structure is ismorphic to $\operatorname{PG}(3,2)$ minus a point.

Problem.

Given $\Sigma=\operatorname{PHG}(n, R)$ and two shapes λ and τ with $\tau \leq \lambda$, what is the maximal number of subspaces of a τ-intersecting family of subspaces in Σ of shape λ ?

3. Erdős-Ko-Rado-Type Theorems in Projective Hjelmslev Geometries

Theorem A. Let R be a finite chain ring with nilpotency index m and residue field of order q. Denote by Σ the n-dimensional (left) projective Hjelmslev geometry over R. Let \mathcal{F} be a family of k-dimensional Hjelmslev subspaces every two of which meet in at least one point. If $n \geq 2 k+1$ then

$$
|\mathcal{F}| \leq\left[\begin{array}{l}
\boldsymbol{m}^{n} \\
\boldsymbol{m}^{k}
\end{array}\right]_{q^{m}}
$$

In case of equality \mathcal{F} is one of the following:

- all the Hjelmslev subspaces through a fixed point,
- in case of $n=2 k+1$, all Hjelmslev k-subspaces in a fixed hyperplane of Σ.

Proof.
W.I.o.g. $n \geq 2 k+1$. Let $m=2$.
\mathcal{F} : intersecting family in $\operatorname{PHG}(n, R)$
$\eta(\mathcal{F})=\{\eta(X) \mid X \in \mathcal{F}\}$: intersecting family of k-subspaces in $\operatorname{PG}(n, q)$
$[X]$ is $\mathrm{PG}(n, q)-\mathrm{PG}(n-k-1, q)$ and the maximal number is given by Tanaka's theorem.

Further we proceed by induction on m.
$\eta^{(m-1)}(\mathcal{F})=\left\{\eta^{(m-1)}(X) \mid X \in \mathcal{F}\right\}$: intersecting family of k-dimensional subspaces in $\operatorname{PHG}\left(n,\left(R / \operatorname{rad}^{m-1} R\right)\right)$
$[X]^{(m-1)}$ can be viewed as is $\operatorname{PG}(n, q)-\operatorname{PG}(n-k-1)$ and the maximal number is again given by Tanaka's theorem.

Theorem B. Under the condition of the previous theorem, \mathcal{F} is a family of k-dimensional Hjelmslev subspaces meeting in a Hjelmslev subspace of dimension at least t. Then

$$
|\mathcal{F}| \leq\left[\begin{array}{l}
\boldsymbol{m}^{n-t} \\
\boldsymbol{m}^{k-t}
\end{array}\right]_{q^{m}}
$$

If $n \geq 2 k+1$, then $|\mathcal{F}| \leq\left[\begin{array}{l}\boldsymbol{m}^{n-t} \\ \boldsymbol{m}^{k-t}\end{array}\right]_{q^{m}}$. Equality holds if and only if \mathcal{F} is the set of all k-dimensional Hjelmslev subspaces, containing a fixed t-dimensional subspace of $\operatorname{PG}(n, q)$, or $n=2 k+1$ and \mathcal{F} is the set of all k-dimensional subspaces in a fixed $(2 k-t)$-dimensional Hjelmslev subspace.

In case of $2 k-t \leq n \leq 2 k$, we have that $|\mathcal{F}| \leq\left[\begin{array}{c}\boldsymbol{m}^{2 k-t+1} \\ \boldsymbol{m}^{k-t}\end{array}\right]_{q^{m}}$. Equality holds if and only if \mathcal{F} is the set of all k-dimensional Hjelmslev subspaces in a fixed ($2 k-t$)-dimensional Hjelmslev subspace.

Example.

$R,|R|=q^{2}, R / \operatorname{rad} R \cong \mathbb{F}_{q}$
$\Sigma=\operatorname{PHG}(3, R)$
$\lambda=(2,2,1,0)$, i.e. the subspaces of shape λ are the line stripes consisting of $q^{2}(q+1)$ points each.

Let \mathcal{F} be an intersecting family of λ-subspaces.

- Let \mathcal{F} be the family of all λ-subspaces through a fixed point in Σ. Then

$$
|\mathcal{F}|=q(q+1)\left(q^{2}+q+1\right)
$$

- Take a maximal intersecting set in the factor geometry $\mathrm{PG}(3, q)$. It is
a) all lines through a point, or
b) all lines in a plane.
- The maximal number of λ-subspaces in each neighbour class of lines to be chosen is $q^{2}(q+1)$.

Two λ-subspaces in the same neighbour class of lines do always meet.
Two λ-subspaces in different neighbour classes of lines do not meet exactly when they intersect the common point class (which is $\cong \mathrm{AG}(3, q)$) in parallel planes.

- In the second case, we can take all λ-subspaces in every neighbor class of lines contained in a neighbour class of planes except for those that lie in planes connected in the fixed class. Their number is

$$
q^{2}(q+1)\left(q^{2}+q+1\right)-q^{2}\left(q^{2}+q+1\right)=q^{3}\left(q^{2}+q+1\right)
$$

We add a set of all λ-subspaces that are contained in a fixed plane from the neighbour class of planes (it forms an intersecting set in $\mathrm{PG}(2, q)$). Their number is: $q^{2}+q+1$. Altogether we have an intersecting set \mathcal{F} of λ-subspaces of size

$$
|\mathcal{F}|=\left(q^{3}+1\right)\left(q^{2}+q+1\right)
$$

It can be proved that this is a largest intersecting family of λ-subspaces.

4. The Sperner Theorem

Theorem. (E. Sperner, 1928) If $A_{1}, A_{2}, \ldots, A_{m}$ are subsets of $X=$ $\{1,2, \ldots, n\}$ such that A_{i} is not a subset of A_{j} if $i \neq j$, then $m \leq\binom{ n}{\lfloor n / 2\rfloor}$.

Theorem. If \mathcal{A} is an antichain in the partially ordered set of all subspaces of \mathbb{F}_{q}^{n}, then

$$
|\mathcal{A}| \leq\left[\begin{array}{c}
n \\
\lfloor n / 2\rfloor
\end{array}\right]_{q}
$$

where

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(q^{n}-1\right) \ldots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right) \ldots(q-1)} .
$$

are the Gaussian coefficients.

- Ranked poset \mathcal{P} : there exists a function $r: \mathcal{P} \rightarrow \mathbb{N}_{0}$ with $r(x)=0$ for some minimal element and $r(y)=r(x)+1$ for all x, y with $x \prec y$.
- We say that the element y of a poset \mathcal{P} covers the element $x \in \mathcal{P}$ if $x \prec y$ and $x \prec y^{\prime} \preceq y$ implies $y=y^{\prime}$. This is denoted by $x \prec y$.
- Graded poset: a ranked poset in which all minimal elements have rank 0 .
- $L_{i}(\mathcal{P})$ - the i-th level of \mathcal{P}

$$
L_{i}(\mathcal{P})=\{x \in \mathcal{P} \mid r(x)=i\} .
$$

- the i-th Whitney number: $W_{i}(\mathcal{P})=\left|L_{i}(\mathcal{P})\right|$
- The Hasse diagram of a partially ordered set is a directed graph $H(\mathcal{P})=$ $(\mathcal{P}, E(\mathcal{P}))$ where

$$
E(\mathcal{P})=\{(x, y) \mid \text { where } x \prec y\} .
$$

- The underlying nondirected graph is called the Hasse graph.
- The lattice of all submodules of a finitely generated left R-module ${ }_{R} M$ is a graded poset.
- Rank function: $r(L)=\sum_{i=1}^{n} \lambda_{i}=\log _{q}|L|$, where ${ }_{R} L<{ }_{R} M$ and has shape $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
- If $M=R^{n}$, we have $r\left(\mathcal{P}_{n}\right)=m n$, where m is the length of R.
- The k-th Whitney number:

$$
W_{k}\left(\mathcal{P}_{n}\right)=\sum_{\boldsymbol{\mu}}\left[\begin{array}{c}
\boldsymbol{m}_{n} \\
\boldsymbol{\mu}
\end{array}\right]_{q^{m}}
$$

where the sum is over all shapes $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)$ with $\sum_{i} \mu_{i}=k$.

$$
\mathcal{P}\left(\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}\right)
$$

$$
\mathcal{P}\left(\mathbb{Z}_{4} \oplus \mathbb{Z}_{4} \oplus 2 \mathbb{Z}_{4}\right)
$$

$\langle 100,010,002\rangle$

Problem. Let R be a finite chain ring and let ${ }_{R} M$ be a (left) module over R. What is the size of the largest antichain in the lattice of all submodules of ${ }_{R} M$?

5. A Sperner-type Theorem

It is said that level L_{i} can be matched into level L_{j}, where $j=i-1$ or $i+1$, if there is a matching of size W_{i} in the Hasse graph G_{j} defined on the elements from $L_{i} \cup L_{j}$.

Theorem. Let \mathcal{P} be a graded poset. If there exists an index h such that L_{i} can be matched into L_{i+1} for all $i=0,1, \ldots, h$, and L_{i} can be matched into L_{i-1} for all $i=h+1, \ldots, n$ then the size of the largest antichain is $W_{h}=W_{h}(\mathcal{P})$.

A bipartite graph $G=(X \cup Y, E)$ is called piecewise regular if there exist partitions

$$
\begin{aligned}
X & =X_{1} \cup X_{2} \cup \ldots \cup X_{s}, \quad X_{i} \cap X_{j} \neq \varnothing \\
Y & =Y_{1} \cup Y_{2} \cup \ldots \cup Y_{t}, \quad Y_{i} \cap Y_{j} \neq \varnothing
\end{aligned}
$$

such that

- each vertex of X_{i} is adjacent to exactly $x_{i j}$ vertices of Y_{j} for all $i=1, \ldots, s$, $j=1, \ldots, t$;
- each vertex of Y_{j} is adjacent to exactly $y_{j i}$ vertices of Y_{j} for all $i=1, \ldots, s$, $j=1, \ldots, t$;

$I \subseteq\{1, \ldots, s\}$
$J=J(I)=\left\{j \mid x_{i j}>0\right.$ for some $\left.i \in I\right\}$
Theorem. Let $G=(X \cup Y, E)$ be a piecewise bipartite graph. A necessary and sufficient condition for the existence of a matching of size $|X|$ in G is the following: for every subset $I \subseteq\{1, \ldots, s\}$

$$
\sum_{i \in I}\left|X_{i}\right| \leq \sum_{j \in J(I)}\left|Y_{j}\right| .
$$

- $\mathcal{L}(m, n)$: the poset of all n-tuples $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $m \geq \lambda_{1} \geq \ldots \geq$ $\lambda_{n} \geq 0$ and with partial order defined by

$$
\lambda \preceq \mu \Longleftrightarrow \lambda_{1} \leq \mu_{1}, \ldots \lambda_{n} \leq \mu_{n} .
$$

- $\mathcal{L}(m, n)$ can be graded by the rank function $r(\lambda)=\sum_{i=1}^{n} \lambda_{i}$.
- $\mathcal{L}(m, n)$ is self dual: $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \rightarrow\left(m-\lambda_{n}, \ldots, m-\lambda_{1}\right)$.
- $\mathcal{L}^{*}(m, n)$: the poset of all conjugate partitions. Then

$$
\mathcal{L}^{*}(m, n) \cong \mathcal{L}(n, m)
$$

Theorem C. Let R be a chain ring of length m and let $\mathcal{P}_{n}=\mathcal{P}_{n}(R)$ be the partially ordered set of all submodules of ${ }_{R} R^{n}$ with partial order given by inclusion. Then the size of a maximal antichain in \mathcal{P} is equal to

$$
\sum_{\mu \prec \boldsymbol{m}^{n}}\left[\begin{array}{c}
\boldsymbol{m}^{n} \\
\mu
\end{array}\right]_{q^{m}}
$$

where the sum is over all partitions $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \prec \boldsymbol{m}^{n}$ with

$$
\sum_{i=1}^{n} \mu_{i}=\left\lfloor\frac{m n}{2}\right\rfloor .
$$

An open problem.

What is the size of the largest antichain in the lattice of the submodules of a nonfree module over a finite chain ring R ?

