CHAIN RING ANALOGUES OF SOME THEOREMS FROM EXTREMAL SET THEORY

Ivan Landjev

Institute of Mathematics and Informatics and New Bulgarian University

- National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

1. Preliminaries

A family \mathcal{F} of subsets of a gound set $\Omega = \{1, 2, \dots, n\}$ is intersecting if any two sets from \mathcal{F} have at least one element in common.

More generally, it is *t*-intersecting if any two sets from \mathcal{F} have at least *t* elements in common.

Theorem. (Erdős, Ko, Rado, 1961)

Let Ω be a finite set with n elements and let $k \leq n/2$ be an integer. If \mathcal{F} is an intersecting family of k-element subsets of Ω then

$$|\mathcal{F}| \le \binom{n-1}{k-1}.$$

If k < n/2 and \mathcal{F} meets the bound then it is canonically intersecting.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

The reason this theorem is important is that it has many interesting applications. let us restate it as a question in graph theory

The Kneser graph K(n,k)

Vertices: all k-subsets of Ω

Edges: (X, Y) is an edge iff $X \cap Y = \emptyset$

An intersecting family: a coclique in the Kneser graph

The EKR-theorem characterizes the maximal co-cliques in the Kneser graph.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

Theorem. (Erdős, Ko, Rado, Frankl, Wilson)

Let Ω be a finite set with $|\Omega| = n$ and let k and t, t < k, be integers. Let \mathcal{F} be a *t*-intersecting family of *k*-subsets of Ω . There exists a constant f(k, t) such that if n > f(k, t)

$$|\mathcal{F}| \le \binom{n-t}{k-t},$$

and \mathcal{F} meets the bound iff it is canonically intersecting.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

• In the original EKR-paper from 1961:

If $n > t + (k-t) \binom{k}{t}^3$ and \mathcal{F} is not canonically *t*-intersecting then $|\mathcal{F}| < \binom{n-t}{k-t}$.

• EKR point out that their bound is not optimal. For n = 8, k = 4, t = 2 take the following 2-intersecting set:

1234	1235	1236	1237	1238	1245
1246	1247	1248	1345	1346	1347
1348	2345	2346	2347	2348	

These are all 4-element subsets containing at least three elements from $\{1, 2, 3, 4\}$.

The above family has 17 subsets but $\binom{n-t}{k-t} = \binom{6}{2} = 15$.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

• The exact value f(k,t) = (t+1)(k-t+1) is due to Frankl (1978) and Wilson (1984).

• In 1997 R. Ahlswede and L. Khachatrian determined the largest t-intersecting k-set systems for all n.

For each choice of n, k, and t they find the maximum size of the t-intersecting families and the exact structure of the families that reach this size.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

Johnson graphs J(n,k), $n \ge 2k$.

```
Vertices: all k-subsets of \Omega
```

Edges: (X, Y) is an edge iff $|X \cap Y| = k - 1$.

J(n,k) has diameter k and two subsets are adjacent in K(n,k) iff they are at maximum possible distance in J(n,k).

Width of a subset of vertices: maximum possible distance between two vertices in the subset.

The first version of the EKR theorem characterizes the subsets of maximum possible size of width k - 1 in J(n, k).

The second version characterizes the subsets of maximum size of width k - t.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

Theorem. (Hsieh, Frankl, Wilson, Tanaka)

Let t and k be integers with $0 \le t \le k$. Let \mathcal{F} be a set of k-dimensional subspaces in PG(n,q) pairwise intersecting in at least a t-dimensional subspace.

If
$$n \geq 2k+1$$
, then $|\mathcal{F}| \leq {n-t \brack k-t}_q$

Equality holds if and only if \mathcal{F} is the set of all k-dimensional subspaces, containing a fixed t-dimensional subspace of PG(n,q), or in case of n = 2k + 1, \mathcal{F} is the set of all k-dimensional subspaces in a fixed (2k - t)-dimensional subspace.

If $2k - t \le n \le 2k$, then $|\mathcal{F}| \le \begin{bmatrix} 2k - t + 1 \\ k - t \end{bmatrix}_q$. Equality holds if and only if \mathcal{F} is the set of all k-dimensional subspaces in a fixed (2k - t)-dimensional subspace.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

Consider PG(n, q).

Let $d \leq e$ be integers with d + e = n - 1.

Fix a subspace W with $\dim W = e$.

Let \mathcal{U} be the set of all subspaces U in PG(n,q) with $\dim U = d$, $U \cap W = \emptyset$.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

Theorem. (Tanaka, 2006)

Let $0 \leq t \leq d$ be an integer and let \mathcal{F} be a family of subspaces from \mathcal{U} with $\dim(U' \cap U'') \geq t$ for every two $U', U'' \in \mathcal{U}$. Then

$$|\mathcal{F}| \le q^{(d+1-t)(e+1)}.$$

Equality holds iff

- (a) \mathcal{F} consists of all subspaces U through a fixed t-dimensional subspace U_0 with $U_0 \cap W = \emptyset$;
- (b) in case of e = d, \mathcal{F} is the set of all elements of \mathcal{U} contained in a fixed (2d t)-dimensional subspace V with $\dim V \cap W = d t$.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

Objects	Definition of intersection	
<i>k</i> -element sets		
blocks in a design	a commont element	
multisets		
vector space over a field	a common 1-dim subspace	
subspaces in a finite geometry	a common point	
lines in a partial geometry	a common point	
subspaces of fixed shape in $\operatorname{PHG}(n,R)$	a common subspace of fixed shape	
permutations	both map the element i to the element j	
	or σau^{-1} has a fixed point	
permutations	a common cycle	
set partitions	a common class	
tilings	a tile in the same place	
cocliques in a graph	a common vertex	
triangulations of a polygon	a common triangle	

[–] National Colloquium in Mathematics, IMI-BAS, 14.10.2020 –

Object	Atoms		
Sets	elements from $\{1,\ldots,n\}$		
Integer sequences	pairs (a,i) , entry a in position i		
Permutations	pairs (i,j) $(i ightarrow j)$		
Permutations	cycle		
Set partitions	subsets (cells in the partition)		
Subspaces in $\mathrm{PG}(n,q)$	points		
	subspaces of a fixed dimension		
Subspaces in $\operatorname{PHG}(n,R)$	points		
	subspaces of a fixed shape		

• Two objects intersect if they share a common atom.

• A canonically intersecting set is the set of all objects that contain a fixed atom.

• Objects have the EKR-property if a canonically intersecting set is the only largest intersecting set.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

2. The Structure of Projective Hjelmslev Geometries

Theorem.

Let R be a finite chain ring of length m. For any finite module $_RM$ there exists a uniquely determined sequence $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ with

 $m \geq \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k > 0,$

such that $_{R}M$ is a direct sum of cyclic modules:

 $_R M \cong R/(\operatorname{rad} R)^{\lambda_1} \oplus R/(\operatorname{rad} R)^{\lambda_2} \oplus \ldots \oplus R/(\operatorname{rad} R)^{\lambda_k}.$

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

The sequence $\lambda = (\lambda_1, \dots, \lambda_k)$ is called the **shape** of $_RM$.

The sequence $\lambda' = (\lambda'_1, \ldots, \lambda'_m)$, where λ'_i is the number of λ_j 's with $\lambda_j \ge i$ is called the **dual shape** of $_R M$.

The integer k is called the rank of $_RM$.

The integer λ'_m is called the **free rank** of $_RM$.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$$

 $N=\lambda_1+\lambda_2+\ldots+\lambda_n$,

the conjugate partition $\lambda' = (\lambda'_1, \lambda'_2, \ldots)$ is defined by

 $\lambda_i' =$ number of parts in λ that are greater or equal to i

 $\lambda = (4, 3, 2, 2, 1)$ $\lambda' = (5, 4, 2, 1)$

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

Theorem.

Let R be a chain ring of length m with residue field of order q. Let $_{R}M$ be an R-module of shape $\lambda = (\lambda_{1}, \ldots, \lambda_{n})$. For every sequence $\mu = (\mu_{1}, \ldots, \mu_{n})$, $\mu_{1} \geq \ldots \geq \mu_{n} \geq 0$, satisfying $\mu \leq \lambda$ (i.e. $\mu_{i} \leq \lambda_{i}$ for all i) the module $_{R}M$ has exactly

$$\begin{bmatrix} \lambda \\ \mu \end{bmatrix}_{q^m} = \prod_{i=1}^m q^{\mu'_{i+1}(\lambda'_i - \mu'_i)} \cdot \begin{bmatrix} \lambda'_i - \mu'_{i+1} \\ \mu'_i - \mu'_{i+1} \end{bmatrix}_q$$

submodules of shape μ . Here

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{(q^n - 1) \dots (q^{n-k+1} - 1)}{(q^k - 1) \dots (q - 1)}$$

are the Gaussian coefficients.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

- $M = {}_R R^{n+1};$
- \mathcal{P} all free submodules of M of rank 1;
- \mathcal{L} all free submodules of M of rank 2;
- $I \subseteq \mathcal{P} \times \mathcal{L}$ incidence relation;
- \bigcirc_i neighbour relation:

 $X \bigcirc_i Y$ iff $\eta_i(X) = \eta_i(Y)$, where η_i is the canonical epimorphism $\eta_i : R \to R/(\operatorname{rad} R)^i$.

- Hjelmslev subspaces of dimension k free submodules of rank k + 1;
- subspaces of shape λ submodules of shape λ ;
- Notation: $PHG(_RR^{n+1})$, or PHG(n, R).

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

S – a Hjelmslev subspace with $\dim S = k$

Points: $[X]^{(i)} \cap T$, where $T \in [S]^{(i)}$ is a k-dimensional Hjelmslev subspace Subspaces: the sets of points in $T \cap [S]^{(i)}$, where T is a subspace in PHG(n, R)Incidence: the incidence inherited from PHG(n, R);

Theorem.

.

The obtained structure can be imbedded isomorphically into

 $PHG(n, R/(\operatorname{rad} R)^{m-i}).$

The missing part is isomorphic to $PHG(n - k - 1, R/(rad R)^{m-i})$.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

A Neighbour Class of Lines in $PHG(3, \mathbb{Z}_4)$

The structure is isomrphic to PG(3, 2) - PG(1, q).

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

A Neighbour Class of Planes in $PHG(3, \mathbb{Z}_4)$

The structure is ismorphic to PG(3, 2) minus a point.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

Problem.

Given $\Sigma = PHG(n, R)$ and two shapes λ and τ with $\tau \leq \lambda$, what is the maximal number of subspaces of a τ -intersecting family of subspaces in Σ of shape λ ?

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

3. Erdős-Ko-Rado-Type Theorems in Projective Hjelmslev Geometries

Theorem A. Let R be a finite chain ring with nilpotency index m and residue field of order q. Denote by Σ the n-dimensional (left) projective Hjelmslev geometry over R. Let \mathcal{F} be a family of k-dimensional Hjelmslev subspaces every two of which meet in at least one point. If $n \geq 2k + 1$ then

$$|\mathcal{F}| \leq egin{bmatrix} m{m}^n \ m{m}^k \end{bmatrix}_{q^m}.$$

In case of equality \mathcal{F} is one of the following:

- all the Hjelmslev subspaces through a fixed point,
- in case of n = 2k + 1, all Hjelmslev k-subspaces in a fixed hyperplane of Σ .

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

Proof.

- W.l.o.g. $n \geq 2k + 1$. Let m = 2.
- \mathcal{F} : intersecting family in $\operatorname{PHG}(n, R)$

 $\eta(\mathcal{F}) = \{\eta(X) | X \in \mathcal{F}\}$: intersecting family of k-subspaces in PG(n,q)

[X] is PG(n,q) - PG(n-k-1,q) and the maximal number is given by Tanaka's theorem.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

Further we proceed by induction on m.

 $\eta^{(m-1)}(\mathcal{F}) = \{\eta^{(m-1)}(X) | X \in \mathcal{F}\}$: intersecting family of k-dimensional subspaces in $PHG(n, (R/rad^{m-1}R))$

 $[X]^{(m-1)}$ can be viewed as is PG(n,q) - PG(n-k-1) and the maximal number is again given by Tanaka's theorem.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

Theorem B. Under the condition of the previous theorem, \mathcal{F} is a family of k-dimensional Hjelmslev subspaces meeting in a Hjelmslev subspace of dimension at least t. Then

$$|\mathcal{F}| \leq egin{bmatrix} m{m}^{n-t} \ m{m}^{k-t} \end{bmatrix}_{q^m}.$$

If $n \ge 2k + 1$, then $|\mathcal{F}| \le \begin{bmatrix} m^{n-t} \\ m^{k-t} \end{bmatrix}_{q^m}$. Equality holds if and only if \mathcal{F} is the set of all k-dimensional Hjelmslev subspaces, containing a fixed t-dimensional subspace of PG(n,q), or n = 2k + 1 and \mathcal{F} is the set of all k-dimensional subspaces in a fixed (2k - t)-dimensional Hjelmslev subspace.

In case of $2k - t \le n \le 2k$, we have that $|\mathcal{F}| \le \begin{bmatrix} m^{2k-t+1} \\ m^{k-t} \end{bmatrix}_{q^m}$. Equality holds if and only if \mathcal{F} is the set of all k-dimensional Hjelmslev subspaces in a fixed (2k - t)-dimensional Hjelmslev subspace.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

Example.

R, $|R| = q^2$, $R/\operatorname{rad} R \cong \mathbb{F}_q$

 $\Sigma = \mathrm{PHG}(3, R)$

 $\lambda=(2,2,1,0),$ i.e. the subspaces of shape λ are the line stripes consisting of $q^2(q+1)$ points each.

Let \mathcal{F} be an intersecting family of λ -subspaces.

• Let \mathcal{F} be the family of all λ -subspaces through a fixed point in Σ . Then

 $|\mathcal{F}| = q(q+1)(q^2+q+1).$

• Take a maximal intersecting set in the factor geometry PG(3,q). It is

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

a) all lines through a point, or

b) all lines in a plane.

• The maximal number of λ -subspaces in each neighbour class of lines to be chosen is $q^2(q+1)$.

Two λ -subspaces in the same neighbour class of lines do always meet.

Two λ -subspaces in different neighbour classes of lines do not meet exactly when they intersect the common point class (which is $\cong AG(3,q)$) in parallel planes.

• In the second case, we can take all λ -subspaces in every neighbor class of lines contained in a neighbour class of planes except for those that lie in planes connected in the fixed class. Their number is

$$q^{2}(q+1)(q^{2}+q+1) - q^{2}(q^{2}+q+1) = q^{3}(q^{2}+q+1).$$

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

We add a set of all λ -subspaces that are contained in a fixed plane from the neighbour class of planes (it forms an intersecting set in PG(2,q)). Their number is: $q^2 + q + 1$. Altogether we have an intersecting set \mathcal{F} of λ -subspaces of size

 $|\mathcal{F}| = (q^3 + 1)(q^2 + q + 1).$

It can be proved that this is a largest intersecting family of λ -subspaces.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

4. The Sperner Theorem

Theorem. (E. Sperner, 1928) If A_1, A_2, \ldots, A_m are subsets of $X = \{1, 2, \ldots, n\}$ such that A_i is not a subset of A_j if $i \neq j$, then $m \leq \binom{n}{\lfloor n/2 \rfloor}$.

Theorem. If \mathcal{A} is an antichain in the partially ordered set of all subspaces of \mathbb{F}_q^n , then

$$|\mathcal{A}| \le \begin{bmatrix} n\\ \lfloor n/2 \rfloor \end{bmatrix}_q$$

where

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{(q^n - 1) \dots (q^{n-k+1} - 1)}{(q^k - 1) \dots (q - 1)}.$$

are the Gaussian coefficients.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

• Ranked poset \mathcal{P} : there exists a function $r : \mathcal{P} \to \mathbb{N}_0$ with r(x) = 0 for some minimal element and r(y) = r(x) + 1 for all x, y with $x \prec y$.

• We say that the element y of a poset \mathcal{P} covers the element $x \in \mathcal{P}$ if $x \prec y$ and $x \prec y' \preceq y$ implies y = y'. This is denoted by $x \prec y$.

• Graded poset: a ranked poset in which all minimal elements have rank 0.

• $L_i(\mathcal{P})$ – the *i*-th level of \mathcal{P}

$$L_i(\mathcal{P}) = \{ x \in \mathcal{P} \mid r(x) = i \}.$$

• the *i*-th Whitney number: $W_i(\mathcal{P}) = |L_i(\mathcal{P})|$

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

 \bullet The Hasse diagram of a partially ordered set is a directed graph $H(\mathcal{P})=(\mathcal{P},E(\mathcal{P}))$ where

 $E(\mathcal{P}) = \{(x,y) \mid \text{ where } x \prec y\}.$

• The underlying nondirected graph is called the Hasse graph.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

 \bullet The lattice of all submodules of a finitely generated left $R\text{-module }_RM$ is a graded poset.

- Rank function: $r(L) = \sum_{i=1}^{n} \lambda_i = \log_q |L|$, where $_RL < _RM$ and has shape $(\lambda_1, \ldots, \lambda_n)$.
- If $M = \mathbb{R}^n$, we have $r(\mathcal{P}_n) = mn$, where m is the length of R.
- The *k*-th Whitney number:

$$W_k(\mathcal{P}_n) = \sum_{\mu} \begin{bmatrix} \boldsymbol{m}_n \\ \boldsymbol{\mu} \end{bmatrix}_{q^m},$$

where the sum is over all shapes $\mu = (\mu_1, \ldots, \mu_n)$ with $\sum_i \mu_i = k$.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

$\mathcal{P}(\mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus 2\mathbb{Z}_4)$

Problem. Let R be a finite chain ring and let $_RM$ be a (left) module over R. What is the size of the largest antichain in the lattice of all submodules of $_RM$?

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

5. A Sperner-type Theorem

It is said that level L_i can be matched into level L_j , where j = i - 1 or i + 1, if there is a matching of size W_i in the Hasse graph G_j defined on the elements from $L_i \cup L_j$.

Theorem. Let \mathcal{P} be a graded poset. If there exists an index h such that L_i can be matched into L_{i+1} for all $i = 0, 1, \ldots, h$, and L_i can be matched into L_{i-1} for all $i = h + 1, \ldots, n$ then the size of the largest antichain is $W_h = W_h(\mathcal{P})$.

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

A bipartite graph $G = (X \cup Y, E)$ is called piecewise regular if there exist partitions

$$X = X_1 \cup X_2 \cup \ldots \cup X_s, \ X_i \cap X_j \neq \emptyset;$$

$$Y = Y_1 \cup Y_2 \cup \ldots \cup Y_t, \ Y_i \cap Y_j \neq \emptyset$$

such that

- each vertex of X_i is adjacent to exactly x_{ij} vertices of Y_j for all $i=1,\ldots,s$, $j=1,\ldots,t;$

- each vertex of Y_j is adjacent to exactly y_{ji} vertices of Y_j for all $i=1,\ldots,s$, $j=1,\ldots,t$;

$I \subseteq \{1, \dots, s\}$ $J = J(I) = \{j \mid x_{ij} > 0 \text{ for some } i \in I\}$

Theorem. Let $G = (X \cup Y, E)$ be a piecewise bipartite graph. A necessary and sufficient condition for the existence of a matching of size |X| in G is the following: for every subset $I \subseteq \{1, \ldots, s\}$

$$\sum_{i \in I} |X_i| \le \sum_{j \in J(I)} |Y_j|.$$

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

• $\mathcal{L}(m, n)$: the poset of all *n*-tuples $\lambda = (\lambda_1, \dots, \lambda_n)$ with $m \ge \lambda_1 \ge \dots \ge \lambda_n \ge 0$ and with partial order defined by

$$\lambda \preceq \mu \iff \lambda_1 \leq \mu_1, \dots \lambda_n \leq \mu_n.$$

• $\mathcal{L}(m,n)$ can be graded by the rank function $r(\lambda) = \sum_{i=1}^{n} \lambda_i$.

- $\mathcal{L}(m,n)$ is self dual: $(\lambda_1,\ldots,\lambda_n) \to (m-\lambda_n,\ldots,m-\lambda_1).$
- $\mathcal{L}^*(m,n)$: the poset of all conjugate partitions. Then

 $\mathcal{L}^*(m,n) \cong \mathcal{L}(n,m)$

•

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

Theorem C. Let R be a chain ring of length m and let $\mathcal{P}_n = \mathcal{P}_n(R)$ be the partially ordered set of all submodules of $_R R^n$ with partial order given by inclusion. Then the size of a maximal antichain in \mathcal{P} is equal to

$$\sum_{\mu\prec \boldsymbol{m}^n} \begin{bmatrix} \boldsymbol{m}^n \\ \mu \end{bmatrix}_{q^m},$$

where the sum is over all partitions $\mu = (\mu_1, \ldots, \mu_n) \prec \boldsymbol{m}^n$ with

$$\sum_{i=1}^{n} \mu_i = \lfloor \frac{mn}{2} \rfloor.$$

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -

An open problem.

What is the size of the largest antichain in the lattice of the submodules of a nonfree module over a finite chain ring R?

⁻ National Colloquium in Mathematics, IMI-BAS, 14.10.2020 -