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SŁAWOMIR DINEW
CONTINUATION ACROSS SMALL SETS IN COMPLEX ANALYSIS
2 / 17



Plan
Classical theory;
Some modern results and conjectures;
Joint work with Żywomir Dinew
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Basic removable singularity theorem- one complex variable

z0 ∈ Ω ⊂ C, f ∈ O(Ω \ {z0}).
Then

If f is locally bounded (or L2) near z0 then f extends as a
holomorphic function in Ω;

If limz→z0 f (z) =∞ then f has a pole of finite order (=
Laurent series expansion has finite negative part);
If neither of the above happens then f has an essential
singularity.
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What is true in higher dimensions?

z0 ∈ Ω ∈ Cn, n ≥ 2, f ∈ O(Ω \ {z0}).
Then f always extends as a holomorphic function to Ω! Even
more is true

THEOREM (RIEMANN)

Let M be a closed subset of Ω ⊂ Cn, and f ∈ O(Ω \M). Then:
-If M is contained in a C1 submanifold of Ω and f extends
continuously past M then f extends holomorphically to Ω;
-If M is conained in a complex submanifold of Ω and f is locally
bounded near M then f extends holomorphically to Ω;
-If M is conatined in a complex submanifold of codimension at
least 2 then f extends unconditionally to Ω.
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Applications include: extension of analytic sets, extensions of
holomorphic vector bundles, extension of closed currents..

More assumptions on f yield larger sets over which extension
is possible.
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Another extension theorem

THEOREM (RADÓ)

Let Ω be a domain in Cn, n ≥ 1 and
f ∈ C(Ω) ∩ O(Ω \ {f−1(0)}). Then f ∈ O(Ω).

No assumptions on the size of the zero set- only its image has
to be small!
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Subharmonic and plurisubharmonic functions

DEFINITION (SUBHARMONIC FUNCTION)

Let U ∈ Rn be open. u : U → [−∞,∞) is called subharmonic
if it is upper semicontinuous and for every domain D ⊂⊂ U and
every harmonic function h in D continuous up to the boundary
one has

u ≤ h on ∂D ⇒ u ≤ h in D

(just like convex functions lie below affine ones provided this
holds on the boundary)
If U ⊂ C and f ∈ O(U) then Re(f ), |f | and log|f | are
subharmonic. This links potential theory in the plane to complex
analysis.Does not work in Cn, n ≥ 1!
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DEFINITION (PLURISUBHARMONIC FUNCTION)

Let Ω ∈ Cn be open. v : Ω→ [−∞,∞) is called
plurisubharmonic if it is upper semicontinuous and for every
complex line L the restriction of v to any component of Ω ∩ L is
subharmonic.

(just like multi-dimensional convex functions are defined by
convexity on intersections with real lines).Once again for
f ∈ O(Ω) the functions Re(f ), |f | and log|f | are
plurisubharmonic.

Lelong conjecture Is the uppersemicontinuity really needed in
the definition?
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Extension results for subharmonic functions. What is
known?

General setting: Ω ⊆ Rn- a domain, E ⊆ Ω- a subset,
u ∈ SH(Ω \ E) =⇒ u can be extended to a ũ ∈ SH(Ω) if:

u locally bounded above near E , E polar (classical, Brelot’ 41)
u(x) ≤ const · d(x ,S)α+2−n, E contained in a C2 submanifold
S of dimension n − 1, Hα(E) = 0- Hausdorff measure,
0 < α < n − 2 (Gardiner’ 91)
u has finite Dirichlet integral over every compact subset of Ω,
E polar (Imomkulov-Abdullaev’ 98)
u ∈ Lipα, Hn−2+α(E) = 0 (Shapiro’78 for 0 < α < 1,
Sadullaev-Yarmetov’ 95 for 1 ≤ α ≤ 2)

Other results: Harvey-Polking’ 70, Kaufman-Wu’ 80, Tamrazov’ 86,
Riihentaus-Tamrazov’ 91 and ’ 93, Yarmetov’ 94,
Abdullaev-Imomkulov’ 97, Pokrovskiı̆’ 17
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u locally bounded above near E , E polar (classical, Brelot’ 41)
u(x) ≤ const · d(x ,S)α+2−n, E contained in a C2 submanifold
S of dimension n − 1, Hα(E) = 0- Hausdorff measure,
0 < α < n − 2 (Gardiner’ 91)
u has finite Dirichlet integral over every compact subset of Ω,
E polar (Imomkulov-Abdullaev’ 98)
u ∈ Lipα, Hn−2+α(E) = 0 (Shapiro’78 for 0 < α < 1,
Sadullaev-Yarmetov’ 95 for 1 ≤ α ≤ 2)

Other results: Harvey-Polking’ 70, Kaufman-Wu’ 80, Tamrazov’ 86,
Riihentaus-Tamrazov’ 91 and ’ 93, Yarmetov’ 94,
Abdullaev-Imomkulov’ 97, Pokrovskiı̆’ 17

SŁAWOMIR DINEW
CONTINUATION ACROSS SMALL SETS IN COMPLEX ANALYSIS
9 / 17



Extension results for subharmonic functions. What is
known?General setting: Ω ⊆ Rn- a domain, E ⊆ Ω- a subset,
u ∈ SH(Ω \ E) =⇒ u can be extended to a ũ ∈ SH(Ω) if:
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Extension results for plurisubharmonic functions. What is
known?

General setting: Ω ⊆ Cn- a domain, E ⊆ Ω- a subset,
u ∈ PSH(Ω \ E) =⇒ u can be extended to a ũ ∈ PSH(Ω) if:

u locally bounded above near E , E polar (Lelong’ 57)
u arbitrary, H2n−2(E) = 0 (Shiffman’ 72)
this is not true for SH functions as the example

u(z,w) =
1

|z|2 + |w |2
shows

Other results: Grauert-Remmert’ 56, Pflug’ 80, Favorov’ 81, Abidi’
99 and ’ 10
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Extension through bigger sets (but with compatibility assumptions). What is
known?

General setting: Ω ⊆ Cn- a domain, E ⊆ Ω- a subset,
bigger than a removable singularity for a class of PSH functions but
still somehow small, u ∈ PSH(Ω \ E), u subject to compatibility conditions =⇒
u can be extended to a ũ ∈ PSH(Ω) if:

u ∈ C0(Ω) ∩ C2(Ω1 ∪ Ω2), E hypersurface of class C1 which divides Ω to
two subdomains Ω1 and Ω2, u|Ωi = ui ∈ C1(Ωi ∪ E),

∂ui

∂~nk
≥ ∂uk

∂~nk
on E , i 6= k , i = 1,2, k = 1,2,

where ~nk are the outward unit normal vectors of Ωk on E (Blanchet’ 95)
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u ∈ SH(Ω), E hypersurface of class C1 (Chirka’ 03)

Subharmonicity on Ω plays the role of the compatibility
conditions.Without the subharmonicity on Ω one has the
counterexample:

u(z) :=

{
‖z‖2 if ‖z‖ ≤ 1
1 if ‖z‖ > 1
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DEFINITION

Let Ω be a domain in Cn and E ⊆ Ω be a closed subset of
Lebesgue measure zero. Let u be a subharmonic function in Ω
which is furthermore plurisubharmonic in Ω \ E . Then u is said to
be a plurisubharmonic function with subharmonic singularities
along E .

E hypersurface of class C1 =⇒ H2n−1 is locally finite.
Problem of Chirka:
Is it true that any plurisubharmonic function with subharmonic
singularities along E extends as a plurisubharmonic function,
provided that E is a closed subset of Ω with a locally finite
(2n − 1)-dimensional Hausdorff measure?

THEOREM (D.-D.’21)
Let E ⊆ Ω be a closed subset of Lebesgue measure zero. Then
any subharmonic function u in Ω which is plurisubharmonic in
Ω \ E is actually plurisubharmonic in the whole Ω.
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Radó type theorems for (pluri)-subharmonic functions
A Radó- type theorem reads:

THEOREM

Let Ω be open in Rn (Cn) and E ⊆ Ω be a Borel set. If f is subharmonic
(respectively plurisubharmonic) in some neighborhood of Ω \ E and f
belongs to some family F(Ω) then f is actually subharmonic (respectively
plurisubharmonic) in Ω if and only if G = f (E) ⊆ R is of specified type.

It turns out that a Radó- type theorem is only interesting for families F
contained between particular differentiability classes.

THEOREM

A Radó- type theorem fails for Lipschitz functions.

PROOF.
The function f (x1, . . . , xn) = −|x1| is locally affine (hence subharmonic and
plurisubharmonic in the complex case) outside the set E = {0} ×Rn−1, f is
Lipschitz and f (E) = 0.

This shows that Radó-type theorem fails for C0,α, 0 < α ≤ 1
(pluri)subharmonic functions even if the image of E is a point.
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THEOREM

For the family F = C2(Ω) the removable image sets are the sets of empty
interior.

The same is true when f is more regular than C2.
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THEOREM (D.-D.21)

Let Ω be open in Rn (respectively in Cn) and E ⊆ Ω be a Borel set.
If f ∈ C1,p(Ω), p ∈ (0,1] is subharmonic (respectively
plurisubharmonic) in some open neighborhood of Ω \ E and the
Hausdorff measure Hp(f (E)) = 0 then f is actually subharmonic
(respectively plurisubharmonic) in Ω. If f ∈ C1(Ω) then the same
conclusion holds if f (E) is at most countable. The results are
optimal with respect to the size of the image of E.

SŁAWOMIR DINEW
CONTINUATION ACROSS SMALL SETS IN COMPLEX ANALYSIS
16 / 17



Remark

No (pluri)potential proof of the above results is known. Instead
we make use of viscosity theory for elliptic PDEs due to the
following result:

THEOREM

A function u is subharmonic if and only if it is a viscosity
subsolution to the equation

∆w = 0

(i.e. ∆u ≥ 0 in viscosity sense.) A function v is
plurisubharmonic if and only if it satisfies i∂∂̄v ≥ 0 in viscosity
sense.
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