QUADRICS AND HIGHLY DIVISIBLE ARCS IN FINITE PROJECTIVE GEOMETRIES

Ivan Landjev
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences

(joint work with Sascha Kurz, Assia Rousseva, and Francesco Pavese)

1. The extension problem for linear codes and arcs

\diamond Linear $[n, k]_{q}$ code: $C<\mathbb{F}_{q}^{n}, \operatorname{dim} C=k,\left(\mathbb{F}_{q}=\operatorname{GF}(q)\right)$
$\diamond[n, k, d]_{q}$-code: $d=\min \{d(\boldsymbol{u}, \boldsymbol{v}) \mid \boldsymbol{u}, \boldsymbol{v} \in C, \boldsymbol{u} \neq \boldsymbol{v}\}$.

- n - the length of C;
- k - the dimension of C;
- d - the minimum distance of C.
$\diamond A_{i}$ - number of codewords of (Hamming) weight i
$\diamond\left(A_{i}\right)_{i \geq 0}$ - the spectrum of C

Given the positive integers k and d and the prime power q, find the smallest value of n for which there exists a linear $[n, k, d]_{q}$-code. This value is denoted by $n_{q}(k, d)$.

The Griesmer bound: $n_{q}(k, d) \geq g_{q}(k, d):=\sum_{i=0}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil$

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

the Hamming code $[7,4,3] \rightarrow$ the extended Hamming code $[8,4,4]$

Definition. A linear $[n, k, d]_{q^{-}}$code C is said to be extendable if there exists a $[n+1, k, d+1]_{q^{-c o d e}} C^{\prime}$ such that C is obtained from C^{\prime} by puncturing.
Definition. A linear code over \mathbb{F}_{q} is said to be divisible with divisor $\Delta>1$ if the weight of every codeword is a multiple of Δ.

Theorem. (H.N. Ward) Let C be a Griesmer code over $\mathbb{F}_{p, p} p$ a prime. If p^{e} divides the minimum weight of C, then p^{e} is a divisor of the code.

Definition. A linear $[n, k, d]_{q}$-code is said to be t-quasidivisible modulo Δ if $d \equiv-t(\bmod \Delta)$ and all weights in the code are congruent to $-t, \ldots,-1,0$ modulo Δ.

Theorem. (R. Hill, P. Lizak, 1995) Every linear $[n, k, d]_{q}$-code with weights 0 and d modulo q, where $(d, q)=1$, is extendable to a $[n+1, k, d+1]_{q}$-code.

The most common case is $d \equiv-1(\bmod q)$.
Equivalently: every 1-quasidivisible code is extendable.
Theorem. (T. Maruta, 2004) Let $q \geq 5$ be an odd prime power. If an $[n, k, d]_{q}$-code with $d \equiv-2(\bmod q)$ has only weights $-2,-1,0(\bmod q)$ then it is extendable.

Equivalently: every 2-quasidivisible code over a field of order $q \geq 5, q$ odd, is extendable.

Theorem. (H. Kanda, 2020) Let \mathcal{C} be an $[n, k, d]_{3}$ code with $(d, 3)=1$ whose possible weights of codewords satisfy $A_{i}=0$ for all $i \not \equiv 0,-1,-2(\bmod 9)$. Then \mathcal{C} is doubly extendable.

Definition. A multiset in $\mathrm{PG}(k-1, q)$ is a mapping

$$
\mathcal{K}:\left\{\begin{array}{rll}
\mathcal{P} & \rightarrow & \mathbb{N}_{0}, \\
P & \rightarrow & \mathcal{K}(P) .
\end{array}\right.
$$

$\mathcal{K}(P)$ - the multiplicity of the point P.
$\mathcal{Q} \subset \mathcal{P}: \mathcal{K}(\mathcal{Q})=\sum_{P \in \mathcal{Q}} \mathcal{K}(P) ; \mathcal{K}(\mathcal{P})$ - the cardinality of \mathcal{K}.
a_{i} - the number of hyperplanes of multiplicity i
$\left(a_{i}\right)_{i \geq 0}$ - the spectrum of \mathcal{K}

Definition. (n, w)-arc in $\operatorname{PG}(k-1, q)$: a multiset \mathcal{K} with

1) $\mathcal{K}(\mathcal{P})=n$;
2) for every hyperplane $H: \mathcal{K}(H) \leq w$;
3) there exists a hyperplane $H_{0}: \mathcal{K}\left(H_{0}\right)=w$.

Definition. (n, w)-blocking set with respect to hyperplanes in $\mathrm{PG}(k-1, q)$: a multiset \mathcal{K} with

1) $\mathcal{K}(\mathcal{P})=n$;
2) for every hyperplane $H: \mathcal{K}(H) \geq w$;
3) there exists a hyperplane $H_{0}: \mathcal{K}\left(H_{0}\right)=w$.

Definition. An (n, w)-arc \mathcal{K} in $\operatorname{PG}(k-1, q)$ is called t-extendable, if there exists an $(n+t, w)$-arc \mathcal{K}^{\prime} in $\operatorname{PG}(k-1, q)$ with $\mathcal{K}^{\prime}(P) \geq \mathcal{K}(P)$ for every point $P \in \mathcal{P}$.

Definition. An arc \mathcal{K} in $\operatorname{PG}(k-1, q)$ with $\mathcal{K}(\mathcal{P})=n$ and spectrum $\left(a_{i}\right)$ is said to be divisible with divisor Δ if $a_{i}=0$ for all $i \not \equiv n(\bmod \Delta)$.

Definition. An arc \mathcal{K} with $\mathcal{K}(\mathcal{P})=n$ and spectrum $\left(a_{i}\right)$ is said to be t quasidivisible with divisor Δ (or t-quasidivisible modulo Δ) if $a_{i}=0$ for all $i \not \equiv n, n+1, \ldots, n+t(\bmod \Delta)$.

Equivalence of linear codes and arcs

$$
\begin{array}{ccc}
{[n, k, d]_{q} \text {-code } C} \\
\text { of full length }
\end{array} \quad \Leftrightarrow \quad \begin{gathered}
(n, w=n-d) \text {-arc } \mathcal{K} \\
\text { in } \operatorname{PG}(k-1, q)
\end{gathered}
$$ $\mathbf{0} \neq \boldsymbol{u} \in C, \operatorname{wt}(\boldsymbol{u})=u \quad \Leftrightarrow \quad$ a hyperplane H with $\mathcal{K}(H)=n-u$, extendable $[n, k, d]_{q}$-code $C \quad \Leftrightarrow \quad$ extendable $(n, n-d)$-arc \mathcal{K} divisible $[n, k, d]_{q}$-code $\quad \Leftrightarrow$ divisible $(n, n-d)$-arc in $\mathrm{PG}(k-1, q)$ $A_{i}=0$ for all $i \not \equiv 0(\bmod \Delta)$ $a_{i}=0$ for all $i \not \equiv n(\bmod \Delta)$

t-quasidivisible $[n, k, d]_{q}$-code $\quad \Leftrightarrow \quad t$-quasidivisible $(n, n-d)$-arc $A_{i}=0$ for all $i \not \equiv-j(\bmod q)$ $j \in\{0,1, \ldots, t\}$

$$
\begin{aligned}
& \text { in } \mathrm{PG}(k-1, q) a_{i}=0 \text { for all } \\
& i \not \equiv n+j(\bmod q)
\end{aligned}
$$

\diamond Griesmer arcs: arcs associated with codes meeting the Griesmer bound

2. $(t \bmod q)$-Arcs

Definition. Let $t<q$ be a non-negative integer.
An arc \mathcal{K} in $\mathrm{PG}(r, q)$ is called a $(t \bmod q)$-arc if every subspace S of positive dimension has multiplicity $\mathcal{K}(S) \equiv t(\bmod q)$.

If in addition, every point P has multiplicity at most t, i.e. $\mathcal{K}(P) \leq t$; the \mathcal{K} is called a strong $(t \bmod q)$-arc.

Remark. It is enough to require the congruence in the definition only for the the subspaces of dimension 1 (i.e. for the lines).
$\diamond \mathcal{K}-(n, w)-\operatorname{arc}$ in $\Sigma=\operatorname{PG}(r, q)$
\diamond for every hyperplane H, we have $\mathcal{K}(H) \equiv n, n+1, \ldots, n+t(\bmod q)$ where $0<t<q$ is an integer constant, i.e. \mathcal{K} is t-quasidivisible modulo q.
\diamond Define an arc $\widetilde{\mathcal{K}}$ in the dual space $\widetilde{\Sigma}$

$$
(\star) \quad \widetilde{\mathcal{K}}: \begin{cases}\mathcal{H} & \rightarrow \mathbb{N}_{0} \\ H & \rightarrow \widetilde{\mathcal{K}}(H):=n+t-\mathcal{K}(H) \quad(\bmod q) .\end{cases}
$$

where \mathcal{H} is the set of all hyperplanes of Σ.
E.g. maximal hyperplanes become 0-points.

Theorem A.(Landjev, Rousseva, 2016) Let \mathcal{K} be an (n, w)-arc in $\Sigma=\operatorname{PG}(r, q)$ which is t-quasidivisible modulo q. Then the arc $\widetilde{\mathcal{K}}$ is a strong $(t \bmod q)$-arc.

Theorem B.(Landjev,Rousseva,2016) Let \mathcal{K} be an (n, w)-arc in $\Sigma=\operatorname{PG}(r, q)$ which is t-quasidivisible modulo $q, t<q$. Assume

$$
\widetilde{\mathcal{K}}=\sum_{i=1}^{c} \chi_{\widetilde{H}_{i}}+\widetilde{\mathcal{K}}^{\prime}
$$

for some arc $\widetilde{\mathcal{K}^{\prime}}$ and c not necessarily different hyperplanes $\widetilde{H_{1}}, \ldots, \widetilde{H}_{c}$. Then \mathcal{K} is c-extendable. In particular, if $\widetilde{\mathcal{K}}$ contains a hyperplane in its support then \mathcal{K} is extendable.

Theorem C. (Landjev,Rousseva,2016) Let $t_{1}<q$ and $t_{2}<q$ be positive integers. The sum of a $\left(t_{1} \bmod q\right)$-arc and a $\left(t_{2} \bmod q\right)$-arc in $\mathrm{PG}(r, q)$ is a $(t \bmod q)-\operatorname{arc}$ with $t=t_{1}+t_{2}(\bmod q)$.

In particular, the sum of t hyperplanes in $\mathrm{PG}(r, q)$ is a strong $(t \bmod q)$-arc.

Theorem D. (Landjev, Rousseva, 2016) Let \mathcal{K}_{0} be a $(t \bmod q)$-arc in a hyperplane $H \cong \operatorname{PG}(r-1, q)$. of $\Sigma=\operatorname{PG}(r, q)$. For a fixed point $P \in \Sigma \backslash H$, define an arc \mathcal{K} in Σ as follows:
$-\mathcal{K}(P)=t ;$

- for each point $Q \neq P: \mathcal{K}(Q)=\mathcal{K}_{0}(R)$ where $R=\langle P, Q\rangle \cap H$.

Then the arc \mathcal{K} is a $(t \bmod q)$-arc in $\operatorname{PG}(r, q)$ of size $q\left|\mathcal{K}_{0}\right|+t$.

Definition. $(t \bmod q)$-arcs obtained by Theorem D are called lifted arcs.

Theorem E. (Landjev, Rousseva, 2016) A strong $(t \bmod q)$-arc \mathcal{K} in $\operatorname{PG}(2, q)$ of cardinality $m q+t$ exists if and only if there exists an $((m-t) q+m, m-t)$ blocking set \mathcal{B} with line multiplicities contained in $\{m-t, m-t+1, \ldots, m\}$.

```
\((1 \bmod q) \quad \mathrm{PG}(r, q) \quad\) a hyperplane
\((2 \bmod q) \quad \mathrm{PG}(2, q)\)
lifted from a \(2, q+2\), or \(2 q+2\)-line, or
an oval + a tangent \(+2 \times\) the internal points
(T. Maruta, 2004, S.Kurz, 2021)
\(\mathrm{PG}(r, q), r \geq 3 \quad\) lifted from a \((2 \bmod q)\)-arc in \(\mathrm{PG}(r, q)\)
(I. Landjev, A. Rousseva, 2019)
185 arcs
lifted and three sporadic ( \(3 \bmod 5\) )-arcs
of sizes 128,143 , and 168
(S. Kurz, I. Landjev, A. Rousseva, 2023)
\(\mathrm{PG}(r, 5), r \geq 4\) lifted and ???
```


3. Strong $(3 \bmod 5)$-Arcs in $\operatorname{PG}(2,5)$

$\|\mathcal{K}\|$	BS	$\#$ arcs	$\|\mathcal{K}\|$	BS	$\#$ arcs
18	$(3,0)$	4	48	$(39,6)$	49
23	$(9,1)$	1	53	$(45,7)$	17
28	$(15,2)$	1	58	$(51,8)$	11
33	$(21,3)$	10	63	$(57,9)$	9
38	$(27,4)$	23	68	$(63,10)$	6
43	$(33,5)$	53	93	$(93,15)$	1

- Ivan Landjev \& Assia Rousseva (computerfree)
- Sascha Kurz (computer search)
(18, \{3, 8, 13, 18\})-arcs

(23, $\{3,8\}$)-arc in $\mathrm{PG}(2,5)$

$(28,\{3,8\})$-arc in $\operatorname{PG}(2,5)$

(33, $\{3,8\}$)-arc in $\mathrm{PG}(2,5)$

4. Strong $(3 \bmod 5)$-Arcs in $\operatorname{PG}(3,5)$

Theorem F. (S. Kurz, I. Landjev, A. Rousseva, 2023) Let \mathcal{K} be a strong (3 $\bmod 5)$-arc in $\operatorname{PG}(3,5)$ that is neither lifted nor contains a full hyperplane in its support. Then $|\mathcal{K}| \in\{128,143,168\}$ and in each case the corresponding arc is unique up to isomorphism.

Remark.

The nonexistence of $(104,22)$-arcs in $\mathrm{PG}(3,5)$, or, equivalently, the nonexistence of $[104,4,82]_{5}$-codes

d	$g_{q}(k, d)$	$n_{q}(k, d)$	d	$g_{q}(k, d)$	$n_{q}(k, d)$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
81	103	$103-104$	161	203	$203-204$
82	104	$104-105$	162	204	$204-205$
83	105	106	163	205	206
84	106	107	164	206	207
85	107	108	165	207	208
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

(104, 22)-arc:
Cardinality of a plane:

	18	13	8	3		
22	17	12	7	2	\longrightarrow	0
21	16	11	6	1	\longrightarrow	1
20	15	10	5	0	\longrightarrow	2
19	14	9	4		\longrightarrow	3

Maximal number of points on a line: in such plane: $\begin{array}{llllll}5 & 4 & 3 & 2 & 1\end{array}$

The 128-Arc in $\operatorname{PG}(3,5)$

V. Abatangelo, G. Korchmáros, B Larato, 1996

There exist two 20 -caps in $\mathrm{PG}(3,5)$ that do not extend to the elliptic quadric.
We denote these two caps by K_{1} and K_{2}.
The collineation group G of K_{1} is a semidirect product of an elementary abelean group of order 16 and a group isomorphic to S_{5}. Hence $|G|=16 \cdot 120=1920$.

The collineation group G of K_{2} is isomorphic to S_{5}.

Lemma. Let \mathcal{K} be a strong $(3 \bmod 5)$-arc in $\operatorname{PG}(3,5)$ of cardinality 128. Let φ be the projection from an arbitrary 0 -point in $\operatorname{PG}(3,5)$. Then the arc \mathcal{K}^{φ} is unique up to isomorphism and has the structure described below.

- A 0-point is incident only with 3- and 8-lines.
- An 8 -line with a 0 -point is of type $(3,3,1,1,0,0)$ or $(3,2,2,1,0,0)$.

Projection of a 128-arc from a 0-point

Each 0-point is incident with:
three 8 -lines of type $(3,3,1,1,0,0)$,
four 8 -lines of type $(3,2,2,1,0,0)$,
six 3 -lines of type $(3,0,0,0,0,0)$,
twelve 3 -lines of type $(2,1,0,0,0,0)$,
six 3 -lines of type $(1,1,1,0,0,0)$

This implies that

$$
\begin{gathered}
\lambda_{3}=16, \lambda_{2}=20, \lambda_{1}=40, \lambda_{0}=80 . \\
a_{33}=40, a_{28}=16, a_{23}=80, a_{18}=20 .
\end{gathered}
$$

Here λ_{i} denotes the number of i-points.

The 2-points form a 20-cap C with spectrum:

$$
a_{6}(C)=40, a_{4}(C)=80, a_{3}(C)=20, a_{0}(C)=16 .
$$

This cap is not extendable to the elliptic quadric. In such case it would have (at least 20) tangent planes, but $a_{1}(C)=0$, a contradiction.

Hence the 20-cap on the 2-points in $\operatorname{PG}(3,5)$ is isomorphic to one of the two maximal 20-caps found by Abatangelo, Korchmaros and Larato.

This turns out that this is the cap K_{1}, since K_{2} has a different spectrum.

The action of G on $\operatorname{PG}(3,5)$ gives four orbits on points, denoted $O_{1}^{P}, \ldots, O_{4}^{P}$ and six orbit on lines, denoted $O_{1}^{L}, \ldots, O_{6}^{L}$.

The respective sizes of these orbits are

$$
\begin{gathered}
\left|O_{1}^{P}\right|=40,\left|O_{2}^{P}\right|=80,\left|O_{3}^{P}\right|=20,\left|O_{4}^{P}\right|=16 \\
\left|O_{1}^{L}\right|=160,\left|O_{2}^{L}\right|=240,\left|O_{3}^{L}\right|=30,\left|O_{4}^{L}\right|=160,\left|O_{5}^{L}\right|=120,\left|O_{6}^{L}\right|=96
\end{gathered}
$$

The point-by-line orbit matrix $A=\left(a_{i j}\right)_{4 \times 6}$, where $a_{i j}$ is the number of the points from the i-th point orbit incident with any line from the j-th line orbit is the following

$$
A=\left(\begin{array}{llllll}
3 & 1 & 4 & 1 & 2 & 0 \\
3 & 4 & 0 & 2 & 2 & 5 \\
0 & 1 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 1
\end{array}\right)
$$

Let w_{i} be the multiplicity of any point from O_{i}^{P} and let $w=\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$. In order to get a $(3 \bmod 5)$-arc we should have

$$
w A \equiv 3 j \quad(\bmod 5)
$$

where \boldsymbol{j} is the all-one vector, and $w_{i} \leq 3$ for all $i=1,2,3$.

The set of all solutions is given by

$$
\begin{aligned}
& w=\left\{\left(w_{1}, w_{2}, w_{3}, w_{4}\right) \mid w_{i} \in\{0, \ldots 4\}\right. \\
& \left.\quad w_{2} \equiv 1-w_{1} \quad(\bmod 5), w_{3} \equiv 4-2 w_{1} \quad(\bmod 5), w_{4}=3\right\} .
\end{aligned}
$$

Solutions: $w=(3,3,3,3)$ and $w=(1,0,2,3)$.
The second solution gives the desired 128 -arc.

The 143- and 168-Arc

Two strong non-lifted (3 mod 5)-arcs in $\mathrm{PG}(3,5)$ were constructed by computer search. The respective spectra are:

$$
\begin{aligned}
& \left|\mathcal{F}_{1}\right|=143, a_{18}\left(\mathcal{F}_{1}\right)=26, a_{28}\left(\mathcal{F}_{1}\right)=65, a_{33}\left(\mathcal{F}_{1}\right)=65 ; \\
& \quad \lambda_{0}\left(\mathcal{F}_{1}\right)=65, \lambda_{1}\left(\mathcal{F}_{1}\right)=65, \lambda_{2}\left(\mathcal{F}_{1}\right)=0, \lambda_{3}\left(\mathcal{F}_{1}\right)=26, \\
& \left|\operatorname{Aut}\left(\mathcal{F}_{1}\right)\right|=62400 . \\
& \left|\mathcal{F}_{2}\right|=168, a_{28}\left(\mathcal{F}_{2}\right)=60, a_{33}\left(\mathcal{F}_{2}\right)=60, a_{43}\left(\mathcal{F}_{2}\right)=36 ; \\
& \quad \lambda_{0}\left(\mathcal{F}_{2}\right)=60, \lambda_{1}\left(\mathcal{F}_{2}\right)=60, \lambda_{2}\left(\mathcal{F}_{2}\right)=0, \lambda_{3}\left(\mathcal{F}_{2}\right)=36 . \\
& \left|\operatorname{Aut}\left(\mathcal{F}_{2}\right)\right|=57600 .
\end{aligned}
$$

There exist two quadrics in $\operatorname{PG}(3,5)$.

$$
\begin{gather*}
\mathcal{E}_{3}=\left\{P\left(X_{0}, X_{1}, X_{2}, X_{3}\right) \mid X_{0}^{2}+2 X_{1}^{2}+X_{2} X_{3}=0,\right\} \tag{2}\\
\mathcal{H}_{3}=\left\{P\left(X_{0}, X_{1}, X_{2}, X_{3}\right) \mid X_{0} X_{1}+X_{2} X_{3}=0,\right\} \tag{3}
\end{gather*}
$$

- \mathcal{F}_{1} : for a point $P\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ set

$$
\mathcal{F}_{1}(P)= \begin{cases}3 & \text { if } P \in \mathcal{E}_{3}, \tag{4}\\ 1 & \text { if } x_{0}^{2}+2 x_{1}^{2}+x_{2} x_{3} \text { is a square in } \mathbb{F}_{5}, \\ 0 & \text { if } x_{0}^{2}+2 x_{1}^{2}+x_{2} x_{3} \text { is a non-square in } \mathbb{F}_{5}\end{cases}
$$

- $\mathcal{F}_{2}:$ for a point $P\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ set

$$
\mathcal{F}_{2}(P)= \begin{cases}3 & \text { if } P \in \mathcal{H}_{3} \tag{5}\\ 1 & \text { if } x_{0} x_{1}+x_{2} x_{3} \text { is a square in } \mathbb{F}_{5} \\ 0 & \text { if } x_{0} x_{1}+x_{2} x_{3} \text { is a non-square in } \mathbb{F}_{5}\end{cases}
$$

More generally:
\mathcal{Q} - quadric in $\operatorname{PG}(r, q), q$ - odd prime power
$F\left(x_{0}, x_{1}, \ldots, x_{r}\right)$ - the quadratic form defining \mathcal{Q}

- r - even
$\mathcal{P}_{r}=V\left(x_{0}^{2}+x_{1} x_{2}+\ldots+x_{r-1} x_{r}\right)-$ parabolic
- r - odd
$\mathcal{H}_{r}=V\left(x_{0} x_{1}+x_{2} x_{3}+\ldots+x_{r-1} x_{r}\right)-$ hyperbolic
$\mathcal{P}_{r}=V\left(f\left(x_{0}, x_{1}\right)+x_{2} x_{3}+\ldots+x_{r-1} x_{r}\right)$ - elliptic
(f is irreducible over \mathbb{F}_{q}.)

For $r=2 s$:

$$
\left|\mathcal{P}_{2 s}\right|=\frac{q^{2 s}-1}{q-1}
$$

For $r=2 s-1$:

$$
\begin{aligned}
\left|\mathcal{H}_{2 s-1}\right| & =\frac{\left(q^{s-1}+1\right)\left(q^{s}+1\right)}{q-1} . \\
\left|\mathcal{E}_{2 s-1}\right| & =\frac{\left(q^{s}+1\right)\left(q^{s-1}-1\right)}{q-1} .
\end{aligned}
$$

The points outside \mathcal{Q} split into two classes:

$$
\begin{aligned}
& \mathcal{Q}_{1}=\left\{P\left(x_{0}, \ldots, x_{r}\right) \mid F\left(x_{0}, x_{1}, \ldots, x_{r}\right) \text { is a square }\right\}, \\
& \mathcal{Q}_{2}=\left\{P\left(x_{0}, \ldots, x_{r}\right) \mid F\left(x_{0}, x_{1}, \ldots, x_{r}\right) \text { is a non-square }\right\} .
\end{aligned}
$$

For a point P of $\mathrm{PG}(r, q)$ set $\mathcal{F}_{1}(P)=\left\{\begin{array}{cl}\frac{q+1}{2} & \text { if } P \in \mathcal{Q}, \\ 1 & \text { if } P \in \mathcal{Q}_{1}, \\ 0 & \text { if } P \in \mathcal{Q}_{2} .\end{array}\right.$

For a point P of $\operatorname{PG}(r, q)$ set $\mathcal{F}_{2}(P)=\left\{\begin{array}{cl}\frac{q+1}{2} & \text { if } P \in \mathcal{Q}, \\ 0 & \text { if } P \in \mathcal{Q}_{1}, \\ 1 & \text { if } P \in \mathcal{Q}_{2} .\end{array}\right.$

Theorem H. (S. Kurz, I. Landjev, F. Pavese, A. Rousseva, 2023) Let \mathcal{F}_{1} and \mathcal{F}_{2} be defined as above. Then $\mathcal{F}_{i}, i=1,2$, is a $\left(\frac{q+1}{2} \bmod q\right)$ arc in $\mathrm{PG}(r, q)$. Moreover if \mathcal{Q} is non-degenerate, then both arcs are not lifted.

Definition. An arc obained by this construction is called a quadratic $(t$ $\bmod q)$-arc.

Theorem I. (L\&R, 2023, unpublished) Assume that every strong (3 mod 5)arc in $\mathrm{PG}(r, 5)$, which does not contain a hyperplane in its support is lifted or obtained from a quadric. Then every strong $(3 \bmod 5)$-arc in $\operatorname{PG}(r+1,5)$, is also lifted or a quadratic arc.

Theorem J. (L\&R, 2023, unpublished) Every strong (3 mod 5)-arc in PG $(4,5)$, which does not contain a hyperplane in its support is lifted or a quadratic arc.

Corollary. (L\&R, 2023, unpublished) Every strong (3 mod 5)-arc in $\mathrm{PG}(r, 5)$, $r \geq 4$, which does not contain a hyperplane in its support is lifted or a quadratic arc.

