QUADRICS AND HIGHLY DIVISIBLE ARCS IN FINITE PROJECTIVE GEOMETRIES

Ivan Landjev Institute of Mathematics and Informatics Bulgarian Academy of Sciences

(joint work with Sascha Kurz, Assia Rousseva, and Francesco Pavese)

- National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

1. The extension problem for linear codes and arcs

 $\diamond \operatorname{Linear} [n,k]_q \operatorname{code} C < \mathbb{F}_q^n$, $\dim C = k$, $(\mathbb{F}_q = \operatorname{GF}(q))$

$$(n, k, d]_q$$
-code: $d = \min\{d(u, v) \mid u, v \in C, u \neq v\}$

- n - the **length** of C;

- k the **dimension** of C;
- d the minimum distance of C.

 $\diamond A_i$ – number of codewords of (Hamming) weight i

 $\diamond (A_i)_{i \geq 0}$ – the **spectrum** of *C*

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

Given the positive integers k and d and the prime power q, find the smallest value of n for which there exists a linear $[n, k, d]_q$ -code. This value is denoted by $n_q(k, d)$.

The Griesmer bound:
$$n_q(k,d) \ge g_q(k,d) := \sum_{i=0}^{k-1} \lceil \frac{d}{q^i} \rceil$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

the Hamming code $[7,4,3] \rightarrow$ the extended Hamming code [8,4,4]

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

Definition. A linear $[n, k, d]_q$ -code C is said to be extendable if there exists a $[n+1, k, d+1]_q$ -code C' such that C is obtained from C' by puncturing.

Definition. A linear code over \mathbb{F}_q is said to be divisible with divisor $\Delta > 1$ if the weight of every codeword is a multiple of Δ .

Theorem. (H. N. Ward) Let C be a Griesmer code over \mathbb{F}_p , p a prime. If p^e divides the minimum weight of C, then p^e is a divisor of the code.

Definition. A linear $[n, k, d]_q$ -code is said to be *t*-quasidivisible modulo Δ if $d \equiv -t \pmod{\Delta}$ and all weights in the code are congruent to $-t, \ldots, -1, 0$ modulo Δ .

Theorem. (R. Hill, P. Lizak, 1995) Every linear $[n, k, d]_q$ -code with weights 0 and d modulo q, where (d, q) = 1, is extendable to a $[n + 1, k, d + 1]_q$ -code.

The most common case is $d \equiv -1 \pmod{q}$.

Equivalently: every 1-quasidivisible code is extendable.

Theorem. (T. Maruta, 2004) Let $q \ge 5$ be an odd prime power. If an $[n, k, d]_q$ -code with $d \equiv -2 \pmod{q}$ has only weights $-2, -1, 0 \pmod{q}$ then it is extendable.

Equivalently: every 2-quasidivisible code over a field of order $q \ge 5$, q odd, is extendable.

Theorem. (H. Kanda, 2020) Let C be an $[n, k, d]_3$ code with (d, 3) = 1 whose possible weights of codewords satisfy $A_i = 0$ for all $i \not\equiv 0, -1, -2 \pmod{9}$. Then C is doubly extendable.

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

Definition. A **multiset** in PG(k-1,q) is a mapping

$$\mathcal{K}: \left\{ \begin{array}{ccc} \mathcal{P} & \to & \mathbb{N}_0, \\ P & \to & \mathcal{K}(P) \end{array} \right.$$

 $\mathcal{K}(P)$ – the **multiplicity** of the point P.

 $\mathcal{Q} \subset \mathcal{P}$: $\mathcal{K}(\mathcal{Q}) = \sum_{P \in \mathcal{Q}} \mathcal{K}(P)$; $\mathcal{K}(\mathcal{P})$ – the cardinality of \mathcal{K} .

 a_i – the number of hyperplanes of multiplicity i

 $(a_i)_{i\geq 0}$ – the **spectrum** of \mathcal{K}

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

Definition. (n, w)-arc in PG(k - 1, q): a multiset \mathcal{K} with

1) $\mathcal{K}(\mathcal{P}) = n;$

2) for every hyperplane $H: \mathcal{K}(H) \leq w$;

3) there exists a hyperplane H_0 : $\mathcal{K}(H_0) = w$.

Definition. (n, w)-blocking set with respect to hyperplanes in PG(k-1, q): a multiset \mathcal{K} with

1) $\mathcal{K}(\mathcal{P}) = n;$

2) for every hyperplane $H: \mathcal{K}(H) \geq w$;

3) there exists a hyperplane H_0 : $\mathcal{K}(H_0) = w$.

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

Definition. An (n, w)-arc \mathcal{K} in $\mathrm{PG}(k - 1, q)$ is called *t*-extendable, if there exists an (n + t, w)-arc \mathcal{K}' in $\mathrm{PG}(k - 1, q)$ with $\mathcal{K}'(P) \geq \mathcal{K}(P)$ for every point $P \in \mathcal{P}$.

Definition. An arc \mathcal{K} in PG(k-1,q) with $\mathcal{K}(\mathcal{P}) = n$ and spectrum (a_i) is said to be divisible with divisor Δ if $a_i = 0$ for all $i \not\equiv n \pmod{\Delta}$.

Definition. An arc \mathcal{K} with $\mathcal{K}(\mathcal{P}) = n$ and spectrum (a_i) is said to be t-quasidivisible with divisor Δ (or t-quasidivisible modulo Δ) if $a_i = 0$ for all $i \not\equiv n, n+1, \ldots, n+t \pmod{\Delta}$.

Equivalence of linear codes and arcs

- $\begin{array}{ll} [n,k,d]_q \text{-code } C & \Leftrightarrow & (n,w=n-d) \text{-arc } \mathcal{K} \\ \text{of full length} & & \text{in } \operatorname{PG}(k-1,q) \end{array}$
- $\mathbf{0}
 eq oldsymbol{u} \in C$, $\operatorname{wt}(oldsymbol{u}) = u$ \Leftrightarrow a hyperplane

extendable $[n, k, d]_q$ -code $C \quad \Leftrightarrow$

- divisible $[n,k,d]_q$ -code $A_i=0$ for all $i
 ot\equiv 0 \pmod{\Delta}$
- t-quasidivisible $[n, k, d]_q$ -code $A_i = 0$ for all $i \not\equiv -j \pmod{q}$ $j \in \{0, 1, \dots, t\}$

- a hyperplane H with $\mathcal{K}(H)=n-u$,
 - extendable (n,n-d)-arc ${\cal K}$
- divisible (n, n d)-arc in $\operatorname{PG}(k 1, q)$ $a_i = 0$ for all $i \not\equiv n \pmod{\Delta}$
 - t-quasidivisible (n, n d)-arc in $PG(k - 1, q) \ a_i = 0$ for all $i \not\equiv n + j \pmod{q}$

♦ Griesmer arcs: arcs associated with codes meeting the Griesmer bound

 \Leftrightarrow

 \Leftrightarrow

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

2. $(t \mod q)$ -Arcs

Definition. Let t < q be a non-negative integer.

An arc \mathcal{K} in PG(r,q) is called a $(t \mod q)$ -arc if every subspace S of positive dimension has multiplicity $\mathcal{K}(S) \equiv t \pmod{q}$.

If in addition, every point P has multiplicity at most t, i.e. $\mathcal{K}(P) \leq t$; the \mathcal{K} is called a **strong** $(t \mod q)$ -**arc**.

Remark. It is enough to require the congruence in the definition only for the the subspaces of dimension 1 (i.e. for the lines).

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

 $\diamond \ \mathcal{K} \ \text{-} \ (n,w) \text{-} \text{arc in} \ \Sigma = \mathrm{PG}(r,q)$

 \diamond for every hyperplane H, we have $\mathcal{K}(H) \equiv n, n+1, \ldots, n+t \pmod{q}$ where 0 < t < q is an integer constant, i.e. \mathcal{K} is *t*-quasidivisible modulo q.

 \diamond Define an arc $\widetilde{\mathcal{K}}$ in the dual space $\widetilde{\Sigma}$

$$(\star) \qquad \widetilde{\mathcal{K}}: \left\{ \begin{array}{ll} \mathcal{H} & \to & \mathbb{N}_0, \\ H & \to & \widetilde{\mathcal{K}}(H) := n + t - \mathcal{K}(H) \pmod{q}. \end{array} \right.$$

where \mathcal{H} is the set of all hyperplanes of Σ .

E.g. maximal hyperplanes become **0**-points.

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

Theorem A.(Landjev, Rousseva, 2016) Let \mathcal{K} be an (n, w)-arc in $\Sigma = PG(r, q)$ which is *t*-quasidivisible modulo q. Then the arc $\widetilde{\mathcal{K}}$ is a strong $(t \mod q)$ -arc.

Theorem B.(Landjev, Rousseva, 2016) Let \mathcal{K} be an (n, w)-arc in $\Sigma = PG(r, q)$ which is *t*-quasidivisible modulo q, t < q. Assume

$$\widetilde{\mathcal{K}} = \sum_{i=1}^{c} \chi_{\widetilde{H}_i} + \widetilde{\mathcal{K}}'$$

for some arc $\widetilde{\mathcal{K}'}$ and c not necessarily different hyperplanes $\widetilde{H_1}, \ldots, \widetilde{H_c}$. Then \mathcal{K} is c-extendable. In particular, if $\widetilde{\mathcal{K}}$ contains a hyperplane in its support then \mathcal{K} is extendable.

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

Theorem C. (Landjev, Rousseva, 2016) Let $t_1 < q$ and $t_2 < q$ be positive integers. The sum of a $(t_1 \mod q)$ -arc and a $(t_2 \mod q)$ -arc in PG(r,q) is a $(t \mod q)$ -arc with $t = t_1 + t_2 \pmod{q}$.

In particular, the sum of t hyperplanes in PG(r,q) is a strong $(t \mod q)$ -arc.

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

Theorem D. (Landjev, Rousseva, 2016) Let \mathcal{K}_0 be a $(t \mod q)$ -arc in a hyperplane $H \cong \mathrm{PG}(r-1,q)$. of $\Sigma = \mathrm{PG}(r,q)$. For a fixed point $P \in \Sigma \setminus H$, define an arc \mathcal{K} in Σ as follows:

 $-\mathcal{K}(P)=t;$

- for each point $Q \neq P$: $\mathcal{K}(Q) = \mathcal{K}_0(R)$ where $R = \langle P, Q \rangle \cap H$.

Then the arc \mathcal{K} is a $(t \mod q)$ -arc in PG(r,q) of size $q|\mathcal{K}_0| + t$.

Definition. $(t \mod q)$ -arcs obtained by Theorem D are called **lifted arcs**.

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

Theorem E. (Landjev, Rousseva, 2016) A strong $(t \mod q)$ -arc \mathcal{K} in PG(2, q) of cardinality mq + t exists if and only if there exists an ((m - t)q + m, m - t)-blocking set \mathcal{B} with line multiplicities contained in $\{m - t, m - t + 1, \dots, m\}$.

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

$(1 \! \mod q)$	$\mathrm{PG}(r,q)$	a hyperplane
$(2 \mod q)$	$\mathrm{PG}(2,q)$	lifted from a $2, q + 2$, or $2q + 2$ -line, or an oval + a tangent $+2 \times$ the internal points (T. Maruta, 2004, S.Kurz, 2021)
	$\mathrm{PG}(r,q)$, $r\geq 3$	lifted from a $(2 \mod q)$ -arc in $PG(r,q)$ (I. Landjev, A. Rousseva, 2019)
$(3 \mod 5)$	$\mathrm{PG}(2,5)\ \mathrm{PG}(3,5)$	185 arcs lifted and three sporadic $(3 \mod 5)$ -arcs
	1 0 (0, 0)	of sizes 128, 143, and 168 (S. Kurz, I. Landjev, A. Rousseva, 2023)
	$\mathrm{PG}(r,5)$, $r\geq 4$	lifted and ???

- National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

3. Strong $(3 \mod 5)$ -Arcs in PG(2,5)

$ \mathcal{K} $	BS	# arcs	$ \mathcal{K} $	BS	# arcs
18	(3,0)	4	48	(39,6)	49
23	(9,1)	1	53	(45,7)	17
28	(15, 2)	1	58	(51, 8)	11
33	(21, 3)	10	63	(57,9)	9
38	(27, 4)	23	68	(63, 10)	6
43	(33,5)	53	93	(93, 15)	1

• Ivan Landjev & Assia Rousseva (computerfree)

• Sascha Kurz (computer search)

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

$(18, \{3, 8, 13, 18\})\text{-}\mathsf{arcs}$

 $(23, \{3, 8\})$ -arc in $\operatorname{PG}(2, 5)$

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

```
(28,\{3,8\})\text{-}\mathsf{arc} \text{ in } \mathrm{PG}(2,5)
```


⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

```
(33,\{3,8\})\text{-}\mathsf{arc} \text{ in } \mathrm{PG}(2,5)
```


⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

4. Strong $(3 \mod 5)$ -Arcs in PG(3,5)

Theorem F. (S. Kurz, I. Landjev, A. Rousseva, 2023) Let \mathcal{K} be a strong (3 mod 5)-arc in PG(3,5) that is neither lifted nor contains a full hyperplane in its support. Then $|\mathcal{K}| \in \{128, 143, 168\}$ and in each case the corresponding arc is unique up to isomorphism.

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

Remark.

The nonexistence of $(104,22)\text{-}\mathrm{arcs}$ in $\mathrm{PG}(3,5)\text{, or, equivalently, the nonexistence}$ of $[104,4,82]_5\text{-}\mathrm{codes}$

d	$g_q(k,d)$	$n_q(k,d)$	d	$g_q(k,d)$	$n_q(k,d)$
÷			:	÷	÷
81	103	103-104	161	203	203-204
82	104	104 - 105	162	204	204 - 205
83	105	106	163	205	206
84	106	107	164	206	207
85	107	108	165	207	208
:	:	÷	:	:	÷
:		÷	÷		:

- National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

(104,22)-arc:							
Cardinality of a plane:		18	13	8	3		
	22	17	12	7	2	\longrightarrow	0
	21	16	11	6	1	\longrightarrow	1
	20	15		5	0	\longrightarrow	2
	19	14	9	4		\longrightarrow	3
Maximal number of points on a line:							
in such plane:	5	4	3	2	1		

- National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

The 128-Arc in PG(3,5)

V. Abatangelo, G. Korchmáros, B Larato, 1996

There exist two 20-caps in PG(3,5) that do not extend to the elliptic quadric.

We denote these two caps by K_1 and K_2 .

The collineation group G of K_1 is a semidirect product of an elementary abelean group of order 16 and a group isomorphic to S_5 . Hence $|G| = 16 \cdot 120 = 1920$.

The collineation group G of K_2 is isomorphic to S_5 .

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

Lemma. Let \mathcal{K} be a strong $(3 \mod 5)$ -arc in PG(3,5) of cardinality 128. Let φ be the projection from an arbitrary 0-point in PG(3,5). Then the arc \mathcal{K}^{φ} is unique up to isomorphism and has the structure described below.

- A 0-point is incident only with 3- and 8-lines.
- An 8-line with a 0-point is of type (3, 3, 1, 1, 0, 0) or (3, 2, 2, 1, 0, 0).

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

Projection of a 128-arc from a 0-point

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

Each 0-point is incident with:

three 8-lines of type (3, 3, 1, 1, 0, 0), four 8-lines of type (3, 2, 2, 1, 0, 0), six 3-lines of type (3, 0, 0, 0, 0, 0, 0), twelve 3-lines of type (2, 1, 0, 0, 0, 0), six 3-lines of type (1, 1, 1, 0, 0, 0)

This implies that

$$\lambda_3 = 16, \lambda_2 = 20, \lambda_1 = 40, \lambda_0 = 80.$$

$$a_{33} = 40, a_{28} = 16, a_{23} = 80, a_{18} = 20.$$

Here λ_i denotes the number of *i*-points.

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

The 2-points form a 20-cap C with spectrum:

$$a_6(C) = 40, a_4(C) = 80, a_3(C) = 20, a_0(C) = 16.$$

This cap is **not** extendable to the elliptic quadric. In such case it would have (at least 20) tangent planes, but $a_1(C) = 0$, a contradiction.

Hence the 20-cap on the 2-points in PG(3,5) is isomorphic to one of the two maximal 20-caps found by Abatangelo, Korchmaros and Larato.

This turns out that this is the cap K_1 , since K_2 has a different spectrum.

The action of G on PG(3,5) gives four orbits on points, denoted O_1^P, \ldots, O_4^P and six orbit on lines, denoted O_1^L, \ldots, O_6^L .

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

The respective sizes of these orbits are

$$|O_1^P| = 40, |O_2^P| = 80, |O_3^P| = 20, |O_4^P| = 16;$$

 $|O_1^L| = 160, |O_2^L| = 240, |O_3^L| = 30, |O_4^L| = 160, |O_5^L| = 120, |O_6^L| = 96.$

The point-by-line orbit matrix $A = (a_{ij})_{4 \times 6}$, where a_{ij} is the number of the points from the *i*-th point orbit incident with any line from the *j*-th line orbit is the following

$$A = \begin{pmatrix} 3 & 1 & 4 & 1 & 2 & 0 \\ 3 & 4 & 0 & 2 & 2 & 5 \\ 0 & 1 & 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 1 \end{pmatrix}.$$

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

Let w_i be the multiplicity of any point from O_i^P and let $w = (w_1, w_2, w_3, w_4)$. In order to get a $(3 \mod 5)$ -arc we should have

 $wA \equiv 3\mathbf{j} \pmod{5},$

where j is the all-one vector, and $w_i \leq 3$ for all i = 1, 2, 3.

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

The set of all solutions is given by

$$w = \{ (w_1, w_2, w_3, w_4) \mid w_i \in \{0, \dots 4\}, \\ w_2 \equiv 1 - w_1 \pmod{5}, w_3 \equiv 4 - 2w_1 \pmod{5}, w_4 = 3 \}.$$
(1)

Solutions: w = (3, 3, 3, 3) and w = (1, 0, 2, 3).

The second solution gives the desired 128-arc.

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

The 143- and 168-Arc

Two strong non-lifted $(3 \mod 5)$ -arcs in PG(3,5) were constructed by computer search. The respective spectra are:

$$\begin{aligned} |\mathcal{F}_1| &= 143, \ a_{18}(\mathcal{F}_1) = 26, a_{28}(\mathcal{F}_1) = 65, a_{33}(\mathcal{F}_1) = 65; \\ \lambda_0(\mathcal{F}_1) &= 65, \lambda_1(\mathcal{F}_1) = 65, \lambda_2(\mathcal{F}_1) = 0, \lambda_3(\mathcal{F}_1) = 26, \\ |\operatorname{Aut}(\mathcal{F}_1)| &= 62400. \end{aligned}$$
$$\begin{aligned} |\mathcal{F}_2| &= 168, \ a_{28}(\mathcal{F}_2) = 60, a_{33}(\mathcal{F}_2) = 60, a_{43}(\mathcal{F}_2) = 36; \\ \lambda_0(\mathcal{F}_2) &= 60, \lambda_1(\mathcal{F}_2) = 60, \lambda_2(\mathcal{F}_2) = 0, \lambda_3(\mathcal{F}_2) = 36. \end{aligned}$$
$$\begin{aligned} |\operatorname{Aut}(\mathcal{F}_2)| &= 57600. \end{aligned}$$

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

There exist two quadrics in PG(3, 5).

$$\mathcal{E}_3 = \{ P(X_0, X_1, X_2, X_3) \mid X_0^2 + 2X_1^2 + X_2X_3 = 0, \}$$
(2)

$$\mathcal{H}_3 = \{ P(X_0, X_1, X_2, X_3) \mid X_0 X_1 + X_2 X_3 = 0, \}$$
(3)

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

• \mathcal{F}_1 : for a point $P(x_0, x_1, x_2, x_3)$ set

$$\mathcal{F}_{1}(P) = \begin{cases} 3 & \text{if } P \in \mathcal{E}_{3}, \\ 1 & \text{if } x_{0}^{2} + 2x_{1}^{2} + x_{2}x_{3} \text{ is a square in } \mathbb{F}_{5}, \\ 0 & \text{if } x_{0}^{2} + 2x_{1}^{2} + x_{2}x_{3} \text{ is a non-square in } \mathbb{F}_{5}. \end{cases}$$
(4)

• \mathcal{F}_2 : for a point $P(x_0, x_1, x_2, x_3)$ set

$$\mathcal{F}_{2}(P) = \begin{cases} 3 & \text{if } P \in \mathcal{H}_{3}, \\ 1 & \text{if } x_{0}x_{1} + x_{2}x_{3} \text{ is a square in } \mathbb{F}_{5}, \\ 0 & \text{if } x_{0}x_{1} + x_{2}x_{3} \text{ is a non-square in } \mathbb{F}_{5}. \end{cases}$$
(5)

More generally:

 \mathcal{Q} – quadric in $\mathrm{PG}(r,q)$, q – odd prime power

 $F(x_0, x_1, \ldots, x_r)$ – the quadratic form defining ${\cal Q}$

• r - even

 $\mathcal{P}_r = V(x_0^2 + x_1x_2 + \ldots + x_{r-1}x_r)$ - parabolic

• *r* - odd

 $\mathcal{H}_r = V(x_0x_1 + x_2x_3 + \ldots + x_{r-1}x_r) - \text{hyperbolic}$ $\mathcal{P}_r = V(f(x_0, x_1) + x_2x_3 + \ldots + x_{r-1}x_r) - \text{elliptic}$ $(f \text{ is irreducible over } \mathbb{F}_{q}.)$

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

For r = 2s:

$$|\mathcal{P}_{2s}| = \frac{q^{2s} - 1}{q - 1}.$$

For r = 2s - 1:

$$|\mathcal{H}_{2s-1}| = \frac{(q^{s-1}+1)(q^s+1)}{q-1}.$$
$$|\mathcal{E}_{2s-1}| = \frac{(q^s+1)(q^{s-1}-1)}{q-1}.$$

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

The points outside $\mathcal Q$ split into two classes:

$$\mathcal{Q}_1 = \{ P(x_0, \dots, x_r) \mid F(x_0, x_1, \dots, x_r) \text{ is a square } \},$$

$$\mathcal{Q}_2 = \{ P(x_0, \dots, x_r) \mid F(x_0, x_1, \dots, x_r) \text{ is a non-square } \}.$$

For a point P of PG(r,q) set
$$\mathcal{F}_1(P) = \begin{cases} \frac{q+1}{2} & \text{if } P \in \mathcal{Q}, \\ 1 & \text{if } P \in \mathcal{Q}_1, \\ 0 & \text{if } P \in \mathcal{Q}_2. \end{cases}$$

For a point P of PG(r,q) set
$$\mathcal{F}_2(P) = \begin{cases} \frac{q+1}{2} & \text{if } P \in \mathcal{Q}, \\ 0 & \text{if } P \in \mathcal{Q}_1, \\ 1 & \text{if } P \in \mathcal{Q}_2. \end{cases}$$

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

Theorem H. (S. Kurz, I. Landjev, F. Pavese, A. Rousseva, 2023)

Let \mathcal{F}_1 and \mathcal{F}_2 be defined as above. Then \mathcal{F}_i , i = 1, 2, is a $\left(\frac{q+1}{2} \mod q\right)$ arc in PG(r,q). Moreover if \mathcal{Q} is non-degenerate, then both arcs are not lifted.

Definition. An arc obtined by this construction is called a **quadratic** $(t \mod q)$ -**arc**.

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -

Theorem I. (L&R, 2023, unpublished) Assume that every strong $(3 \mod 5)$ -arc in PG(r, 5), which does not contain a hyperplane in its support is lifted or obtained from a quadric. Then every strong $(3 \mod 5)$ -arc in PG(r + 1, 5), is also lifted or a quadratic arc.

Theorem J. (L&R, 2023, unpublished) Every strong $(3 \mod 5)$ -arc in PG(4,5), which does not contain a hyperplane in its support is lifted or a quadratic arc.

Corollary. (L&R, 2023, unpublished) Every strong $(3 \mod 5)$ -arc in PG(r, 5), $r \ge 4$, which does not contain a hyperplane in its support is lifted or a quadratic arc.

⁻ National Colloquium, Institute of Mathematics and Informatics, BAS, 14.11.2023 -