Arcs of High Divisibility and Their Applications to Coding Theory

Ivan Landjev
Institute of Mathematics and Informatics, BAS
Acad. G. Bonchev str. Bl. 8, 1113 Sofia

(based on joint papers with Sascha Kurz, Francesco Pavese, Assia Rousseva)

The $(t \bmod q)$-arcs were introduced as a tool for an unified treatment of the extension problem for linear codes [4]. An arc \mathcal{K} in $\mathrm{PG}(r, q)$ is called a $(t$ $\bmod q)$-arc if $\mathcal{K}(L) \equiv t(\bmod q)$ for every line L from $\operatorname{PG}(r, q)$. If in addition $\mathcal{K}(P) \leq t$ for every point P then \mathcal{K} is called a strong $(t \bmod q)$-arc.

There exists a general lifting construction for (strong) ($t \bmod q$)-arcs which given a $(t \bmod q)$ arc in $\mathrm{PG}(r, q)$ produces such an arc in $\mathrm{PG}(r+1, q)$. It was conjectured that all strong indecomposable $(t \bmod q)$-arcs in $\operatorname{PG}(r, q)$ for $r \geq 3$ are lifted. This conjecture turned out to be wrong. Three exceptional (3 $\bmod 5)$-arcs in $\operatorname{PG}(3,5)$ of respective sizes 128,143 and 168 that are not lifted were constructed by computer in [2]. This result was used to fill in the gap in the non-existence proof for the putative $[104,4,82]_{5}$-code. A geometric (computerfree) description of the three exceptional (3 mod 5$)$-arcs was presented in [3]. One of them uses the Abatangelo-Korchmaros-Larato cap of size 20 in $\operatorname{PG}(3,5)$ [1], while the other two are based on the elliptic and hyperbolic quadrics.

In this talk, we present a geometric description of the three exceptional (3 $\bmod 5)$-arcs in $\mathrm{PG}(3,5)$ and prove that every strong $(3 \bmod 5)$-arc in $\mathrm{PG}(r, 5)$, $r \geq 4$, is either lifted or a quadratic arc.

References

[1] V. Abatangelo, G. Korchmaros, B. Larato, Classification of maximal caps in $\mathrm{PG}(3,5)$ different from elliptic quadrics, J. of Geometry $\mathbf{5 7}(1996), 9-19$.
[2] S. Kurz, I. Landjev, A. Rousseva, Classification of $(3 \bmod 5)-$ arcs in PG(3,5), Adv. in Math. of Comm., 17(1) (2023), 172-206. doi:10.3934/amc. 2021066
[3] S. Kurz, I. Landjev, F. Pavese, A. Rousseva, The Geometry of $t \bmod q$ arcs, Des. Codes Cryptogr. 2023, https://doi.org/10.1007/s10623-023-01290-w
[4] I. Landjev, A. Rousseva, Divisible Arcs, Divisible Codes and the Extension Problem for Arcs and Codes, Probl. of Inf. Trans., 55(3)(2019), 30-45.

