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The (t mod q)-arcs were introduced as a tool for an unified treatment of
the extension problem for linear codes [4]. An arc K in PG(r, q) is called a (t
mod q)-arc if K(L) ≡ t (mod q) for every line L from PG(r, q). If in addition
K(P ) ≤ t for every point P then K is called a strong (t mod q)-arc.

There exists a general lifting construction for (strong) (t mod q)-arcs which
given a (t mod q) arc in PG(r, q) produces such an arc in PG(r + 1, q). It
was conjectured that all strong indecomposable (t mod q)-arcs in PG(r, q) for
r ≥ 3 are lifted. This conjecture turned out to be wrong. Three exceptional (3
mod 5)-arcs in PG(3, 5) of respective sizes 128, 143 and 168 that are not lifted
were constructed by computer in [2]. This result was used to fill in the gap in the
non-existence proof for the putative [104, 4, 82]5-code. A geometric (computer-
free) description of the three exceptional (3 mod 5)-arcs was presented in [3].
One of them uses the Abatangelo-Korchmaros-Larato cap of size 20 in PG(3, 5)
[1], while the other two are based on the elliptic and hyperbolic quadrics.

In this talk, we present a geometric description of the three exceptional (3
mod 5)-arcs in PG(3, 5) and prove that every strong (3 mod 5)-arc in PG(r, 5),
r ≥ 4, is either lifted or a quadratic arc.
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