
Cross-Validated Sequentially Constructed Multiple Regression
Slav Angelov (1), Eugenia Stoimenova (2)
New Bulgarian University (1); Institute of Information and Communication Technologies, Institute of
Mathematics and Informatics, Bulgarian Academy of Sciences (2), Sofia, Bulgaria

Introduction

Let observe the multiple regression as a tool for prediction. A well-known fact is that under
the Gaus-Markov conditions the least squares estimator is the best linear unbiased estimator
for multiple regression. Let assume that the G-M conditions hold, the input data are suitable
for linear model and that the coefficients are estimated by the least squares estimator. Another
important thing is that we are assuming that we have independent model variables. However,
usually in practice, we have correlations between the variables, and as a result, the model has
multicollinearity problem. Multicollinearity causes some of the coefficients in the model to be
estimated with high variance or even to be biased because of the presence of suboptimal solutions.
This is leading to unstable model, and the final result is poor predictions. Moreover, if there is
a presence of multicollinearity and the model is recalculated by a data set with outliers than the
adverse effects will be increased. If we examine the outliers as a separate problem, we should say
that they can be influential to the model or not. Usually, even if they are not too influential they
have higher variance than the other observations, and their individual or group effect causes the
model to be biased which again may lead to poor prediction results for observations out of the
learning set. Additionally, poor prediction result may be caused by overfitting the model - there
is a small number of observations per model variable, and as a result, the estimated model is
misleading. Under our initial assumptions, we can summarize that to obtain a linear model with
better prediction performance than a multiple regression we need to take into consideration all
of the mentioned factors.

Objective

To simplify the understanding of the aim of this paper, we will define one task. Let us assume
that over a chosen learning set we have estimated a regression model with the desired model
statistics and prediction results over some test sets. We want to assure that this model will
remain with as nice diagnostics and prediction performance as possible after adding more
observations to its estimation. The method proposed in this paper is an instrument for such
a handling.

Cross-validated sequentially constructed linear model

We are observing the classical multiple regression model :
Y = α0 + α1.X1 + α2.X2 + · · · + αk.Xk + ε ,

where Y is the predicted variable, αi is the coefficient in front of predictor Xi for i = 1, . . . , k
and ε is the error term. The model intercept term is α0. X1, ..., Xk are centered.
The technique that we are proposing merges some of the model variables into components
reducing in that manner the total number of variables. The way we merge two chosen variables
into one component is the core of the method. Each component is forged in a procedure that
involves two model variables (or other already obtained components). Let us assume for simplicity
that we want to combine variables X1 and X2 into one component Z. Moreover, the estimate
a1 of the coefficient in front of X1 is bigger in absolute value than the estimate a2 of the
coefficient in front of X2. Then Z(k) = X1 + k ∗ X2, where we are searching for the optimal
k ∈ (k0−µ, k0 +µ), k0 = a2

a1
, µ is a small number usually less than 1, while minimizing the Root

mean squared error after cross-validation (RMSECV) for the multiple regression with the rest of
the model variables (except the mentioned two) and the new component Z(k). For k = k0 we
will attain the initial regression model.

minRMSECV (k) = min
k

√√√√√√√√√√
∑n
i=1(εi(k))2

n
, k ∈ (k0 − µ, k0 + µ), µ > 0,

where εi(k) = Y (i)− fi(k) is the error from the i-th observation from the model fi(k). fi(k) is
the multiple regression model with input variables Z(k), X3, X4, ..., Xn estimated with the full
data set except the i-th observation. Note that the input variables of fi(k) are centered without
considering the i-th observation. The RMSECV(k) function is continuous and positive. Moreover,
it is bounded from above. The simplest way to see this, without going into details, is to note
that RMSECV(k) is constructed from errors derived from regression models and these errors are
expected to be as small as possible. Thus, searching for the global minimum of the RMSECV(k)
function is a valid operation.

The proposed method’s framework

The proposed method has the following algorithm :
We have a multiple regression model with n variables. The input variables are centered.

1 We choose the model variable which has the worst estimate based on its absolute
t-value. Then we find the most correlated with it model variable, and we combine them
into one component ;

2 The regression model is estimated with the new component instead of the two chosen
variables from Step 1 and all of the rest model variables.

3 Step 1 is repeated with the n-1 model variables ;
4 Step 2 is repeated with the obtained component from Step 3 and so on ;
5 The procedure ends when we have achieved absolute t-values over a chosen threshold
for all of the derived model variables or when the model variables are reduced to a
predefined percentage from their initial number. We suggest that the procedure should
stop when all of the model variables are with absolute t-values over 4.5, or the number
of the derived model variables is around 50% of the initial number of variables.

The obtained components are then used instead of the model variables.

The idea behind the approach

First, let us note that we are merging the variable with the highest estimation error for its
coefficient with a variable that is most highly correlated with it. Thus, we are reducing the level
of multicollinearity for the model, and as a consequence, we hope to achieve better estimated
coefficients for the model with the new component. A handful instruments to measure the level of
multicollinearity of a model are the Variance inflation factors (VIFs). VIFs measure the correlation
between a chosen variable with all the other model variables.

V IFj = 1
1−R2

j

,
where R2

j is the Pearson’s correlation coefficient R2 that we can
calculate if we regress xj against all the other model variables.

VIFs over 4 are signs of a moderate multicollinearity problem, VIFs over 10 show extreme mul-
ticollinearity.
Second, each component is produced while minimizing RMCECV. RMSECV is the RMSE (see
the example) while performing leave-one-out cross-validation [Mevik and Cederkvist, 2004]. This
type of cross-validation is the one with the smallest variance of the error compared to the other
types of cross-validation. Its goal is to see how well a regression model is capable of predicting
out of sample observations. While minimizing RMSECV(k), we are searching for a component
Z(k) that allows the model that uses it to be as robust to changes in the test set as possible
concerning the out of sample prediction performance.

An example

The real example is based on accounting and macroeconomic information from the firms in
the Bulgarian gas distribution sector in the period 2007-14. The goal is the predicting of
the Return on assets financial ratio for the next observed period using the input data from
the current period. The full data set consists of 116 observations (three of these observa-
tions are omitted to improve the model). The model has seven variables one of which is a
macroeconomic one. The description of the input will be skipped.
ROA(t) = α1 ∗ PTA(t− 1) + α2 ∗DC(t− 1) + α3 ∗ FL(t− 1) + α4 ∗ PTL(t− 1)+

+ α5 ∗ LAOR(t− 1) + α6 ∗ Igas(t− 1) + α7 ∗ Firm.size(t− 1).
The proposed method is applied to the training set A1 which contains the observations from
years 2007-2010 (45 observations). The derived components by the method are three (43%
of the primary variables). Then the regression model FA+

1 with the derived components is
estimated from the set A+

1 (64 observations) which contains one additional year 2011. The
model over set A+

1 is tested for the set B which contains the observations from years 2012-
14 (49 observations). We want to compare FA+

1 with the multiple regression model F over
the set A+

1 . The criteria for the comparison is the RMSE error, for more information see
[Chai and Draxler, 2014].

RMSECVf(A) =
√√√√√√√√√√√

∑
i∈A[εf(i)]2
length(A)

,

where A is the test set, f is the regres-
sion model, εf(i) is the error of the i-th
observation for model f .

RMSEFA+
1
(A+

1 ) RMSEF (A+
1 )

0.01557 0.01564
We can see from the table that FA+

1 has lower pre-
diction error. The results are close to each other,
but the FA+

1 is with only three variables compared
to the F model which is with 7, and these three
variables are derived from 43 observations, that is
38% of the full data set.

We can see that the three components are
well estimated while more data is added. The
summary statistics are obtained using the
lm() function in R language [R, 2017].

The summary statistics of the multiple re-
gression over the set A+

1 .
About the multicollinearity issue it will be only mentioned that the highest VIF for the
components in FA+

1 is 1.11 compared to 4.34 for F .
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